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Abstract. A procedure for estimating potential damage to buildings induced by accidental explosions on the
railway is developed. By the damage failures of nearby structures due to actions generated by the accidental
explosions are meant. This damage is measured in terms of probabilities of potential failures caused by explo-
sions. The estimation of the damage probabilities is based on stochastic simulation of railway accidents involving
an explosion. The proposed simulation-based procedure quantifies epistemic (state-of-knowledge) uncertainties
in the damage probabilities. These uncertainties are expressed in terms of Bayesian prior and posterior distribu-
tions. The foundation of the procedure is a computer intensive method known as the Bayesian bootstrap. It is
used for approximating the posterior distributions of damage probabilities. The application of the Bayesian
bootstrap makes the proposed procedure highly automatic and convenient for assessing structures subjected to
the hazard of the accidental actions. In addition, it can be used for specifying safe distances between the railway
and nearby buildings. Structures of these buildings can be designed for tolerable probabilities of failures induced
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by accidental explosions.

Keywords: railway, accident, explosion, Monte Carlo simulation, bootstrap, Bayesian bootstrap, damage.

1. Introduction

Accidental explosions (AEs) on the railway are
dangerous, generally large-scale phenomena. Acci-
dents involving such phenomena include severe dam-
age to buildings and non-structural property. A se-
lection of such accidents on the railway is described
in the books [1, 2]. Industrial activities require rail
transportation of explosives and such combustible
materials as liquefied gases. They constitute an in-
evitable potentiality of AEs. Typical AEs are burst-
ing of explosives and physical phenomena are called
the unconfined vapour cloud explosions (UVCEs)
and boiling liquid expanding vapour explosions
(BLEVES). On the other hand, AEs on the railway
are generally rare, unexpected, and difficult-to-pre-
dict phenomena. Actions induced by AEs are uncer-
tain and so is the potential mechanical damage from
AE:s. Prediction of this damage requires proper deal-
ing with uncertainties related to both blast loading
from AEs and response of structures to AEs. In ad-
dition, general knowledge and statistical data on AEs
are usually limited. The presence of considerable
uncertainties generates a need to apply probabilis-
tic methods to assessing the damage from AEs.

This paper develops a procedure for estimating
potential damage to buildings induced by accidental
explosions on the railway. By the damage failures of
nearby structures caused by actions generated by
AEs are meant. This damage is measured in terms
of probabilities of potential failures caused by AEs.
The estimation of the damage probabilities is based
on stochastic simulation of railway accident involv-
ing an explosion. The proposed simulation-based
procedure quantifies epistemic (state-of-knowledge)
uncertainties in the damage probabilities. These
uncertainties are expressed in terms of Bayesian prior
and posterior distributions. The foundation of the
procedure is a computer intensive method known as
the Bayesian bootstrap. It is used for approximating
the posterior distributions of damage probabilities.
The application of the Bayesian bootstrap makes the
proposed procedure highly automatic and conve-
nient for assessing structures subjected to the haz-
ard of accidental actions. In addition, it can be used
for specifying safe distances between the railway and
nearby buildings. Structures of these buildings can
be designed for tolerable probabilities of failures
induced by AEs.
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2. Methodological background

The prediction of potential damage to structures
from rare AEs on the railway can be formulated as a
problem of statistical inference. As long as the dam-
age probability serves as a damage measure, its esti-
mation amounts to statistical estimation of mean
value. However, this estimation is far from trivial. Lim-
ited knowledge and uncertainties related to AEs ren-
der the application of classical statistics of impossible.
A natural approach applies methods of the Bayesian
statistical theory. They do not break down in the situ-
ation of the limited knowledge about AEs. The dam-
age probabilities can be estimated by combining Baye-
sian inference with the methods of structural reliabil-
ity analysis (SRA). Such a combination is well known
in the field of SRA. Nevertheless, the author’s expe-
rience suggests that standard techniques of Bayesian
updating are not fully suited to the estimation of dam-
age probabilities. These techniques are too general
to take account of the specificity of prediction of AEs
and damage from them.

Standard Bayesian updating can be enhanced by
a computer intensive method of applied statistics
known as the bootstrap. It belongs to methods of ap-
plied statistics which have been facilitated by the con-
tinuing development in computer technology [3].
These methods allow the analyst to assess the statis-
tical accuracy of probability estimation by exploit-
ing the power of the computer. The term “bootstrap”
is usually understood as a means, a computationally
intensive data-based simulation method for
frequentist or Fisherian inference [4]. In particular,
the bootstrap is understood as a computer intensive
method for assigning frequentist measures of accu-
racy to point estimates. The merit of the bootstrap is
that it relieves the analyst from having to do com-
plex mathematical derivations [5]. Sometimes, it
gives an answer where no analytical answer can be
found. In addition, the bootstrap enjoys the advan-
tage of being completely automatic (requires no
theoretical calculations).

Strictly speaking, the bootstrap is not a purely
frequentist means because there is a Bayesian form
of the bootstrap or the Bayesian bootstrap. The latter
term was introduced by Rubin [6] in 1981 who first
found the connection of the bootstrap with Bayesian
inference. Bayesian bootstrap is a specialized appli-
cation of the bootstrap intended for simulating the
posterior distribution of a parameter [3]. Rubin [6]
suggested a nonparametric Bayesian bootstrap for
solving this problem. In recent years, there have been
many computer-intensive methods proposed to ap-
proximate posterior distributions in the Bayesian sta-
tistical analysis (e.g. [7-11]).

The Bayesian form of the bootstrap offers the
scope for its application to quantitative risk assess-
ment (QRA), as methods of QRA are substantially
based on the Bayesian statistical theory (e.g. [12]). The
standard models of QRA, fault trees and event trees,
require Bayesian inference to specify epistemic un-
certainty distributions for such model parameters as
probabilities of basic events in fault trees and branch-
ing probabilities in event trees (e.g. [13]). These QRA
models are a potential field of application of the Baye-
sian bootstrap to QRA.

QRAs often deal with large-scale accidents
which may include AEs. Mechanical actions imposed
on structures by AEs are called in terms of struc-
tural engineering of the explosive actions [14, 15]. A
potential damage to structures due to AEs can be
assessed by estimating probabilities of foreseeable
damage events. Formally, these probabilities can be
handled by means of the bootstrap within the pure
frequentist framework [16]. However, QRA provides
consistent means for dealing with considerable un-
certainties related to AEs and, sometimes, response
of structures to AEs. QRA means allow quantifying
epistemic uncertainties in probabilities of the events
in question in the form of prior and posterior distri-
butions (e.g. [17]). The Bayesian bootstrap is suit-
able to utilize attractive features of data resampling
techniques. It allows applying these techniques to
effective Bayesian updating within QRA which con-
siders AEs and potential damage from them. In par-
ticular, the Bayesian bootstrap can be applied to ap-
proximating posterior distributions of damage prob-
abilities.

The present paper considers practical applica-
tion of the Bayesian bootstrap to QRA focused on
assessing damage to structures. It is used for Baye-
sian inference based on two sources of information:
e prior knowledge existing mainly in the form of

mathematical models and historical data suitable

for approximate prediction of AE characteristics
and

e new information consisting of a small-size sample
of measurements of AE characteristics which are
highly relevant to an exposure situation (a situa-
tion in vicinity of the railway where the structure
under investigation stands and a potential AE can
occur).

The application of the Bayesian approach falls
within the general approach to QRA known as classi-
cal Bayesian approach [13]. It is shown how to utilize
the prior knowledge to specify prior distribution of a
damage probability. Then it is demonstrated how to
approximate its posterior distribution by means of the
Bayesian bootstrap when the new sample of AE char-
acteristics becomes available.
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3. Probability of explosive damage

Damage to a structure from AE can be repre-
sented by a finite set of n, random events D, (i = 1, 2,
..., n,), each standing for a foreseeable and specific
mechanical damage phenomenon. If the damage is
assessed in the context of QRA, probabilities of D;s
can be grouped together to establish a risk profile re-
lated to a particular AE and a specific exposure situ-
ation [18].

The probability of damage D, due to AE can be
expressed in the form

P(D, | AE)= [P(D, |Y)dR, (y)=E(P(D, Y)), (1)
aly
where D, is the random event of damage; EA is the
random event of imposition of AE with any
characteristics; Y is the random vector of AE
characteristics; y and Fy(y) are the value of Y and its
distribution function (d.f.), respectively.
The definition (1) is based of fragility function
P(D; | y) relating particular value of AE characteris-
tics, y, to probability of damage event D,. Fragility
function is an often-used tool for describing the re-
sponse of structures to extreme actions (e.g. [19, 20]).
The fragility function can be expressed as some
function p,(-) which relates probability of D, to y and
thus takes on probability values, namely,
p.(y) = P(D; | y). This function allows introducing a
random variable p defined as a function of the ran-
dom vector Y, namely,

P=p(Y)=P(D Y) . @)

A mean value of P can be denoted by ¢t and ex-
pressed as

u=E(P)=E(P(D, |Y))- 3)

The problem is that d.f. R, (y) is not known due
to scarcity or irrelevance of information on charac-
teristics of many types of AEs. However, distribution
of values of Y can be approximately predicted by exis-
ting models and, in addition, data related to ¥ can be
collected by carrying out experiments which are highly
relevant to the exposure situation under investigation.

4. Knowledge available for estimating damage prob-
ability
4.1. Prior knowledge

The expression (3) implies that the damage prob-
ability can be expressed as uncertain distribution pa-
rameter L amenable to Bayesian inference. The learn-
ing process involved in Bayesian inference is one of
modifying the analyst’s initial probability statements
about distribution parameters prior to observing data
to posterior knowledge incorporating both prior
knowledge and the data at hand (e.g. [21]).

In a pure Bayesian analysis, the prior distribu-
tion of u should be specified subjectively. However,
the purely subjective specification does not utilize
prior knowledge about many types of AEs. Such
knowledge, more or less relevant to the exposure situa-
tion under investigation, is usually available for the
analyst. Therefore one can make a compromise be-
tween the frequentist and Bayesian statistical analy-
sis and specify priors for damage probabilities from
the prior knowledge.

Formal means for specifying priors based on data
are provided by empirical Bayes methods [22]. This
paper proposes a simple heuristic approach to speci-

| Exposure situation x |

Experimental data relevantto x

Fy(x). Fy(y)

NeW y,:(y{’y{_)ﬁ""y;)] )
information | y=0|y) Prior knowledge
Fictitious sample of probability values |
p;=p(¥)=PWD;|y) (j=1.2....n) P(D; 1)
Specification of likelihood function estimate | Specification of prior )
From new Z(ﬁ m density m(u) From prior
|nform|at|on using the Ba;esian bootstrap | knowl|edge

Calculation of posterior density

T(uld,)

Fig 1. The role of the Bayesian bootstrap in estimating probabilities of damage to structures due to accidental actions
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fying priors from existing knowledge. The approach
is based on the knowledge which is highly specific to
aparticular AE and is expressed in the form of a math-
ematical model ¢ (+) relating characteristics of expo-
sure situation to characteristics of AE, namely,

y=ok|w, 4)
where x is the vector describing characteristics of
exposure situation in which AE can occur; y is the
vector used to express epistemic uncertainties in those
parameters of ¢ () which are uncertain in epistemic
sense. The exposure situation represented by x may
be uncertain in the stochastic sense and this can be
modeled by a random vector X with aleatory d.f. F,(x).

A part of prior knowledge should be represented
by the fragility function p,(y) which can be established
for an exposed structure by methods of the structural
reliability analysis (e.g. [23]). Thus the fragility func-
tion p,(*) together with the model ¢ (-) form the main
part of the prior knowledge, the structure of which is
shown Fig 1.

4.2. New information

The need to apply Bayesian inference to estimate
the damage probability P(D; | AE) may stem mainly
from partial irrelevance of the prior knowledge to a
particular exposure situation. The configuration of a
structure exposed to AE as well as the accident ca-
pable of inducing AE may be unique by a large mar-
gin and so may not fit in the prior knowledge. The
source of the partial irrelevance may lie in
e the structure of model ¢ () and/or
* the data used to fit d.f. Fy(x) and to estimate pa-

rameters of ¢ (*), that is, components of y.

The partial irrelevance may require the correc-
tion of AE prediction by experimental data which can
be considered highly relevant to an exposure situa-
tion under investigation. Clearly, these experiments
can be used for improving model ¢ (*) by, say, increas-
ing its relevance to the exposure situation. However,
the highly relevant (case-specific) data on AE char-
acteristics y and, possibly, interaction of AE with the
exposed structure can be used directly estimating

P(D; | AE).

In theory, the amount of the case-specific data
may be such that model ¢ () will no longer be needed.
In practice, however, the amount of the data may be
limited because experiments on AEs, especially full-
scale ones, are often expensive. This may require com-
bining of the new, case-specific data with the prior
knowledge behind ¢ ().

The case-specific data necessary for estimating

P(D; | AE) should be gathered and represented in the
form of a sample y’ = (y},y5, ...,y,)" containing ex-
perimental observations of AE characteristics. Clearly,

each experiment in a series yielding sample y” should
imitate a potential accident and sample y” itself should
posses the property called by statisticians the “repre-
sentativeness” (e.g. [24]). Although this property of
y’ is very important, a detailed discussion about how
to ensure the representativeness is out of the scope of
this paper. In subsequent discussion, it is assumed that
sample y’ possesses this property.

Given sample y’ and a fragility function of in-
terest, p,(y), one can simplify estimating P(D; | AE)
by introducing fictitious sample p = (p,, p,, ... ,p,)’,
each component of which is calculated by

P; =P (Yj)=PDilY}) (J=12 ..,n). In this way
the problem of estimating P(D; | AE) is made less
complicated by switching from an multi-dimensional
analysis to a one-dimensional case. Then the compo-
nents p. of p can be treated as realizations of random
variable P defined by (2).

Expensiveness of experiments on AEs may cause
that size n of sample y” will be too small to apply the
methods of classical statistics for estimating
P(D; | AE) . In addition, experiments on AE may be
unique and a series of them resulting in y” may be
carried only once. This implies that the procedure of
Bayesian updating using y” will be a single act, rather
than a more or less constant process.

5. Use of the Bayesian bootstrap

5.1. Specifying of prior for damage probability

Epistemic uncertainties related to parameters y
of model ¢ (x | w) can be expressed introducing ran-
dom vector ¥ with d.f. F(y). Then replacing of Yin
(4) by random function ¢ (X | ¥) will yield another
random variable

M =m¥)=Ex(pi(o(X|¥)))
= [ P(D; |o(x|¥))dFx (x), 5)
all x

where m(-) denotes some function relating M to ¥
Avalue pyof M is the damage probability at given y,
namely, Ex(P(D;|¢(X|w))). The density of M
denoted, say, by n(u) can be used as prior quantifying
epistemic uncertainty in damage probability
P(D; | AE) (Fig2).

The source of the epistemic uncertainty may not
necessarily be only on the side of model ¢ (x | w) used
to predict AE characteristics. Epistemic uncertainty
can also be related to values of fragility function p,(y)
at given y. However, this part of epistemic uncertainty
can be handled in the framework of (5) and is left out
for brevity.
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Fig 2. Schematic representation of densities related to
probabilistic damage assessment in Bayesian context:
fs(P|w) = density of random variable P = p, (p(X |y))
with mean Hys 70 (p) = prior distribution of
w r(p| un) = posterior distribution of u

5.2. Updating of prior by means of the Bayesian
bootstrap

The usual Bayesian posterior has the form

(u | data) < p 7 (1) L(data | w),
where “data” is represented eventually by samples p
or y’. The main idea followed in the paper is to replace
the usual Bayesian posterior 7(u | data) by estimated
posterior

7(u | data) o< 7 (u1) Ly (data| 1)

where L, (data|x) is estimate of the likelihood func-
tion based on bootstrap estimation of the density of
pivotal quantity j, —M with iy, =n 12 4 Pj . Apos-
sibility of such a replacement was suggested by Boos
and Monahan [7].

The first step is to estimate the distribution func-
tion of data p using empirical d.f. F  of pj’s In the
second step, a set of B random samples of size n from

F,, is generated and mean [, is calculated for each
sample b (b = 1, 2, ... , B). From B simulated esti-
mates [y, iy, ..., HnB, one can compute kernel
density estimate.

_ 1 BK u_(ﬁ;b_ﬁn)

Bwi=a w >
where w is bandwidth (window width, smoothing pa-
rameter) and k(') is kernel function. Since function
kg(u—p) is an estimate of the sampling density of

&, given y, likelihood function of 1, can be estimated
by

A N 1 & (20i,—u1— i)
L :k —_ =
s (U, | 1) = Kg (L, — ) BWE_{K[ W .

The resulting estimate of posterior of the dam-
age probability is

Al i,) = C(R)m () Lo (i, | 1) -

where the normalizing constant C(f,) can be found
by numerical integration.

5.3. Practical implementation

Practical implementation of the bootstrap-based
updating procedure is relatively simple, as estimates
Lg(ft, |1) and 7(u|f,) can be computed almost
automatically. Estimate Lg (i, | i) is relatively insen-
sitive to the choice of kernel function k(-) [4]. The only
implementation problem is associated with the choice
of bandwidth w which can have considerable influence
on Ly (i, | 1)

A simple recipe for choosing the “best” value of
w seems not to be available and many authors side-
step this problem by presenting estimates like
Ly (i, | 1) and 7(u | ft,) for different values ofw (e.g.
[11]). A criterion for the choice of w should be smooth-
ness of the estimated likelihood curve Lg(i, |u) -
Davison et al. [4] suggest that w should be propor-
tional to B. Shao and Tu [3] provide a review of ap-
proaches to choosing w by means of cross validation
and the bootstrap. In the present context, one can only
state that further investigation is necessary to develop
an algorithm for an automatic choice of w. Without
such algorithm, updating via the Bayesian bootstrap
can hardly be attractive to application in the field of
structural engineering.

6. Example: assessing explosive damage to an indus-
trial building

6.1. Exposure situation

Consider an industrial building constructed in the
vicinity of a 500 m section of the railway (Fig 3). This

ELEVATION
Exposed future
Railway, 160 m building
e
k 200 m |
Center of potential explosion with charge X,
PLAN Exposed future building
"
T
) ) 200 m
150 m Centers of 10 potential explosions |
with charge X, :
160 m
% & =
- Oy -
X
2500 m section of railway ;‘

Fig 3. Exposure situation involving an accident with
accidental explosion on the railway
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transportation facility is used to carry commercial
explosives which can detonate in consequence of a rail-
way accident. The accidental explosion will generate
a shock front resulting in impulsive loading imposed
on the building. Characteristics of this loading can be
described by vectory = (y,,y,)’, where y, (MPa) and
¥, (MPa s/m?) are the peak positive overpressure and
positive impulse of the incident shock front, res-
pectively.

The damage to the building is represented by
random event D, consisting of flexural failure or shear
failure of reinforced concrete panels used for exter-
nal envelope of the building. These panels should re-
sist not only wind pressure, but also the pressure aris-
ing from the reflection of the shock front by the fagade
of the future building.

The exposure situation is represented by vector
x = (x;, X, x;)7, where x, (kg) is the weight of trans-
ported explosives (charge weight); x, (m) and x; (m)
are the coordinates of the centre of accidental explo-
sion in the coordinate system shown in Fig 3. Thus the
expression 7 = (x2 + (360 —x;)*)" is the standoff of
the explosion to the fagade and the expression
s=x*r* is so-called inverse scaled distance (kg'3/m)
(inverse normalized standoff, e.g. [1]).

6.2. Prior knowledge
Prior knowledge is represented by the model

y=0(xy) = (p.(x 1¥). 0,(x |y))
with the model components

i = 0, (X W) =y, (ws++y; s’ +y;s%),  (6)

Yo =0, (X W) =y, wixXr (7)
and the vector of regression parameters
W1 wsws,wi)" =(0,1MPaxmkg™;
0,43MPax m?/kg?*; 1,4 MPaxm?/kg;
6,3MPaxs/(mkg?®))".

Components of vector y = (y,,y,)" are dimen-
sionless adjustment factors (relative overpressure and
relative impulse of the commercial explosive, which
can detonate in consequence of the railway accident,
compared to the equivalent weight of TNT explosive).

Stochastic uncertainty is related to the exposure
situation and so arguments of model ¢ (x | y) are
expressed by random vector X = (X, X,, X;)" with
components distributed as follows X; ~ N(500 kg, 30
kg), X, ~ U(0 m, 160 m), X; ~ U(0 m, 500 m), where
L and U denote the normal distribution and the uni-
form distribution, respectively. The uniform distribu-
tion of X, and X implies that the accidental explo-
sion can occur with the same probability within 500 m

X160 m area of the railway. The uniform distribution
of the explosion point coordinates X, and Xj is con-
sidered as only the first approximation to forecasting
the position of the explosion centre.

Epistemic uncertainty can be introduced into
model ¢ (x | y) by assuming components y; and v,
of y to be random variables. Adjustment factors v,
and y, are conventionally expressed as fixed values
or deterministic function of so-called scaled distance
[25, 26]. However, the nature of explosive actions is
highly random and adjustment factors may be ex-
pressed in the form of random variables ¥, and ‘¥,
having epistemic distributions. In this example, log-
normal distribution is assumed for random adjustment
factors: ¥, ~L(0,15842; 0,09975) with mode of 1,16;
¥, ~L(0,17551; 0,09975) with the mode of 1.18.

Further part of prior knowledge is represented
by fragility function p,(-) which relates peak positive
overpressure y, and positive impulse y, to failure prob-
ability P(D; | y) . The form of p,(y) can be established
using the results obtained by Low & Hao [27], who
investigated the reliability of RC slabs under impul-
sive loads. The function p(y) is represented in the form

P (Y) = P(D; 19" (%, %, Y1), 0" (Y1, V2)) »

where ¢’(.) and ¢”(.) are two deterministic functions
which relate the peak overpressure and impulse of
reflected shock front to the respective characteristics
of the incident shock front. The function ¢’(.) is called
the “reflected pressure factor versus angle of inci-
dence” and is usually represented in the graphical
form [25]. The angle of incidence of the shock front
can be simply determined from the explosion point
coordinates x, and x;. The function ¢”(.) is a simple
formula allowing estimating the reflected impulse
from incident impulse y, [1].

In this example, fragility function p(y) is approxi-
mated by a d.f. F(z,z, | Upy: Upy10p1:0py, p) Of bi-
variate normal distribution, namely,

Pi(z, 2,) = F(20,Z, | Hpy i Mp2: 01, Op2: P) 5 (8)
where arguments z, and z, are defined as
2, =9 (X, %, Y;) and z, =@"(y,,Y,) and parameters
Up, =3,2%X1073 MPa, up, =1,45 MPaxs/m?, o,
=0,64x107° MPa, 0,,, = 0,29 MPaxs/m? p = 0,2.

Clearly, the analyst may have uncertainties in
epistemic sense related to the elements of model p,(y)
as well as further elements of model ¢ (x | ), first
and foremost, vector of the regression parameters,
i, vy, vi,w,)"; however, these uncertainties are
ignored in the present example for simplicity.

The formulas (6) and (7) are standard relations
obtained by experiments on TNT. They are, strictly
speaking, valid only for distant explosion of a charge
positioned on the ground which forms a horizontal
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plane. In addition, the model represented by (6) and
(7) assumes that the shock front generated by TNT
explosion does not encounter any obstacles. A gentle
slope of the ground between the railway and the ex-
posed future building makes model ¢ (x | W) only
partially relevant to the exposure situation shown in
Fig 3. In addition, the assumption of the uniform dis-
tribution of the explosion point coordinates X, and
X, may be considered sound; however, a detailed
analysis of railway traffic by means of QRA may in-
troduce corrections in this assumption.

Despite the irrelevance of the model represented
by (6) and (7), it can be used for specifying prior dis-
tribution of P(D, | AA).

6.3. Specifying prior from distribution existing
knowledge

Prior distribution of the damage probability
P(D, | AE) can be specified by propagating epistemic
uncertainty related to parameters y; and ,. Thus un-
certainty can be transformed into uncertainty in
P(D; | AE) by (5). Density 7 (1) of random variable
M defined by (5) will serve as prior distribution.

Density & (1) can be specified by fitting it to
sample y, (k =1,2,...,n,), the elements of which are
estimates of mean values Ex(p;(o(X|wyy))) for

given y,. Values y, are generated from epistemic d.f.
F () by means of stochastic (Monte Carlo) simula-
tion. Mean values E,(-) can also be estimated by simu-
lation:

n
138
g =1, 12 pi(o(x; |wy)),

=1
where x, is the value of X generated from aleatory d.f.
F,(x). Fig 4 shows density of normal distribution fitted
to generated sample u, (k = 1,2, ..., 1000) obtained
using n, = 1x10°.

500

400 |

300 | \
200 } §

100 |

00 01 02 03 04 05 06

Number of probability estimates

0.7 0.8

Damage probability estimate

Fig 4. Histogram of sample y, (k= 1,2, ..., 1 000) and
transformed density of normal distribution N(0,353;
0,091906) fitted to the sample

Consequently, prior density 7 (1) is specified as
density of normal distribution N(0,353; 0,09196) with
90 % confidence interval ]0,202; 0,504[.

6.4. New data of a possible railway accident

New data may be obtained by an experiment
which imitates potential accidents on the railway sec-
tion. A detailed analysis of traffic in the railway sec-
tion can yield, say, ten potential centers of accidental
explosion (Fig 3). Then a series of ten explosions can
be carried out by detonating charges x, of the explo-
sive under investigation in a blast measuring facility
which imitates the ground surface of the exposure situ-
ation. The weight of charges, x,, can be chosen by
chance from the distribution of X,.

The series of experiments will yield sample
Y = (Y., Yo, s Yio)" - Let us say that the results of the
experiment are represented by ten pairs of measured
overpressures and impulses given in Table 1.

Table 1. Observed elements y, of sample y” and com-
puted elements p; of sample p

j yi (MPa, MPaxs/m?) p;

1 (2,06; 0,960) 0,001674
2 (2,99; 1,38) 0,1484

3 (2,68; 1,26) 0,05482
4 (2,73; 1,27) 0,06283
5 (3,41; 1,59) 0,4286

6 (2,66; 1,23) 0,04543
7 (2,74, 1,24) 0,0545

8 (3,29; 1,46) 0,2861

9 (2,92; 1,30) 0,09814
10 (3,82; 1,74) 0,7022

A small size of sample y’ is likely, as the ex-
periment imitating the accident may be expected to
be expensive and time consuming. Clearly, ten-ele-
ment sample y’ is too-small to estimate damage
probability P(D, | AE) using y" alone, that is, with-
out prior knowledge. However, this sample may be
used to update the prior distribution N(0,353;
0,09196) of P(D, | AE) specified on the basis of prior
knowledge. To do this, the fragility function (8)
should be applied to transform y’ into fictitious
sample p given in Table 1.

Mean [i,, of sample p is equal to 0,1882. Sample
p can be applied to estimate likelihood function
L(ily | 1) and approximate posterior distribution of
P(D; | AE).
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6.5. Posterior distribution as epistemic estima-
tion of damage probability

The estimate of likelihood function, I:B (Qq0 W)

was obtained using Gaussian kernel function k(). The
number of bootstrap replications, B, necessary to gen-

erate sample (, ll/nl, (ho... Ohe , ) was taken to be

equal to 1000. The choice of B was based on the rules
of thumb suggested by Efron and Tibshirani [5, p. 52].

The choice of the bandwidth w was not investi-
gated in detail. Three values 0,01, 0,02, and 0,03 of w
were chosen manually to assess the influence of w on
the posterior density 7(u |[1,,) . As expected, the larg-
est value of w produced the smoothest estimate of the
likelihood function. Fig 5 shows a graph of Lg(fi1q | 1)
atw = 0,03.

Three approximations of posterior density
7(u | ity,) computed at three values of w are shown
in Fig 6. These approximations were obtained by nu-
merical calculation. The approximations 7(u | )
express the epistemic uncertainty related to

— Likelihood
- - - Prior
Posterior B

0 0.1 0.2 03 0.4 0.5 0.6 0.7

Damage probability

Fig 5. Graph of the likelihood function estimate I:B (fy | 1)
as well as prior density m(u) and estimate of posterior density
71| {,,) obtained with bandwidth w = 0,03

Posterior density

0.05 0.15 0.25 0.35
Damage probability

Fig 6. Posterior density of the damage probability at three
values of bandwidth w

P(D, | AE).

Three approximations 7(u | f,,) can be com-
pared and so the influence of the bandwidth w on the
posterior density assessed by calculating approximate
confidence intervals for each of the three 7 (u | i) -
Table 2 shows three 90 % confidence intervals at the
three values of w. These intervals can be easily com-
puted during numerical evaluation of 7 (u | fy,) -

The confidence intervals given in Table 2 can be
compared with 90 % bootstrap confidence interval
computed using ten-element sample p. The limits of
the latter interval can be taken as the 5 and the 95t
percentages of an ordered sample obtained from the
bootstrap sample (1, iigs > --- » Lig1ao) [16]. The
bootstrap confidence interval is ]0.0902, 0.304[. This
interval is based on the new data only (ignores the
prior knowledge). It is apparent that the width of the
intervals given in Table 2 is considerably smaller than
the one of the bootstrap confidence interval.

Table 2. Approximate 90 % confidence intervals calcu-
lated for damage probability P(D,| AE) from posterior
densities

Ban(i\jvidth Constant C(fiyo) C(i)rllltfei:?\?aﬁce
0,01 1,2311 1 0,158; 0,308 [
0,02 1,2470 10,159; 0,315 [
0,03 1,2713 10,160; 0,326 [

The approximate confidence intervals given in
Table 2 may be used for making a decision concerning
whether the resistance of the wall panels is sufficient
to resist damage D; or, alternatively, to design the
panels for tolerable value of damage probability
P(D; | AE).

7. Conclusion

The paper presents an approach to assessing
damage to buildings due to accidental explosions
(AEs) on the railway. The damage can be caused to
nearby structures by the blast loading generated by
AE. The attention is focussed on quantifying uncer-
tainties related to both characteristics of AEs and
damage from them. The damage is understood as
structural failures caused by blast loading. Probabili-
ties of these failures (damage probabilities) are taken
as damage measures. The prediction of damage is
realised estimating the damage probabilities.

A procedure of estimating damage probabilities
has been proposed. The basis of the procedure is the
application of a computer intensive method of applied
statistics which is called the Bayesian bootstrap. This
method is used for expressing estimates of the dam-
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age probabilities in terms of Bayesian posterior dis-
tributions. These distributions were treated as mea-
sures of epistemic uncertainty in damage probabili-
ties.

Formally, the Bayesian bootstrap was applied to
Bayesian inference using prior knowledge. It consists
of mathematical models and historical data suitable
for approximate prediction of loading from AE. An-
other part of this knowledge is new information. It is
represented by a small-size sample of highly case-spe-
cific measurements of AE. The procedure is in a large
measure automatic. It does not require any statistical
derivations. Therefore, it can be applied in practical
assessment of existing structures built in the vicinity
of the railway and exposed to the hazard of AEs. The
procedure can also be applied to specify safe distances
between the railway and nearby future buildings.
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