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Abstract. The problem of searching the optimal way in the network of public communication is investigated in the article. 
The modified Minieka algorithm and designed combined search into depth and Dijkstra algorithm method, operating by the 
basis of graphs are presented. In order to evaluate practically the efficiency and applicability of algorithms experimental 
calculating of route search in the model of public transport communication network has been made. Public transport 
network changed in to graph is a real public transport network segment in Kaunas. Having compared their efficiency 
(memory size and calculating time) it has been proved that both methods might be applied to solve the problem as well as 
be integrated into the prediction models of communication processes. The combined depth-first search and Dijkstra 
algorithm method are better. 
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1. Introduction 

The paper is concerned with the problem of 
searching for the optimal route, which is an old and classic 
problem in the theory of the transport service system. 
There are many algorithms for solving the problem based 
on different ideas [ 1, 2]. More precise rout esearch in the 
theory of graph algorithms analyzing historical deve­
lopment in the Lithuanian and foreign scientific publi­
cations revealed that the above mentioned algorithms 
are constantly perfected reducing the time of calculation 
[3-6]. Bearing in mind the requirements of modem com­
putation, the problem seems to be not very tipical. but in 
the case of the big network calculation time first of all it 
depends not on the speed of computing, but on the 
method of computing. 

In practice, when solving the problem of specific 
optimal route in public transport service network, it is a 
much time consuming task to adjust already known graph 
theory algorithms for route search resulting in negative 
influence on efficiency [7, 8]. 

The essence of this paper is to design the efficient 
algorithm for optimal route in public communication 
network modifying already known graph theory al­

gorithms. 
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2. The Problem of Searching for the Optimal Way in the 
Network of Public Communication 

Forecasting transport services with the help of com­
puters it is necessary to use modelling of typical changes 
in the specific transport service network [9]. While 
modelling communication route choice, firstly the routes 
of communication that will be chosen by a participant to 
reach the destination point should be established. Kno­
wing these ways it is possible to estimate transport flow 
in all the parts of public communication network and to 
foresee if future demand exceeds the supply at specific 
points of the path. Thus the measures can be taken to 
expand or shift the supply. Namely therefore the results of 
modelling the public transport service route are significant 
in transport planning. 

The pattern of public transport communication is the 
basis of problem solving in the way search (Fig 1 ). Model 
structure of public communication network is nominally 
described in the following way: 

VS = (TR,S,L,P,'t). {1) 

Where TR is finite set of transport regions. S is the 
finite set of stops, S n TR{ }, when there is at least one 
path (line) at every stop: VsES:3lEL:sEl. 
L ~ S 2 x S - finite path set. P ~ TR x S - finite paths on 
foot set between transport regions and stops. 
't: L ~ IR+- traffic schedule of the path (line) - time 
interval between two sequencing carriages in a path. 

All the route search methods are based on the graph 
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theory. Accordingly, in order to adjust and upgrade 
already known algorithms of graph theory dealing with 
the problem, the graph must be substituted for the network 
model. 

Fig 1. Public transport communication network model 

after experimental computation 

Equivalent orientated finite graph for network model 
is as follows: 

G =(V,E,y). (2) 

Where V = {1,2, ... , N}- finite peak set (N E IN). 
E ~ v 2 - orientated arc set. y: E ~ IR; -arc evaluation 
function (arc length). 

Substituting graph for the model of communication 
network, peaks are derived instead of transport regions 
and stops and arcs and their length instead of footways, 
paths (line) interval, transfer relations and resistance. 

One of the main tasks of the route search algorithm 
problems is the selection of right one, as a rule, from infinite 
set of the model in all the routes of public communication 
network. Transport service connections must be sorted 
out in the way as to be able to compare one route with the 
other. For this purpose every road must be given the 
resistance that corresponds tangible and intangible 
passenger costs [10]. Only those criteria are studied that 
are quantifiable and have essential impact on the choice 
of the route. These specific influential factors are journey 
time, carriage cost and comfort. 

Establishing all kinds of resistance function w is 
defined and its value corresponds leverage time: 

c.o = w(p )+ c.o(a )+ c.o(u). (3) 

In this equation w(p)- footway p = (tr, s )E P 
resistance is defined as leverage time that is needed to 
reach destination on foot p and is derived from road length 
and pedestrian speed dependence. Resistance of c.o(a )­
path segment a = (s, ~, l )E A is defined as leverage time, 
that is used to go from stops to stop s by line/. Resistance 

of ro(u)transfer relations u = (l1,l2 ,s)E U comprises le-

verage waiting time during transfer and additional time for 

loss of comfort. 
The modelling of transport needs is based on the 

assumption, that passengers choose the way with minimal 
resistance, thus the way with minimal tangible and 
intangible journey costs. In graph G optimal route 
k0 E K;,J between two peaks i, j E V is a path of minimal 
length: 'Ilk E Ki.J : y(k) 2': y(k0 ). Thus d;,J = y(k0 ) is the 
length of optimal route between peaks i and j. 

In route choice modelling only the optimal route is 
analyzed, thus estimated transport need in line segments, 
having no optimal route, equals to zero, although in most 
ways there is an equivalent alternative of the shortest 
path. To represent communication needs in a more realistic 

way, k-optimal routes must be included (k E IN). Critical 
factor is the resistance of the alternate route emerging in 
fixed limits. Lower limit is the length of optimal route 

di.J and the upper limit is calculated in this way: 

D . . =d. · +tv2 . 
1,) 1,) (4) 

In this equation 

di.J is the length between two objects i and} (peaks, 

transport regions, stops) of optimal way. In route choice 
all roads are important, that have the resistance higher 
than the length of optimal route 

di.J in constant time addition. If the distance between 

the start and the end of the journey is small, this constant 
time addition is unrealistically big. Then a relative time 
addition is used instead of absolute addition. With 
function of limited values r the upper limit of optimal route 

d,-,J is calculated: 

r(d)= Min('"A1 *d ,d. · +'"A2 ) 1,) l,j (5) 

Standard parameter values are: A. 1 = 1,2 and 
'"A 1 = 15 (min]. Thus, in the route choice modelling all the 
routes with the resistance up to 20% higher than the 
optimal route length are analyzed, but not longer than I 5 
minutes. In route search algorithms there are always more 
than needed routes calculated, because in case of small 
distances upper limit D;,J is too high. At the end of the 
route search the upper limit must be adjusted and 
redundant routes should be excluded (Fig 2). 

3. The Algorithm[ll of Search oHhe Optimal Way ftll Net­
work of Public Communication 

3 .1. The Modified Min!eka Algorithm 

The Minieka algorithm is used to solve the task of 
finding the shortest way k in the graph. The method was 
created after modifying the standard Floyd algorithm of 
finding the shortest way in the graph. For every peak pair 
(i, j)E V 2 k shortest ways are defined (k is constant) 
while inserting an intermediate m peak. In this way all the 
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Fig 2. The dependence of the alternative route upper limit 
r from optimal route length d- -

1-J 

route combinations between i and m, as well as between m 
and j are obtained and finally the new way of the pair 

(i, j) is obtained. The optimum ways k are selected, all the 

rest is deleted. The way combination from and to m for 
each peak mE V is calculated only once. As all the defined 
ways are as a rule non-cyclical the set for each apex is 
fixed. As only the non-cyclical ways are being detined, 
the calculations attributed to them fall away. 
The Minieka algorithm defines any constant number of 
ways k for each pair of peaks (the lengths of ways kin the 
database entries). In route search of a way communication 
network the upper limit D;.J is only for the way length, not 
for the number of alternative routes. That is why for 
flexibility reasons a set of k-entries is introduced instead 
of the above-mentioned limit. The upper limit D;.j, is to 
be known before starting the calculation. In this way the 
optimum length of the route is defined in its preparation 
phase. The Dijkstra algorithm is used for this purpose. 

In the Minieka algorithm we suppose that all the 
lengths defined by the peak pairs are different which is 
not common for general graphs. All homogenous length 
roads are rejected. The problem is solved substituting the 
road lengths with sequences of peaks (road lists). A list of 
roads between these two peaks is made for each peak pair 

in the matrix Nx N. 

The way list P;,j of the peak pair (i, j)E V 2
, i 1:- j the 

set of ways belonging to the solution set X i,j : 

P;,j = {k = (v1, v2 , ... , v n )E K;.j VI~ x < y ~ n: 

vx 1:-vy,y(k)~Di,j ,Jl.(k)~umaJ (6) 

The connection of two way lists Pa.b•Ph.c• 

a,b,cE Vis the set of several combinations from Pa,b 

and Pb.c with the following limitations: 

(7) 

k1 • k2 is .the way connection. The condition of the cycle 

k1 n k2 = {b} assures that no peaks appear until the con­
necting peak b, therefore only the ways belonging to the 
solution set are obtained. When Pu.b = {}or 
Pb.c = { }, then Pa.b • Pb,c = { }. The following sequence 
. h I . h . ' b ' . d· p(O) p(l) p(N) m t e a gont m IS o tame . i.j , i.J , ... , i.j . 

Procedure. 

Given data: 

Graph G = (V,E, y). 

To be searched: 
The optimal non-cyclical way from i to j 

(i, j E V, i 7:- j) with the time limit D;,J and the largest 
frequencies of bus changes umax· The ways obtained are 
entered into f!-.i' 

Preparation: 
Vi, j E V, i 7:- j: Dijkstra algorithm defines the opti­
mal way legth d;_J fromltoj. As the algorithm is the 
I :N type search method, the calculation for each peak 
is executed N number of times. 
Vi, j E V, i *- j: = d;_j + A. 2 (tempora1y upper limit). 

Formation: 

First of all there are only the arc connections which 

lengths appear within the framework of the calculated limit: 

Vi,j E V,i 7:- j :P;~~) := { (i,j) }, w·hen (i,j)E E 

and y((i,j))~Di,J• P;~~):={} 

Basic part: 
FORm:= 1 TON DO 

FORi:= 1 TON DO 
FORj:= 1 TON DO 

IF i-t;mAND ji:-mAND ii:-j THEN 

p(m) ·= p(m-1) U (p(m-1) • p(m-1)) 
I,J · l,J I,m m,J J 

END; 

END; 

END; 

END. 

The correction of the upper limit: 

(8) 

Vi, j E V, i 7:- j :Pi,j := { k E P/fl y(k)~ r(d;) }with r 

Estimation of expenses: 
In order to evaluate the costs it is important to fulfill 

the condition: 

3kE IN: Vi,jE V: X;,_i ~k, (9) 

i.e. the size of the ~olution set is limited by figure k .. 
Without the limitation it would be impossible to compare 
the road search algorithms (all method 0(2 N) ). From 
:P;,j. $ L;,j the final conclusion follows, that P;_j ~ k , 

i.e. the size of the list is limited by figure k. 

Calculating procedure parameters: 

Preparation: optimum way search according to Dijkstra 
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algorithm requests O(N ·log(N)). As 1 :N method, is 
repeated N times for every peak. 
• Optimal way search N:N: E o(N2 -log(N)) 
• Superiorlimit Di.j calculation: N 2 pitch; 

Formation: connecting two lists of ways ?;,,,. Pm,j : 
cycle check ( k1 n k2 ) : E O(N ·log(N)); 
connection k1 • k2 : N pitch (way being copied); 
the number of way combinations P;,, and P,,,j : 

k 2 (because of IP;.J::; k ); 

connection total: k 2 
· (N ·log(N)+ N). 

Total number of checked cycles: 

N·(N-I)·(N-2), because m:F-i:F-j. 

Superior limit correction: N 2 pitch. 
Elimination of redundant ways: N 2 

· k pitch. 
Total expenses: 

N 2 -log(N)+ 2· N 2 + N · (N -1)· (N -2)·k 2 (N log(N)+ N)+ 

+N 2 +N 2 ·kE O(N 4 ·log(N)·k 2
) 

Comparison with an original algorithm: 

Original Minieka algorithm takes only o(N 3 )of cal­

culation time. The essential cause of this difference is the 

absence of cycle check, constituting N ·log 2 (N)of the 

pitch, which is introduced by the author of this presenta­
tion. 

Occupied memory size: 
The algorithm occupies a big part of memory because 

of the P;,j list, which takes a lot of space- o(N 3 
· k) This 

is because k ways having N peaks defined for each 
N 2 connection at the same time. 

3.2. Combined Depth-first Searches and Dijk5tra 
Algorithm Method 

Dijkstra algorithm which helps to find the shortest 
way in the graph is one of the best known in the graph 
theory and, because of its efficiency, is considered to be 
one of the standard algorithms used for searching the 
way in the graph. This method is not completely suited for 
the optimum way search. The modification of this method, 
i.e. when the time limit Di,j is introduced for calculating 
the way, reduces its efficiency. Therefore the method can 
be applied only for the calculation of the distance between 

two peaks. 
The so-called depth-first search method is better 

suited for the estimation of the way, because this is a 
standard method of finding all the possible ways in the 
graph. Since it is a limited time method, cycles (contours) 
are avoided and this makes influence on the expenses. In 
addition, the superior resistance limit (limited depth-first 
search) is estimated which makes this method the optimum 
"limited-time search" solution method. 

Starting from the initial point a E V arcs are checked 

in all directions, while the shortest route of the search 
dictates the search direction and peaks are found in turn 
on the basis of their distance from a. This is how each 
peak reached to the same peak is rejected. 

List Pa.v, is made for every peak v E V, and the ways 
found between initial peak a E V and v are stored in it. 
Lists are made according to a specified form. 

Procedure: 

Given data: 
Graph G=(V,E,y)with initial peak 

a E V 'If: V ~{vacant, crossed }-conditional peak mar-

king. 

To be searched: 
Optimal non-cyclic way from a to v ( v E V \{a}) 

with a time limit Da_,. and the highest frequency of 
changing umax. All the ways that are found are included 

into Pa_, .. 

Preparation: 
Dijkstra algorithm with the initial peak 

a~ Vv E V \{a}: d" ,. is realised; 

VvEV\{a}: 

Da.v : = du,v + 71. 2 - interim superior limit; 

'lf(v): =vacant all the peaks given at random. 
Basic part: 

Depth-first search (a, 0, 0, 1}, 

Correction of the superior limit: 

VvE V\{a}: Pa,v :={kE Pa.•· ' y(k)::;;r(da_v)} 

Procedure: 

Depth-first search (iE V; hE JR+; u,tE IN): 

i - actual peak; 

h- distance between i and a; 

u- frequency of changing; 
t- number of peaks in the search route. 

When \jf(i)= vacant and h < Da.i and u::; umax : 

Cycle and limit check. Repetition to be rejected: 

'l'(i) = crossed . 

Actual peaks to be registered: 

v1 := i. 

The way which is found is the route of the search: 

Pa.i := Pa,i u{ (vi, V2, ... , Vr)} 

Depth-first search : 

VeE E with e=(i,j): (j,h+y(e),u+J.L(e),t+l). 

Peaks to be cleared: 

\jf(i) = vacant. 

Since all the arcs coming out of one peak v E V are 

checked, only the ways belonging to the solution set x;,v. 
are included into the list Pa.v : 
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x;_,. = {k = (vl,v2•···· vn )E K,_,. VI~ X< y ~ n: 

v,t:.vy,y(k)~Da,,.,!J.(k)~umaJ (IO) 

When i E V - actual peak and k = (v1, v2 , ... , v,)­
actual route of the search, VI ~ x ~ I : v .. E V, v1 = a, 
v1 = i, t E IN. k is included into the list ?,,_;, when the 
initial depth-first search condition is fulfilled: 

'lf(i) =vacant, h < Da.j and u ~ umax, (11) 

Equivalently is also: 

(Vl~x<t:vx t:.l), y(k)~Da.jand !J.(k)~umax (12) 

When every partial sequence k = (v1, ~'2, ... , vy) of 
the way k (I~ .v ~ t) fulfills the initial condition: 

in a comparatively hard disk. As route search algorithms 
require fast access to the data the program must have a 
special program in its RAM. The structure of the data 
reflects ties among network elements. 

There are two classes of objects - peaks and arches 
(Fig 3). Graphs are quite large because stops and transport 
zones are split into a lot of arches. All the out coming 
arches are saved as lists. Oriented arches point at final 
peaks. 

The main reason of a long counting period lies in the 
cycle checking (equal to O(N · !og(N)) ). For the speeding 

Peaks 
• Number • Number 

... ) • Dependence • Dependence 

1 Arch Arch 

l 
- Final peak - Final peak 

Vl~x~t:vx "1:-vv y(k)~Da.jand !J.(k)~umax (13) 

This way k E X;;. k is included into the list, when 
k E X;_;. The rejected. search routes are not analysed in Arch o Resistance 

• Ferequency of 
• Resistance 
• Frequency of the following calculations. 

Estimation of expenses: 
For the estimation of expenses the condition must 

be fulfilled: 

3kE IN: VvE V\{a}: Xa.v ~k (14) 

From Pa v ~La v follows the final conclusion, that, 
Pa,v ~ k , i.e .. the ~iz~ of the list is limited by k. 

Calculating procedure parameters: 
Preparation: 

The optimum way search: E O(N ·log(N)); 
Da,,.and 'lf(v)fonnation:2-N pitches; 

Depth-first search procedure: 
initial condition (cycle check): 3 pitches; 
actual routes of the search to be copied into the list 
?,,_; : t pitches E O(N) 
peaks I to be crossed or cleared: every I pitch; 
depth-first search invocation: E 0(1); 

The number of peaks checked: V · k = N · k. 
Total expenses of the method: 
O(N ·log(N))+ 2 · N + N · k · (5 + O(N)+ O(l))E o(N 2k) 
Total expenses for the search of the way: E o(N 3

. k) 

Occupied memory size: 
While fixing the algorithm, the Pa." list size is a crucial 

factor because for all the final peaks v E V k ways to N 
peaks are estimated at the same time. The size of memory 
occupied is equal to o(N 2 . k). 

4. Programming Realization the Algorithms of Search 
of the Optimal Way 

For the realization of optimal route searching program­
me the objective programming language Delphi adjusted 
for Windows has been used. The connection between 
program and data is not effective when the data are stored 

changing changing 

Fig 3. The structure of the graph data 

of the process the following feature is used: 
In each graph the way of arrival and leaving peaks 
exchanges; 
At each leaving station only one arch goes out so in 
this way the next arrival is known; 
After arrival next leaving belongs to the same stop. 
All other leaving peaks belong to another stop be­
cause they are non - cyclic; 
Recounting peaks one stop leaving station follows 
the arrival station of the same stop. 
All past peaks are listed not along the route, but by 

numbers. In this way each route description results in a 
sequence of peaks. The starting and final route stations 
are not written. In general they hide under a special list 
where the starting and final peaks are known. In spite of 
this the second road peak in the sequence of peaks is 
getting on peak. 

According to the made peak sequence it is possible 
to see how the peaks were passed. Getting - on peak in 
roads out coming transport regions are always leaving 
station. The next sequence member from all leaving peaks 
is found by the only arch. The next arrival peak member in 
the route is the peak having the next number by its size -
arrival station is final (in- between) route peak. In this way 
the next sequence member belongs to the next stop. 
In order to evaluate practically the efficiency and appli­
cability of algorithms the experimental calculation of route 
search in the model of public transport communication 
network has been made. Public transport network changed 
into graph is a real public transport network segment in 
Kaunas (Table). The calculation data were received from 
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the Transport Problems Institute special group who was 
responsible for passenger flow research in Kaunas. 

Using modifying Minieka algorithms the calculation 
takes 136 sec., while using combined modified search in 

Public communication network model 

Number of stoos 15 

Number of transoort regions 6 

Number of lines 22 

Number of segments 26 

Number of transoort ties 34 

Number of total oublic communication routes 56 

Average changing frequency 0.2 

AveraP"e number of stops in the way 4.3 

depth and Dikstra method it takes only 0.54 sec. The main 
reason is in the fact that using the second method in any 
calculation moment only one search route is being 
analysed and using Dijkstra algorithms actual search tree 
segment is separated before the search into depth. 

5. Conclusions 

I. For search of the optimal route in public com­
munication network Minieka algorithm is modified and 
combined search into depth and Dijkstra algorithm method, 
operating by the basis of graphs is designed. 

2. After the analysis of passenger behavior to choose 
the way resistance function has been made, for optimal 
way evaluation and comparison. It includes such factors: 
traveling time, price and comfort (the number of transport 
change). 

3. Both methods might be applied to solve the problem 
as well as be integrated into the prognostication models 
of communication processes. 

4. Having compared their efficiency (memory size and 
calculating time) it has been proved that the combined 
depth-first search and Dijkstra algorithm method are better. 

Because of memory size the modified Minieka method 

is suitable for limited communication network. 
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