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Abstract. This paper presents a method of developing a dynamic model enabling the study of the effect of the
flexibility of the housing on dynamic phenomena in electromechanical drive systems. The research was per-
formed on the basis of an electromechanical model with feedback between the mechanical subsystem (toothed
gear with housing) and the electrical subsystem using a software package developed by the author in MATLAB

environment.
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1. Introduction

Very often, due to adverse conditions prevailing
during the operation of machines, high cost and the
need to use specialised measuring equipment in ex-
perimental tests the research is restricted to model
testing. Usually experimental testing is merely the
starting point for further theoretical considerations.
Experiments are conducted under specified operat-
ing conditions and the results obtained are valid for
these conditions. Model testing is useful, for instance,
in the analysis, synthesis and optimisation of high
power transmission systems. In theoretical research
mathematical models are used which to a large ex-
tent represent the real systems and the results ob-
tained enable quantitative and qualitative assessment
of dynamic phenomena. One of the problems in the
process of mathematical modelling is a large number
of parameters that describe the real object. There-
fore, the assumptions made must be simplified and
the most important parameters must be selected to
describe the phenomenon. Quantitative and qualita-
tive assessment of the effect of design features on the
dynamic phenomenon being studied is important as
these features have an impact on the nature and size
of the dynamic forces in kinematic pairs. Maximum
permissible size of forces in kinematic pairs can be
determined from the time variations obtained with
the use of numerical methods.

Machine drives constitute complex and compli-
cated dynamic systems with a large number of degrees

of freedom and they require a proper approach to
their mathematical description. The dynamic condi-
tion of a machine is most often modelled in the form
of a complex dynamic system consisting of a number
of simple interacting subsystems. An example of such
an approach is the modelling of a drive as an electro-
mechanical system with feedback between its electri-
cal part and its mechanical part [1, 2]. In this case the
electromagnetic system is usually described by
Maxwell’s laws, while the mechanical system is de-
scribed by the rules and laws of mechanics.

Systems with many degrees of freedom are mod-
elled to represent large electromechanical systems.
Such systems require solving a large number of sec-
ond order differential equations which results in pro-
tracted numerical computations. There are, however,
methods that enable reducing the number of degrees
of freedom of a system. These reduction methods al-
low faster determination of the size and forms of the
free vibrations of the system studied and make the
static and dynamic analysis of the task examined less
labour-intensive. Reduction also plays an important
role in an experimental modal analysis as mass and
stiffness matrices can also be used to compare ana-
lytical and experimental models by controlling their
orthogonality.

2. Modelling of electromechanical systems

High power machines usually operate under dy-
namically variable loads. Such systems can be broken
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up into an electromagnetic system described by
Maxwell’s laws and a mechanical system described by
the rules and laws of mechanics.

The behaviour of electromechanical systems in
transient and resonant states is the most interesting,
therefore complex dynamic models comprising me-
chanical and electromagnetic subsystems are con-
structed. Such a model should take into account the
most important dynamic features of the system as well
as the most important external forces acting on it. The
model should also take into account the feedback
between the electrical system and the mechanical sys-
tem.

The mechanical part usually consists of gears
(modelled in a discrete or discrete-continuous man-
ner). The characteristics of the stiffness of meshing,
flexibility of supports, backlash, stiffness of shafts and
the housing, etc. are taken into account. A system of
ordinary equations is used to describe the mechani-
cal system:

MG+ (B+G)g+Kg=0Q, (1)

where M, B G, K — matrices of inertia, damping,
gyroscopic effect and stiffness, q — vector of
generalised coordinates, Q — vector of generalised
forces.

Dynamic equations of motion for an asynchro-
nous machine model can be formulated as follows:

d
—Li+Ri=U, (2)
dt
1.1 9
My ==i —Li, 3)
2 dg

where L, R, i, U — matrices of inductance, resistance,
supply currents and voltages; M, — moment of the
motor, ¢, — rotor rotation angle.

Electromechanical coupling is effected by the
rotor rotation angle jl derived from the mechanical
system model and by electromagnetic moment Mel
derived from the electric motor model. Solution of
the above motion equations of the coupled system
model enables the determination of its dynamic char-
acteristics.

2.1. Model of the mechanical system

The adopted degree of simplification of mechani-
cal models depends on the purpose of research and
on the identifiability of the parameters used. This
ensues mainly from the complexity of toothed gear
trains which constitute dynamic systems with many
degrees of freedom. The adopted model should take
into account the features of the real object. These fea-
tures have a significant effect on the studied dynamic

phenomena. To a large extent the accuracy of the
adopted model depends on the purpose of the study.
However, one must bear in mind the problems
brought about by the determination of parameters of
the adopted model. The first stage in mechanical sys-
tem modelling is the adoption of a physical model,
the subsequent stage is the discrete model and finally
there is a mathematical model.

The simplest classification of models found in the
literature is the one that differentiates between
strongly and weakly nonlinear systems. The former
system is one where linearised models can be applied
with good approximation. An example of a strongly
nonlinear system is a system with play.

Energy dissipation phenomena are difficult to
handle when trying to describe a model mathemati-
cally and they impose many simplifying assumptions
in the modelling process. It is an accepted practice
that when systems of a given class are modelled, the
damping forces are ignored in the first approxima-
tion and in the next step damping matrices are con-
strued in the form of a linear combination of inertia
and stiffness matrices:

B=oyM +BK, “4)

where o, 3, — are scalar coefficients.

This method simplifies considerably the analysis
of damped vibrating systems. It is often assumed
o, =0, while 3, is determined from material con-
stants and in consequence the damping matrix is pro-
portional to the stiffness matrix.

The simplest model of a gear is a torsional vibra-
tions model, whereas a somewhat more complex
model is the transverse and torsional vibrations model.
However, selecting one of the models is a difficult
problem faced by anyone trying to create a model of
a mechanical system.

3. Modelling of system using the modal condensation
method

In dynamics many a times we encounter the prob-
lem of modelling vibrations of a mechanical system
composed of many “j” subsystems interconnected by
means of many discrete links (Fig 1). Single sub-
systems are often replaced with subsystems described
by concentrated parameters composed of discrete ele-
ments.

Individual subsystems oscillate in a static state
of equilibrium with small deflections and then the
vibrations can be described with some approximation,
while ignoring nonlinear damping forces by means of
a system of differential equations with constant coef-
ficients (3, 4). Each such subsystem is a discrete li-
near model with n; degrees of freedom. These simple
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Fig 1. A mechanical system composed of subsystems [5]

subsystems cannot be replaced with a system with av-
eraged parameters and it is necessary to discretise
them.

3.1. Model of a toothed gear train

A toothed gear train (Fig 2) can be modelled as
a system of shafts with mass concentrated in the form
of disks at points of gear mounting supported in bear-
ings. Coupling between shafts is effected by meshing
between adjacent gears. Shaft discretisation can be
done using FEM [6-12] upon dividing the shaft into a
finite number of continuous sections of constant di-
ameter. Each shaft with gears mounted on it, cou-
plings, supports at points of bearing mounting consti-
tutes an isolated subsystem.

The rigid finite element method enables creat-
ing a model that describes the system with sufficient
fidelity in the area of low free vibration frequencies.
If, however, analysis of a wide range of frequencies
or of higher frequencies is required, then a hybrid
method must be applied. In this method gears are
treated as solid bodies, whereas shafts, the rigidity of
which is several orders lower, are divided into deform-
able finite beam elements.

The rigid finite element method is applied to

" @“‘?ﬂ 0

-

el y777774
II shaft OM‘,

o—o - beam finite element

@ - elasto-dumping element

$ - stiffness in gear
CO - rigid finite element

M - driving moment

Mo - anti-torque

Fig 2. Hybrid model of a gear train [2]

model discrete fragments, i.e. those with concentrated
parameters. On the other hand, for the modelling of
continuous elements, i.e. those with mass, elastic and
damping properties distributed continuously in space,
the finite element method is applied. Elastically damp-
ing elements are used for the modelling of the inter-
face between mating gears.

The forces that act upon subsystems include the
drive forces transferred from the electric motor, re-
sisting forces on the output, interaction between shafts
the latter usually represented by forces between gear
teeth or forces acting in the coupling.

3.2. Model of the housing

The housing of the gear train is significant from
the viewpoint of dynamic properties of the entire
mechanical and electrical system. Standard finite ele-
ments software is usually used to model the housing.
The Ansys software which enables analysing dynamic
phenomena in systems modelled was applied to gen-
erate the model of a gear housing. One important
advantage of this software is its ability to determine
the frequency of free vibrations of the housing.

Ansys uses an APDL internal programming lan-
guage which can be applied to determine the form of
free vibrations in nodes and to export them as text
files to MatLab software.

A model representing the real object is created
on the basis of technical design documents.

Some problems may be encountered when a
mathematical model of a structure is created with the
use of the finite element method —models with a high
number of degrees of freedom are generated (n>103).
Such models are too large for further analysis of dy-
namic properties and optimisation due to hardware
and computation time constraints. When modal syn-
thesis is applied to determine dynamic responses of
defined structures, a relatively small number of free
vibration forms (m<100) can be taken into account.

It is therefore proper for the housing finely di-
vided into finite elements, when arranging a complete
condensed system, to reduce the number of eigenvec-
tors. The reduction of the number of eigenvectors
brings about simplification as it enables to disregard
many equations without a notable impact on the dy-
namic analysis results obtained with the use of modal
synthesis. These generalised equations of nodes
should be retained where connections with the pre-
ceding subsystem are defined. In the case of housing
these may be the nodes where connections with the
bearing are defined.

3.3. Modelling connections between subsystems

Modelling of discrete connections between sub-
systems is done in a global system of equations of the
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system described by a vector of generalised equations
am =[a;0]
the number of degrees of freedom of the individual
subsystems. In this system configuration the matrices

of stiffness K, and of damping B of the linear con-
nection can be calculated from the equation:

of dimension n=3Xn;, wheren; is

JE© D
P . I
+ =K _q(t)+B.q(t)+f (1),
2 o A +Ba) +f (1) 5)

where Ef)c) — potential energy, D(® - dissipative
function of the connection, f' (t) — vector of internal
kinematic excitation in the connection.

3.3.1. Modelling of the meshing

Force acting between the gear teeth (Fig 3) can
be determined from the relation:

f,=B,®a, 1) +K,1)a, 1), (6)

where K (t) — matrix of meshing stiffness, B,(t) —
matrix of meshing damping, f, —vector of generalised
forces acting between gear teeth.

Fig 3. Forces acting on a gear tooth reduced to a meshing
pole [13]

Interaction between teeth runs along the line of
contact and the force acting between gear teeth can
therefore be described by means of the following re-
lation:

N, =k, (d, -d))e,, (7)

whered, dj are vectors of the displacement of contact
points within the meshing pole resulting from angular
and translational displacement of gears, whereas e,
en is the versor of the axis orthogonal to the contact
plane in this point, k, is the coefficient of stiffness of
the meshing reduced to the contact line.

3.3.2. Modelling of supports

In toothed gears the form of support used most
often is the rolling bearing (Fig 4). In the most com-
mon gear designs the flexibility of bearings plays a
relatively minor role in the dynamics of gear trains.
Likewise, the interaction of variable stiffness of mesh-
ing and nonlinearities occurring in a bearing have no
large significance. In intricate dynamic models the
stiffness of bearings should be calculated and entered
into the numerical computation [14] of the model.

Force in the bearing can be determined from the
relation:

fg=Bg()ds(t)+K(t)qs(t), ®)

where K ;(t)- matrix of stiffness in the bearing,
B; (t) - matrix of damping in the bearing, f; -
column matrix of generalised forces in the bearing.
Radial contact of rolling elements between in-
ner and outer ring of the bearing and axial contact
between the casing and the shaft may be averaged to
point H; with radius ; remote from centre S; in node
»1”, its position is described by angle d;; measured

from y axis. Pﬂoint is intermediate between node

points H;, H, in casing, the actual displacement
between shaft and casing in a radial direction is:

Fig 4. Model of a rolling bearing [15]
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and in an axial direction:

d o =U +1,SINS, W — T, COSS, —EJ—EJ, (10)

where u, v, ¥, @, ¥, Jiis the deflection of ,,i” node on

shaft in relation to bearing, whereas

X, X, Y, Y, 2,2 are the displacements of the

node H ; and H=] of the casing along x, y, z axes of

the system.

4. Condensed model composed of subsystems

A mathematical model of the entire system com-
posed of N, subsystems interconnected by links can
be written down as:

M G;(0+ (B, +0,,G,)q,(t)+K,q; ) =f] +f; (1),
j=12,.,N,, (11)
where the ,,j” index indicates a successive subsystem.
In the case of housing the angular velocity is zero @, ;.

The effect of the preceding subsystem on the
current subsystem j” is expressed by means of cou-

plings, represented by vector fjc. This methodology

is applied also for shafts where we most often have
meshing and bearing constraints. In the configuration
system defined by the global vector of generalised
equations q(t) = [qj (t)] for n=32 n; , and the glo-
bal vector f, = [flc] , of internal linear forces in cou-
plings can be expressed as:

BEE)C) oD©
= W - W =
~(Bg +Bg)at)—(Kg +Kg)a®) +fo ) (12

C

where K, B, are the matrices of stiffness and of
damping of all couplings in meshing, and, K, B, in
all bearing couplings.

Modal properties of isolated and undamped sub-
systems in a certain range of frequencies are repre-
sented by a diagonal spectral submatrix A of rank
m; and by a rectangular modal submatrix V of type
[n;,m], where m; is the number of free V1brat10n fre-

quencies of subsystem ,,j” within the given range of

frequencies. Matrix " V j is composed of 7, master
mode shapes of normalised free vibrations, respec-
tive free vibrations of ,,j” subsystem in the frequency
range. Both matrices satisfy M-orthogonal and K-or-
thogonal condition.

MVIM MV =l VK MY =MA j=12..,N, (13)
Modal transformation is:

q(t) = Vx(t). (14)

For single subsystems qj(t)z m mXj(t),
j=1,2.... Then the model can written down in the form:
() + (B+m,G)x(t) + Ax(t) = V' [t +£(t)], (15)
where

B =diag("V]B;"V,),

)

are diagonal block matrices of rank m=3>m; , and

G =diag JomVG
20

A=diag("4,), V = diag("V)),

X(t) =|:mxj(t):|e R™, f()=[f,®]eR"

By eliminating vector f, from the model (15) us-
ing the relation (12) we obtain a condensed model of
the system with a reduced number of degrees of free-
domm

K(t) +[B +oG+V' (Bg + BB)V]X(t) +
[A+ VT (Ks +Kg)V |x®) =V [t +10)] (16)

Dynamic behaviour of the model (11) for the
given range of frequencies corresponds to original
behaviour of the uncondensed model. Between vec-
tor x(t) of dimension m of coordinates of condensed
model andq(t) = [qj (t)]
generalised coordinates of model (11) there is a trans-

of dimension n of

formation relation (14). Using this transformation
q(t) =Vx(t) we revert to the base of original
generalised coordinates.

5. Computational model

In order to determine the effect of housing flexi-
bility on dynamic phenomena occurring in toothed
gears numerical simulation was carried out for a one-
stage straight-toothed gear train driven by an asyn-
chronous motor (Fig 5).
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Fig 5. Model of a one-stage toothed gear train

Such an approach will enable assessing the ef-
fect of housing stiffness on dynamic phenomena oc-
curring in drive systems which may be important for
the modelling of electromechanical high power trans-
mission systems.

The proposed model of the toothed gear includes
housing fixed to a rigid substrate. The gear is driven
by an asynchronous electric motor the electromag-
netic moment of which is transferred by means of a
coupling onto a one-stage straight-toothed gear train.
Toothed gears are set in the middles of the shafts, the
latter being elastically supported at mounting points
of rolling bearings. The housing is coupled with the
gear train using a rolling bearing model. Each bear-
ing seat has 4 elastic damping elements of variable
stiffness assigned to it.

Resisting moment M. is applied to the gear train
output. The meshing is described by time-dependent
stiffness k (t) with account taken of play between teeth
1, and of damping between teeth b,.

The model of the gear train set in the housing is
broken down into 3 subsystems — individual shafts with
gears and the housing which interact through forces
between teeth and forces in the bearing (Fig 6). These
are internal forces in general terms. The hybrid
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method described in section 6 was applied to model
the shafts with gears, while the model of the gear train
housing was created with Ansys. Files with the reduced
matrices of inertia and stiffness were exported using
the internal APDL language of Ansys.

Two models were created to determine the ef-
fect of housing flexibility on the drive system:

- model of a toothed gear train without housing,

- model of a toothed gear train with housing.

6. Numerical computations

Numerical computations of the model of the gear
train with the housing included the determination of
displacement and speed variations in time, dynamic
interactions in kinematic pairs and electromagnetic
moment of the motor, both during start up as well as
during steady operation. Computations were carried
out on a PC computer using Ansys, MatLab and other
proprietary software written in C language. The Runge
- Kuttay - Gill method was used to solve ordinary dif-
ferential equations which describe the motion of the
model gear train with the housing.

Numerical computation results are presented in
Table and Fig 7-10.

The first step consisted of creating a simple model
of a gear train (32 degrees of freedom) and deter-
mining its characteristics. Subsequently simulation was
performed for a model of a one-stage gear train with
housing. To decrease the number of degrees of free-
dom of the drive system the number of degrees of
freedom in the housing model was reduced to 60 and
then the entire system had 82 degrees of freedom. A
simulation was performed on the adopted system. The
node displacements obtained enabled the assessment
of the effect of housing flexibility on the dynamics of
the drive system.

Fig 6. Model of a toothed gear train with housing [15]
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Frequency of free vibrations

No of free Frequency of free vibrations [Hz] for
frequency Gear train without housing Gear train with housing
1 0 0
2 481,08 413,22
3 581,14 472,84
4 581,14 559,13
5 581,14 563,63
6 658,92 568,56
7 809,64 652,00
8 2147,08 739,98
9 2147,08 809,64
10 2147,08 863,69
11 2147,08 913,12
5 10"
120 T T T T
100 4 15
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Fig 7. Electromagnetic moment vs. angular velocity of rotor
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Fig 8. Force between teeth vs. time in a system with a
housing

Fig 9. Displacement of node 2 on the shaft and of corre-
sponding node 9 on the housing along z axis vs. time
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Fig 10. Identified frequency spectra in node 9 (on the
housing) of the system with a housing along z axis corre-
sponding to free vibration frequencies f2=413.22Hz,
f3=472.84Hz, f4=559.13Hz, {5=568.56Hz, {7=652Hz and
8=739.98Hz
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7. Conclusions

This paper presented a method of modelling elec-
tromechanical systems as a drive system of high power
machines. Each model developed consists of a me-
chanical part and an electrical part coupled by means
of angular velocity of the rotor of the drive motor and
by an electromechanical moment.

The model of the mechanical system is described
using the finite element method which takes into ac-
count elements with continuously and discretely dis-
tributed mass. This model forms a kinematic chain with
kinematic pairs which take into account nonlinearities
ensuing from physical and kinematic links in bearings,
meshing and couplings. This model also takes into ac-
count gyroscopic effects in rotating elements.

A model of the housing of a gear train was de-
veloped with the use of the finite element method.
Subsequently the number of its degrees of freedom
was reduced which resulted in considerable shorten-
ing of the time taken by numeric computations of the
entire drive system coupled with the housing.

The numerical computations performed for such
amodel of an electromechanical system indicate that
in transient states (start-up, sudden change in load,
etc.) generalised forces of the magnitude much higher
than nominal are generated in kinematic pairs of the
system. The comparison of the spectra obtained indi-
cates that when the housing is not taken into account
in the computation of the dynamics of systems con-
sisting of toothed gear trains, the vibration frequen-
cies of the housing do not occur. When the gear train
operates near the resonance frequency, these frequen-
cies can have a decisive effect on dynamic forces in
kinematic pairs of the drive system.

The developed dynamic model of the drive sys-
tem and computation algorithms are of general na-
ture and can be applied in the analysis of any electro-
mechanical system with the possibility of imposing
arbitrary initial-boundary conditions and various fail-
ure states.

The obtained amplitude-frequency characteris-
tics enable the determination of parameters for diag-
nostic assessment and the data required for strength
and fatigue calculations of the components of a drive
system.

Undesired phenomena in coupled electrome-
chanical systems occur particularly often in transient
and resonant states. Therefore complex dynamic
models comprising mechanical and electromagnetic
parts are created to enable the analysis of such sys-
tems. In the case of large and complex electromechani-
cal systems the condensation of the system is an ad-
visable procedure. The reduction of the number of
degrees of freedom of the model enables faster static
and dynamic analysis.

The developed computer software can be applied
in the design and construction process of drive sys-
tems in machines when the effect of housing stiffness
on dynamic characteristics of the system has to be
taken into account. The analysis of the investigations
performed and the evaluation of numerical compu-
tation results obtained indicate that further research
is required in the field of:

- optimal selection of dynamic features of the
model system,

- inclusion in the mechanical system model the
effects of dissipation energy, particularly in the mesh-
ing,

- further development of electromechanical mod-
els that take into account nonlinear phenomena in
the meshing,

- further development of algorithms of optimising
dynamic features of drive systems of machines.
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