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Abstract. The authors of this paper focus on the simulation of the motor vehicle movement (taking into consideration
motor vehicle dynamics, motor vehicle hydraulic brake system influence on motor vehicle movement, interaction be-
tween its wheels with road pavements, road guardrail characteristics, interaction between motor vehicle and road guardrail)
on a certain road section and propose their specific solution of this problem. The presented results, illustrating the motor
vehicle movement trajectories (motor vehicle braking and interaction between motor vehicle and road guardrail at
various initial conditions and at various certain pavement surface of the road section under investigation) and work of a
motor vehicle hydraulic brake system. Taking into consideration the presented general mathematical model and com-
puter aided test results it is possible to investigate various road transport traffic situations as well as to investigate

various transport traffic safety problems.

Keywords: motor vehicle, hydraulic brake system, wheel, dynamics, road pavement surface, road guardrail, interac-
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1. Introduction

All factors influencing accidents are divided into
three groups: people (drivers, cyclists, carters, pedestri-
ans, passengers); vehicles (cars, buses, trolleybuses,
motorcycles, scooters, mopeds, bicycles); roads and
streets.

It is considered that 2/3 of all road accidents occur
through the fault of people and only 1/3 because of fac-
tors, which do not depend on the will and actions of
people [1].

Accidents occur every 15 seconds, in which people
suffer. One person is injured every 1.5 minute, i.e. one
thousand people are injured in 24 hours. Thus, ca one
million inhabitants of the earth are lost in the period of
three years. The number of old vehicles, exceeding its
own resources several times, has increased in Lithuania.
Following statistics, one person is killed every 8 hours,
and one person is injured each hour on Lithuanian
roads [1, 2].

Each year, 4,000 - 6,000 registered road accidents
occur in Lithuania (Fig 1). The most typical are as fol-
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lows: running over pedestrians, collision, overturning,
hitting an obstacle, running over cyclists, hitting a parked
vehicle and other accidents [1].

Traffic safety is becoming not only a moral, social,
economical, but also a political problem in Lithuania.
This problem has to be solved as quickly as possible,
because Lithuania is considered to be a country of greater
risk, which is very important, when integrating road trans-
port into the European transport system.
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Fig 1. Statistical data of registered accidents in Lithuania
(2000)
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Movement of the vehicle on the road is a very com-
plicated process which depends not only on the dynamic
properties of the vehicle, but also on the conditions of
the road section under investigation.

The dynamics of vehicles (or individual elements
of vehicle), the interaction between the vehicles and vari-
ous obstacles as well as road pavement surface are in-
vestigated by Lithuanian and foreign scientists [1-22].

The authors of this paper focus on the simulation of
the motor vehicle movement (taking into consideration
motor vehicle dynamics, motor vehicle hydraulic brake
system influence on motor vehicle movement, road
guardrail characteristics, interaction between motor ve-
hicle wheels with road pavements, interaction between
motor vehicle and road guardrails) on a certain road and
propose their specific solution of this problem [1, 3-9,
11, 12].

Taking into consideration the presented general
mathematical model and computer aided test results it is
possible to investigate various road transport traffic situ-
ations as well as to investigate various transport traffic
safety problems, for example what type and where road
guardrail shall be mounted, what curvature ray of the
road shall be selected so that the motor vehicle would
not drive off the road carriageway, which driver caused
an accident etc.

2. Mathematical Model of the Motor Vehicle

The motor vehicle is simulated by concentrated
masses interconnected by elastic and dissipative links
(Kelvin-Foight elements). The motor vehicle model con-
sists of seven concentrated masses: body, front and rear
axles and four wheels (Fig 2) [1, 3-5, 6, 8].

To describe the movement of the motor vehicle, the
following generalized coordinates are introduced:

{Qm\}T:[XC Yo Zc Ox. Oy, Oz
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Movement of the motor vehicle, as movement of an
intricate mechanical system, is described by the second
degree LaGrange equations [1, 3-5, 6, 8].

Having inserted the expressions of the motor ve-
hicle kinetic and potential energies, dissipative functions
and the vector of generalized forces, influencing the motor
vehicle, into the second degree LaGrange equations, the
system of the motor vehicle movement equation is ob-
tained, which can be written in the matrix form:

MmHéimd { Qb 2)

where: [M m\,] —matrix of motor vehicle masses; {q'm,} -
vector of generalized accelerations; {Qmn} — loading
vector of the motor vehicle.

The system of equations (2) is solved by the method
of Runge-Kutta [23]. For this purpose, it has to be rear-
ranged from differential equations of the second order to
differential equations of the first order:
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Fig 2. Motor vehicle model

3. Mathematical Model of the Road Pavement Sur-
face and Model of the Motor Vehicle Wheels and Road
Pavement Surface Interaction

To describe the road pavement surface roughness
and cohesion coefficients of the road pavement and motor
vehicle wheels on each nodal point of the road pavement
surface, the method of finite elements is applied [1, 24].

The total pavement surface of the road section is
divided into triangular finite elements (Fig 3). Certain
height of the road pavement surface roughness and co-
hesion coefficients of road pavement surface and motor
vehicle wheels in the longitudinal and transverse direc-
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tions of the motor vehicle wheels are selected in each
nodal point of a finite element [1, 3-5, 6, 8].

When solving the system of equations (3), the con-
tact between the motor vehicle wheel and road pavement
surface has to be evaluated in every time step [1, 3].

The following conditions of contact between the
motor vehicle wheel and road pavement surface are se-
lected (Fig 4):

oy, when 2,2
T when 2y <&;

@w; when Zy zzj and Zy >0

2y =y,

g whenz\M-<Ej andzwj<0;
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where: Zyj , Zyj, Zsj —displacement, velocity and ac-
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B8 wet asphalt
soil

Y

Fig 3. Expansion of the pavement surface of the road section
into finite elements: 1 — motor vehicle; 2 — road carriageway;
3 —shoulder; 4 — triangular finite element
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Fig 4. Identification circuit of the contact between motor
vehicle wheel and road pavement surface

celeration of bottom point of the motor vehicle wheel;
3 j —heights of road pavement surface roughness under
the motor vehicle wheels, j=1+4; Fgq j419 — motor
vehicle movement equations right side obtained with
respect to Z; .

When global coordinates of the motor vehicle
wheels are known, the dependence of a certain wheel on
the exact finite element of the road pavement surface
and the height of roughness of the road pavement sur-
face under it can be determined [1, 3].

4. Mathematical Model of the Motor Vehicle Hydrau-
lic Brake System

In this paper a motor vehicle hydraulic break sys-
tem consisting of two contours is considered. The main
components of the system are shown in Fig 5.

When the driver presses the brake pedal, it pushes
down the piston in the master cylinder 1, so creating pres-
sure in the fluid in pipeline 2. The ideal variant is when
the fluid is incompressible, but in a real model it is not
so. The fluid comes to the hydraulic amplifier 3, where
the pressure grows up propotionally to the crossections
of pistons. Two contour separator 4 is intended to pre-
vent failure of all system, when one of the cylinders or
pipelines does not work properly. When one countour
lost its functions, the other continues to brake. This re-
quirement is essential for all brake systems. During brak-
ing the pressure of fluid is transmitted to the wheel cy-
linders 5-8, which forces the brake pads against the re-
volving disc. The amplifier 3 and the difference in cros-
section of the cylinders allow to use a relatively small
force applied on the pedal to get a large force on the
brake pads.

Let’s consider the system from the main cylinder.

|3 i 6

Fig 5. Principle scheme of the hydraulic brake system:
1 — main cylinder, 2 — pipeline, 3 — hydraulic amplifier,
4 — two contours separator; 5, 6 — rear axle brake cylinders;
7, 8 — front axle brake cylinders
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The equation of piston number 1 movement can be writ-
ten [11, 12, 25]:

Mg =Y F =Fg —k(X+ %)~

Fu sign(%) ~ S (1 = Patm); )
where: my - weight of piston; ¥, %, X —acceleration,
velocity and position of piston 1; Fep- pressing force;
k — stiffness of the spring; Xy — initial compression of
the spring; F, — friction force; S; — area of the cylinder
cross-section; [ — pressure in 1-st cavity; Pgpm —atmos-
pheric pressure.

This equation (5) is solved by the Euler method [23],
taking into consideration boundary conditions of piston
1 movement. Fluid pressure in the 1-st cavity is solved
using equation of debit [11, 12, 25]:

Vio— 5% d
-0 =3 KS'L 1;?‘32V21:0; (6)
where: Vjg — initial volume of 1-st cavity; Vo — fluid
velocity in 1-st point of pipeline 2; K — modulus of
elasticity of fluid.

Equation of the fluid continuity can be written in a
differential form as follows [11, 12, 25]:

Q=S -

0 0
—(S(x)p)+ —(S(X)ov) = F;(X) - 7
5t (S)+ = (S(pv) = Fy(x); )
where: P — density of fluid; v— velocity of fluid; S(x)-
area of the pipeline cross-section; F(X)— discharge of
fluid mass to the unit of the length in the pipeline.

Equation of fluid flow impulse (momentum) [11,
12, 25]:

2 (spv)+ 2 [stfp+pv?))+

(e + S = o)+ P2 ®

where: P — fluid pressure; Il (X) — perimeter of the
pipeline cross-section; T — tangential fluid stress in the
inner surface of the pipeline; a,— acceleration along
xaxis; Fp (X)— kinetic energy of the fluid flow in the
pipeline to the unit of area.

In this paper a motor vehicle hydraulic anti-lock
brake system (ABS), consisting of a hydraulic brake sys-
tem (Fig 6), electromagnetic valve and a wheel brake
cylinder, is considered. The main components of the sys-
tem are shown in Fig 5.

ABS operates by evaluating two main parameters.
These are the changes in the wheel angular deceleration
and wheel slip. The wheel deceleration is determined by
the differentiation of the wheel angular velocity captured
by velocity sensor, and the tyre slip ratio is estimated
comparing the current wheel angular velocity with the
angular velocity calculated from the absolute speed of
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Fig 6. Part of motor vehicle anti-lock brake system

the motor vehicle which is called the reference speed. The
equation of tyre slip A can bewritten asfollows[11, 12]:

A=1- df/)(g(t) : )

where: w— angular velocity of motor vehicle wheel;
R - radius of wheel; v - speed of motor vehicle.

The derivation of tyredlip of wheel | can bewritten
asfollows:

=5 (ar0rar Ok -arO). o

In a mathematical model motor vehicle wheel an-
gular velocity and radius, and linear speed and decelera-
tion are determined from the motor vehicle movement
equations system. So, combining the motor vehicle move-
ment equations system with the motor vehicle hydraulic
anti-lock brake system and the derivation of tyre slip of
each wheel, we get a full system of equations of a motor
vehicle braking process.

5. Mathematical Model of the Road Guardrail and
Model of Interaction between Motor Vehicle and Road
Guardrail

Road guardrail, for example, parapetic reinforced
concrete guardrail (Fig 7), is simulated in a straight line
segment with known coordinates Xp,, ¥Yp, and Zp, of
nodes [1, 5-9].

When studying the interaction between the motor
vehicle with road guardrail, the assumption that the road
guardrail does not deform i.e., nodes of road guardrail
line segment do not change their position at the moment
of impact and after it on the road shall be taken into con-
sideration.

Fig 7. Road guardrail: a — beam reinforced concrete
guardrail; b — circuit of guardrail
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The interaction between the motor vehicle and the
road guardrail is simulated by a viscous-elastic (Kelvin-
Foight) element [1, 5]. Such element is added at the point
of interaction between the motor vehicle and the road
guardrail in the direction of normal to the motor vehicle
contour.

Characteristics of the element are described by the
following dependence:

Fo=kA+hA; (11)

where: F, —interaction force between motor vehicle and
road guardrail in the direction of normal to the motor
vehicle contour (Fig 8); k —element stiffness coefficient;
h—element mechanical energy damping coefficient; A—
deformation; A— deformation velocity.

motor vehicle contour

road guardrail contour

Fig 8. Identification circuit of the interaction forces between
the motor vehicle and the road guardrail

6. Results of a Computer Aided Test

To solve the presented general dynamic mathemati-
cal model (which consists of dynamic model of a motor
vehicle with a hydraulic brake system, a model of road
pavement surface, a model of road guardrail, a model of
the interaction between motor vehicle wheels and road
pavement surface and a model of the interaction between
a motor vehicle and road guardrail), the following re-
sults are obtained during the computer aided test using
application packages Compaq Visual Fortran Profes-
sional v 6.6 [26] and Waterloo Maple 8.0 [27]:

*  motor vehicle movement trajectories, when it is
braking at various initial conditions and at various
certain pavement surface of the road section under
investigation (Fig 9);

*  dependences of vertical displacement of a motor
vehicle wheel bottom nodal point on the longitudi-
nal coordinate of the road, when a motor vehicle
drives on the speed reduction bump (“sleeping po-
liceman”) (Fig 10);
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Fig 9. Motor vehicle movement trajectories (view from top),

the initial driving speed is 60 km/h: a — road pavement is dry

asphalt, braking all wheels; b — road pavement is dry asphalt,

braking two front or rear wheels; ¢ — when there is a slippery
section on the road, braking all wheels
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*  dependences of normal reactions, which influence
road pavement surface on the longitudinal coordi-
nate of the road, when a motor vehicle drives on the
speed reduction bump (“sleeping policeman”)
(Fig 11);
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Fig 11. Dependence of the motor vehicle wheel normal
reaction, which influences road pavement surface, on the
longitudinal coordinate of road, when the motor vehicle
drives on the speed reduction bump (“sleeping policeman™)
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Fig 12. Motor vehicle movement trajectories (view from top)
before and after its interaction with parapetic reinforced
concrete guardrail, the initial driving speed is v =60km/h
and the initial angle of interaction is o =10°,
road pavement is: a — dry asphalt; b — wet asphalt

motor vehicle movement trajectories before and af-
ter its interaction with a parapetic reinforced con-
crete guardrail (presented in Fig 7) at various cer-
tain pavement surface of the road section under in-
vestigation (Fig 12);

dependences illustrating the work of a motor ve-
hicle braking system: dependences of fluid pressure
and fluid velocity (Fig 13) on time in typical ABS
point (2, 1), presented in Fig 6; dependence of mo-
tor vehicle wheel braking force (Fig 14);

results of a motor vehicle braking system simula-
tion (speed of motor vehicle, angular velocity of
motor vehicle wheel, tyre slip and tyre friction) at
various certain pavement surface of the road sec-
tion under investigation (Fig 15).
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Fig 13. Dependences of fluid pressure and velocity on time
in typical ABS point (2, 1) presented in Fig 6:
a — fluid pressure; b — fluid velocity

Wheel braking force, kN
W

0,00 025 050 075 1,00 1,25 1,50

Time, s

Fig 14. Dependence of motor vehicle wheel braking force
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Fig 15. Results of motor vehicle braking system simulation:
a—road pavement is dry asphalt; b — road pavement is wet
asphalt; 1 —speed V of motor vehicle; 2 — angular velocity

wof motor vehicle wheel; 3 —tyre slip A ; 4 — tyre friction U

7. Conclusions

1. A general dynamic mathematical model (which
consists of a dynamic model of a motor vehicle with a
hydraulic brake system, a model of road pavement sur-
face, a model of road guardrail, a model of the interac-
tion between motor vehicle wheels and road pavement
surface and a model of the interaction between a motor
vehicle and a road guardrail) is presented.

2. Taking into consideration the presented general
mathematical model and computer aided test results it is
possible to investigate various road transport traffic situ-
ations as well as to investigate various transport traffic
safety problems, for example what type and where road
guardrail shall be mounted, what curvature ray of the
road shall be selected so that the motor vehicle would
not drive off the road carriageway, which driver caused
an accident etc.

3. The presented general mathematical model is de-
veloped for road accidents experts to investigate acci-
dents on the roads, roads designers to investigate exist-
ing road sections and to design road sections, other ex-
perts and designers for the identification of motor ve-
hicle characteristics when it interacts with road guard-
rails, for the identification of motor vehicle braking char-
acteristics, for the investigation of any failure of a hy-
draulic brake system by changing the boundary condi-
tions (fluid pressure in any point of pipelines, motion of
pistons, air quantity etc.).
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