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Abstract. The economic forecasts are aimed at determining major trends of logistics development as well as defining 
the particular aims and objectives oftheir functioning. Therefore, the prediction in logistics should reveal major changes 
in micro and macro factors to obtain the probability criteria of quantitative and qualitative evaluation of the dynamics of 
logistics activities required by the firm manager. Some methods of predicting the development of the logistics system 
based on the application of functions with flexible structure and of evaluating the accuracy and truth (reliability) of 
forecasts are offered. 
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1. Predicting 

In management of logistics the availability of fore­
casts about the aggregate index (e. i volume of sales of 
manufactured products), depending on one or more fac­
tors referring to the capacity and output of production 
equipment, the use of basic funds and working capital, 
labour force, etc. are of particular importance. In these 
cases single - and multicriteria correlation - regressive 
models are often applied, which have a common limita­
tion of not being directly used in prediction [ 1, 2]. 

Moreover, the relations between the factors may be 
non - linear and stochastic causing additional problems 
for calculation [ 1, 3-7]. To predict logistics indices based 
on the assumption of the existence of the statistical rela­
tion between two indices y and x, a mathematical ap­
proach relying on the functions of flexible structure (FFS) 
may be effectively used. The form of FFS may change, 
being automatically determined in the prediction opera­
tion, taking into account not only the statistical depen­
dence y = f (x), but the trends of transformation of each 
factor in time as well. The application of FFS may also 
be helpful in solving inverse problems encountered in 
logistics, for instance, to determine extensive and inten­
sive production factors and parameters for planned sales 
volume. 

2. The Application of Functions of Flexible Structure 

The function of flexible structure is of the fonn: 

(1) 

where n is a fixed natural number; 
x0 -the initial value of the factor- argument in the 

interval considered; 

Ao,Al,An -parameters; 

D - Van der Mond determinant of n -th order. 
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r1, rn - real - valued or complex conjugate pairs; 

8 J (x- xo)- functions obtained from the deterrni­

nant D substituting the j -th row by the exponents of 

the form: 

(2) 

The essence ofFFS approach is to represent the ini­
tial process as 

y(x) = F(x)+ R(x), (3) 

where R(x)- the approximation function (remainder); 
F(x)- FFS. 
The stru7ture__Q( FFS is mostly dependent on the 

values of rj \i = 1, n}. If all of them are real - valued, 
different and not equal to zero, then FFS will be repre­
sented by a linear combination of exponents. If the num­
bers ri are complex, FFS is a sum of exponents multi­
plied by the harmonic (sin- cos) components. When we 
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have rJ = O(J = 1, n), FFS is transfonned into a polyno­
mial of some degree. 

H;:_n~e, t~e main problem is to find optimal values 
of r1, ~1 -1,n}. 

If the function y(x)may be differentiated, then the 
respective derivatives of y(x) may be taken as the pa­
rameters Au, A1 , ... ,A j. Then (1) may be written as: 

n ( .) 8 ·(x-x0 ) 
F(x)= y(x0 )+ LY 1 (xo) 1 

· 
J=l D 

(4) 

In this case the numbers r1 , ... ,r n are considered the 
roots of the original equation: 

n n-1 n-2 0 (5) r +an_1r +a11 _ 2r + ... +a1r+a0 = . 

The analytical expression of the remainder in for­
mula (3) is as follows: 

X t L1 (t-'t") 
R(x)= I IT]('t:) n · d't"dt D , 

xo xo 
(6) 

where .1 11 (t- 't) is obtained from the determinant D 
substituting the n -th (the last) row by the exponent row 
of the form: 

1 ~"v (t-'t), (v = 1, n). (7) 

The function T] ( 't) of the equation ( 6) is obtained 

from the equation: 

TJ(1) = y(n+l)(1)+ an-I y(")(1 )+ ... +a! y(2)(1)+ aoy(l)(1), (8) 

where y(J) is the j-th derivative of y. 

The idea of optimal approximation in applying FFS 
is the minimization of the remainder R(x) and specify­
ing such values to the parameters a0 , a1 , ... , a11 _ 1 , that the 
remainder value at any point of the approximation seg­
ment would not be higher than the particular specified 
approximation error, which, in fact, determines the form 
ofFFS. 

Let us consider a simple case, when n = 1 . Then 
the expression (4) may be written as 

J 1r(x-x0 ) l 
F(x)= y(xo)+ y'(xol r . (9) 

The main equation (5) for r will be of the form: 

r+a0 = 0. (10) 

The function TJ(-r)=TJ(x)for the remainder R(x) 
from the equation (8) will be transformed into: 

TJ(-r)= /(x)+a0 y'(x). (11) 

The condition of the minimum remainder may be 
written as TJ(x) = 0 , which will result in a zero approxi­
mation error. Then, to get rid of derivatives in the equa-

tion (11 ), let us integrate it: 

y'(x)+a0 y(x)= c1 . (12) 

Substituting the value of the initial point for the ar­
gument x = x0 into the above expression, we get 

(13) 

Let us integrate the equation (12) once more: 

X 

y(x)= a0 I y(x)ix = c1(x-x0 )= c0 (14) 

When x = x0 , we have c0 = y(x0 ), then the equa­
tion (14) will be of the form: 

X 

c1 (x-xo)-ao I y(x)ix= y(x)- y(xo). (15) 

From equation (15) one can see that it contains two 
unknown constants a0 , c1 and an integral. The integral 
is assigned by the tabular function y(x) and can be 
graphically calculated. 

To calculate c1 and a0 , let us form a system of equa­
tions with two unknowns based on the equation (15). This 
may be achieved if we substitute into ( 15) the values of 
two more points taken form the time series y (x) . Then 

Xl 

c1 (x-xo)-ao I y(x)dx = y(x1)- y(x0 ), 

x2 

c1 (x2 -x0 )-a0 I y(x)dx. 
(16) 

When the integrals are calculated, let us find the 
unknown coefficients c1 and a0 . Then the value of the 
first derivative y'(xo)should be found from the equa­
tion (13). The root of the original equation r = a0 has a 
negative sign. The parameters obtained are then substi­
tuted into the formula for FFS (9) and the analytic ex­
pression of y(x) is obtained. 

An Example 
There is a problem of determining the relationship 

between the coefficient of renewal of basic funds of a 
transportation firm (p) and its freight turnover (Q). The 
initial data are given in Table 1. 

First, the value of three basic points should be cho­
sen and one ofthem, representing the initial value, should 
be in the middle of the row for better approximation. 
This implies that the function obtained will equally ap­
proximate the data found at the beginning and at the end 
of the row. 

Let us take: x0 = 34,3 Yo = 0,618 = (y(xo )) ; 

xl = 31,2 Y! = 0,597; 
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x2 =37,8 y2 =0,631. 

Let us now find the coefficients of the equations 
(16): 

Xj - Xo = -3,1; Xz- Xo = 3,5; 

Y!- Yo = -0,021; y2 - Yo = 0,013. 

Table 1. The Coefficient of renewal of basic funds and 
freight turnover of a transportation firm 

Parameter 1996 1997 1998 1999 2000 2001 2002 

p, (y) 0,597 0,597 0,608 0,618 0,615 0,618 0,631 

Q, million 
arbitrary 31,2 32,3 33,4 34,3 34,5 35,5 37,8 

units (x) 

Let us now find the coefficients of the equations 
(16): 

x1 - x0 = -3,1; x2 - x0 = 3,5; 

y1 - Yo = -0,021; y2 - Yo = 0,013. 

Let us calculate the integrals of the system (16). 
xl 

The integral J y(x )dx , the area restricted by the 
xo 

graph of the ( empincal) y (x) and the values of x equal 

to 34,3 and 31,2. have a negative value because the up­
per limit of the integral is smaller than the lower limit. 
The area restricted by x values 34,3 and 31,2 will be 
obtained summing the areas of three trapezoids: 

0,597(32,3- 32,1)+ 
0

·
597 

+ 
0

•
608

. 
2 

3J~(x}:ix=- ·(33,4-32,1)+ 0,608+0,618. = -1,871. 
34.3 2 

·(34,3-33,4) 

37.8 

The value of the integral J y(x)dx will be: 
34.8 

31 32 33 34 35 36 37 38 
~ ~ ~ 

Q, 
MJIH. yen. BA-

Fig 1. Graphical evaluation of integrals (an example) 

3 J-~(x)dx = _ 0,618 + 0,615 (34.5 _ 34•3)+ 0,615 + 0,~18. 
34.3 2 2 

0,618+0,631 
·(35,5-34,5)+ - ---- (37,8-35,5)=2,176. 

2 

Graphical evaluation of integrals is shown in Fig 1. 
Let us substitute the values of coefficients and inte­

grals into the system equation (16). We will get: 

J- 3,1c~ + 1,87la0 _ = -0,021, 

h,5c1 2,176a0 -0,013. 

Solving the system we will obtain: 

c1 = 0,108; a0 = 0,168. 

Then the values of the first derivative at the initial 
point are found substituting the parameters obtained into 
the equation (13): 

y'(x0 ) = c1 - a0 y(x0 ) = 0,108-0,1680,618 = 0,00417 . 

From the original equation (1 0) we will get: 

r = -a0 = -0,168. 

Now, having obtained all the required parameters, 

we can get the expression for FFS: 

F(x)= 0,618+0,00417 -
[

1-0,168(x-34.3) 1] 

-0,168 . 

Opening the brackets and making the necessary cal­

culations, we finally get 

y = p = 0,643- 0,0248e - 0•168(Q-34·3) · 

Let us fmd the prediction for 2003. Taking into con­
sideration that the planned freight turnover would be 41 
million arbitrary units, we can get the required (predict) 
coefficient of basic funds renewal: 

p = 0,648- 0,02481-U,l68(41- 34·3) = 0,635. 

In solving the inverse problem we will get the ex­
pression for fmding the forecast of freight turnover: 

Q1 = 29,057 + 8,24 exp[3t5(p1 -0,618 )] . 

3. Evaluation the Accuracy and Reliability (truth) of 
Prediction 

Applying various method s based on !,1 models of 
prediction in logistics management special attention 
should be paid to the accuracy and reliability of fore­
casts. 

The evaluation of the accuracy and reliability of 
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prediction, often referred to as forecast verification, is a 
complicated problem 

Verification of prediction models may be carried out 
by various approaches: 
• direct verification which consists of obtaining the 

same results; 
• indirect verification meaning that prediction is veri­

tied by referring to the forecast of the same object 
in literature; 

• consequential verification based on obtaining the 
verifying prediction be deducing consequences from 
the available forecasts by logical of mathematical 
operations; 

• inverse verification - i.e. backward extrapolation. 
It implies that the data of prediction made by in­
verse extrapolation are compared with actual data 
of a retrospective series; 

• verification by minimizing systematic errors. 
The total error of the problem of prediction may be 

found in the following way: 

En =Eu +EM +EB +E11' 

where Eu - initial data errors; 
EM- prediction method errors; 
E8 - calculation error; 

(17) 

E11 - accidental error caused by unforeseen events 
affecting the forecast. 

In case of inverse verification a major criterion of 
the adequacy of the type of approximation relationship 
chosen is mean square deviation of theoretical values of 
the function from the empirical data of a retrospective 
series: 

0" = y 

i:,(Yi- Yif 
i=l (18) 

n-l 

where n- a number of observations (members of a 
series); 

Yi- values of an empirical series; 
Yi- calculated (theoretical) values of a series. 
Except for the criterion (18), some more indices of 

the accuracy of the approximation relationship chosen 
are used: 

- variation coefficient: 

O"y 
v= 100% 

y 
(19) 

where y - an estimate of mathematical expectation of a 
retrospective series; 

- correlation index: 

(20) 

- Fisher's criterion: 

(21) 

where m- a number of unknown parameters of the 
approximation function. 

The best approximation function is chosen from the 
conditions: 

a, v ~ min; R 2
, F ~ max . (22) 

Since the prediction is of probability nature, the 
parameter predicted should be determined in confidence 
limits (in terms of intervals). 

With the normal distribution of deviations 
(yi - Yi) and a specified, a confidence interval for a fore­
cast y *is expressed as: 

(y *-8, y *+8)' 

where 8 - accuracy of estimation obtained form the 
expresswn: 

(23) 

If the confidence probability y is given, the param­
eter tis found from the relationship: 

21P(t)= y' (24) 

where !lJ is the Laplace function. 
When j = 0,95 !D(t) = 0,475. Referring to the tables 

of the Laplace function we get that t = 1,96. 
Then: 

This means that the confidence interval has the fol­
lowing limits: 

For getting more precise and reliable forecasts in 
logistics an integrated approach (or complex evaluation) 
may be used, allowing to combine two or more proce­
dures. A combined scheme (synthesis of forecasts) al­
lowed us to compensate (offset) disadvantages of one 
group of methods with the advantages of the other, espe­
cially if they are based on different databases. 

An example of combined forecasting 
Assume that the expected demand for freight trans­

portation (turnover) of a particular firm was determined by 
three methods, the results of which are given in Table 2. 
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Table 2. The results of prediction demand for freight trans­
portation (turnover) 

Method of 1. Interval ~ 2. Interval ~ 3. Point ~ 

forecast, based forecast based forecast based 
Parameter of (observation by forecast by 
forecast time t=30 exponential linear 

months) smoothinl! intemolation 
Mean value 
of y, thous. 3,220 3,400 3,900 
units 
Mean square 
deviation 
(J" y, thous. 0,082 0,100 -

units 

To increase the truth of a forecast, a complex scheme 
should be used. 

Let us determine the boundary values for methods 
1 and 2 defining the confidence intervals. 

To make the forecast by the least squares approach, 
a formula of dispersion for linear dependence 
(y = a0 + a1t) is used: 

2 2 8 ~2 2 8 K 2 8 a ao = a Y 0; u ai = a Y 1; aoal = a Y 2. 

B _ I.ti 
2- . 

~ 

4 

1139 = 1 06· 
1075 , , 

= 0 0037· 1075 , , 

59 
= -0 055. 

1075 , 

The coefficients Bo, B1, B2 are obtained from the 
least squares equations for N = 4; t = 30 . 

a~= (0,082f = 0,0067. 

Let us fmd the mean square deviation 

ay(t)= Ja;~o +B1t
2 +2tBz)= 

= Jo,oon + o,oooo2st2 + o,ooo74t. 

When t = 30, we will get a Y (t = 30) = 0,086 thous. 
arbitrary units. 

Let us defme the confidence intervals for confidence 

probability y = 0,9 from the Student's tables, when the num­

ber of freedom degrees is: 

(k=N-m-1=4-1-1)=2: ty=0,9 =2,92. 
k=2 

A forecast of the demand in terms of intervals will 

be as follows: 

Y2-1K = Y1 ±t, · ay(t) = 3,22±2,92 · 0,086 = 3,22±0,25 

thous. units. 
The upper bound y~) = 3,22+ 0,25 = 3,47 thous. 

units. 
The lower bound y~) = 3,22-0,25 = 2,97 thous. 

units. 
Let us calculate the confidence limits for the sec­

ond forecast obtained by means of exponential smooth­
ing for the linear Brown model. They will be respec­
tively equal to: 

2 
YEP = y2 ± t 1 · a y = 3,40 + 0,29 = 3,69 tho us. 

units. 

Upper bound yw) = 3,40+0,29 = 3,69 thous. units. 
Lower bound y }) = 3,40-0,29 = 3,11 thous. units. 
For checking the consistency of the integral values 

obtained in the forecast evaluation the graph of distribu­
tion densities fi (y) of forecast is plotted (Fig 2). 

f(y) 

I 
3,9 

area of consistency 
Fig 2. Determination consistency area of forecasts 

In Fig 2 one can see that the first two methods have 
the overlapping area and can be considered consistent. 
The third method (linear interpolation) is excluded as 
inconsistent. 

Let us calculate weight coefficients for a combined 
(complex) forecast: 

w1 =a~ t(at +a~)= (o,If t((o,086)2 + (o,1f )= 0,57; 

w2 = 1-0,57 = 0,43. 

Let us also defme the parameters of a combined 
(complex) forecast: 

y*=OJ1Y1 +w2y 2 =0,57x3,22+0,43x3,4=3,3 thous. 

units. 

tho us. units. 

y 
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The interval- based forecast is as follows: 

y: = 3,3 ± 2,92 X 0,065 = 3,3 ± 0,2 thous. units. 

4. Conclusions 

1. To forecast the logistics indices based on the as­
sumption of statistical relationships between two indi­
ces y and x, a mathematical approach relying on the func­
tions of flexible structure may be effectively used. 

2. The FFS structure is mainly determined by real 
or complex conjugate pairs. This allows the optimal value 
to be found. 

3. The accuracy and reliability (truth) of a forecast 
may be determined by direct, indirect, consequential and 
inverse verification. 

4. To obtain more accurate and reliable forecasts in 
logistics a combined scheme, compensating disadvan­
tages of one group of methods by the advantages of oth­
ers, in used. 
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