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Abstract. The paper contains a case study covering forecasting mechanical effects of an explosion which can be 
generated during a road accident. It illustrates a practical application of the simulation-based procedure devel-
oped for such forecasting in the first part of the paper. The case study reveals the amount and character of the 
knowledge necessary to carry out this forecasting. Its final result is a probabilistic model describing likelihood 
of occurrence of accidental explosion as well as characteristics of the incident blast wave generated by this ex-
plosion. The accident simulation is based on the classical Bayesian approach to risk assessment. The case study 
described in the paper shows how to formulate the initial knowledge in line with this approach. Particular atten-
tion has been given to handling subjective information (expert opinions) within the problem under analysis. It is 
shown that this information is indispensable for dealing with the sparseness of hard experience data on most of 
the phenomena leading to an accidental explosion. The stochastic simulation demonstrated in the paper serves 
the purpose of propagating uncertainties related to these phenomena. The probabilistic action model describ-
ing the potential explosion takes account of these uncertainties. 

Keywords: road accident, collision, explosion, aleatory uncertainty, epistemic uncertainty, simulation, nested 
loop. 

 

 

1. Introduction 

This paper illustrates the theoretical discussion 
about the simulation-based forecasting mechanical 
effects of accidental explosions which can occur dur-
ing a road transportation of explosive goods and 
materials (see the fist part of the paper [1]). The 
present, second part of the paper describes a practi-
cal application of the procedure proposed to deal 
with uncertainties related to the mechanical effects 
of the explosions. The main objective of the second 
part is to demonstrate the complexity of the simula-
tion used to predict the explosion effects. 

The paper presents a case study which considers 
an accident on the road triggered off by a collision of 
two vehicles. The case study reveals the amount and 
character of knowledge necessary to carry out the 
accident simulation. This knowledge is utilised by 
following the theoretical concepts embodied in the 
classical Bayesian approach to risk analysis. It under-
lies the accident simulation. Results of this simula-
tion are also expressed in line with that approach. 
According to it, expert opinions (subjective knowl-
edge) make up much of input information used to 
the simulation. The case study demonstrates that a 

part of input information can be purely subjective if 
the knowledge in the form of hard experience data is 
not available for the analyst. It is shown how to in-
troduce subjective information in the final result of 
the simulation, namely, a probabilistic model de-
scribing the mechanical effects of the accidental 
explosion. 

The second part of the paper applies concepts, 
symbols, and abbreviations introduced in the first 
part [1]. Therefore, an explanation is given only to 
those mathematical symbols and abbreviations which 
are introduced in the second part. 

2. The situation under analysis 

The simulation-based procedure suggested in 
the first part of the paper for selecting the pam 

)(xXFr  will be illustrated by considering a situation 

shown in Fig 1. The pam )(xXFr  is to be selected to 

describe peak positive overpressure x1, positive im-
pulse x2, and angle in incidence x3 of an incident 
blast wave which can be generated by AE. This can 

occur on a 150 m × 10 m road segment and can be 
triggered off by a collision of vehicle carrying explo-
sives (vehicle A) with another vehicle (vehicle B). 



E. R. Vaidogas / TRANSPORT – 2006, Vol XXI, No 4, 231–238 232 

The three characteristics of the incident blast wave 

are to be estimated for the point “Φ” on the facade 

of the building shown in Fig 1. The pam )(xXFr  is 

intended for using it for the estimation of the dam-
age to this building. 

The situation of exposure to AE shown in Fig 1 
can be extended with relative ease to other geomet-
ric designs of roadways. As for the source of explo-
sion, the case study describes a specific situation, in 
which effects of the distant explosion can be pre-
dicted by adapting mathematical models developed 
for TNT explosive. However, models are available 
for other types of military and commercial explosives 
as well as other types of blasts, say, gaseous explo-
sions (see [2–4] and the references cited therein). 

The model )(xXFr  chosen in the case study for the 

façade point “Φ” shown is of general character and 
can be applied to further assessment of potential 
damage, depending on the configuration and struc-
ture the exposed building. 

 
 

z20, m

40 m

l 3 =
 1

10
 m

l 2 =
 1

0 
m

l 1 =
 3

0 
m

15
0 

m

z10, m

10 m

75
 m

36 m

Explosion standoff  z
23,j  = m

11 (z
1j  | θ

1l )

x3j

Exp
los

ion
 st

an
do

ff  
z 23, j+

1
 =

 m 11
(z 1, j+

1
 | θ 1l

)

Incident blast wave
with characteristics xj

Centre of explosion with
the charge weight z13,j

Centre of explosion with
the charge weight z13, j+1

Building exposed to
accidental explosion

Incident blast  wave
with characteristics xj+1

x3, j+1

“Φ”

0

15°

z 10
j

z20j

z 10
, j

+1

z20, j+1
 

 

Fig 1. Situation of accident involving a collision of two 
vehicles and explosion in consequence of vehicular impact 

(the situation corresponds to the jth and (j+1)th  
repetitions of the nested loop and lth repetition  

of the outer loop) 

3. Modelling physical phenomena leading to an  

accident on the road 

3.1. Modelling the collision of vehicles 

The model ),|( 0000 pM θz  describes the initiat-

ing event E0 (the collision of vehicles, Fig 2 in [1]). It 
is used to express an aleatory uncertainty related to 

E0 and given by the set )}|(,{ 0000 θzFp . In this set, 

)|( 000 θzF  is the joint cdf defined as a product of 

marginal cdf’s )|( 000 iiZ zF
i

θ  with the parameter vec-

tors 0iθ  (i = 1, 2, … , 6), where Zi0 are rv’s used to 

model the aleatory uncertainty in collision character-

istics (components of 0z ). 

The arguments of ),|( 0000 pM θz  are 0z  = (z10, 

z20, … , z60)
T, where z10 and z20 is the collision coordi-

nates (m), see Fig 1; z30 is the speed of vehicle A at a 
collision moment (m/s); z40 is the speed of vehicle B at 
the collision moment (m/s); z50 is the mass of vehicle 
B (kg); z60 is the mass of the explosive in vehicle A 
(charge mass) (kg). Pd’s expressing the aleatory un-
certainty in components of z0 are specified in Table 1. 

The uncertainty in the collision frequency p0 is 
expressed by a rv P0. In principle, an epistemic pd of 
P0 can be selected by developing a fault tree for the 
“top event” E0. This tree diagram could trace back 
the causes of E0 (e.g. [5]). A quantitative analysis of 
the fault tree in the framework of CBA can yield an 

epistemic pd of P0, that is, the cdf )|(
00 0 PP pF θ  [6]. 

However, a “full-scale” fault tree analysis in line 
with CBA could take a great deal of space and is 
beyond the scope of the present paper. Here it is 
simply assumed that P0 has a gamma distribution 
with the parameter vector (alpha and beta) 

0Pθ  = (2, 10 year), that is, 10)(2,0 GP ~  (the mean, 

mode and standard deviation of P0 are equal to 

0.2 year−1, 0.1 year−1, and 0.1414 year−1, respectively). 

Uncertainty in components of 60θ  is expressed by 

the random vector T),( 60,260,160 ΘΘ=Θ  with the joint 

cdf )( 6060
θΘF  given by the marginal cdf’s 

)|(
0,60,6 0,6 ii iF ΘΘ θ θ  (i = 1, 2). Epistemic pd’s of 60,1Θ  

and 60,2Θ  are specified in Table 2. 

Components of z0 serve as input variables of the 

subsequent models )|( 111 θzm  and )|( 333 θzm . The 

rv’s Zi0 (i = 1, 2, … , 7) are assumed to be independent 
ones only for simplicity’s sake. The pd’s of Zi0s were 
chosen hypothetically. Assigning and updating the 

)|(
00 0 PP pF θ  and )( 6060

θΘF  is considered in Appendix. 

The jth simulation of accident starts with sam-

pling the value z0j from cdf )|( 000 lF θz , where l0θ  is 

the value of 0θ  sampled in the lth repetition of the 

outer loop (Fig 2 in [1]). 
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3.2. Modelling the exceedance of the tolerable value 

of collision energy 

The model )|( 111 θzm  is related to a possible ex-

ceedance of the tolerable value of collision energy 
which can lead to an explosion in vehicle A. The 
exceedance is represented by the re E1 (Figs 1 and 2 

in [1]). )|( 111 θzm  is used to decide whether the colli-

sion energy is sufficient to damage a container with 
the explosive charge and trigger off the explosion as 
well as to compute standoff of the explosion (Fig 1). 

Model input is expressed as z1 = (z11, z21, … , z61)
T, 

where z11 and z21 are the collision coordinates (m); z31 
and z41 are the velocities of vehicles A and B at the 

collision moment (m/s); z51 and z61 are the masses of 
vehicles A and B (kg). Values of arguments of the 

preceding model ),|( 0000 pM θz  are assigned to com-

ponents of z1 as follows: 4)3,2,1,(01 == izz ii ; 

6051 kg6000 zz += ; z61 = z50. Here the value 6000 kg 

is the mass of vehicle A without the load of explosive. 

Model output is given by the vector m1 = (m11, 
m21, m31)

T, where m11 is the standoff (m); m21 is the 
collision energy (kg m2/s2); m31 is the difference be-
tween the collision energy and a “threshold” energy 
value which can be tolerated by vehicle A without 
leading to an explosion (kg m2/s2). 

The structure of )|( 111 θzm  is as follows: 

Table 1. Variables expressing aleatory uncertainty in characteristics of the vehicular collision (initiating event E0) 

Variable Probability distribution Distribution parameters/Comments 
Z10 Combined U(0; li)

a) in the ranges [0; li] (i = 1, 2, 3; Fig 1) with the discrete probabilities 
{P(0 < Z10 ≤ 30) = 0,15; P(30 < Z10 ≤ 40) = 0,4; P(40<Z10 ≤ 150) = 0,45} 

Z20 U(0; 30) θ20 = (0 m; 10 m)T 
Z30 N(13,9; 17,4)b) θ30 = (13,9 m/s; 17,4 (m/s)2)T 
Z40 N(±22,2; 30,9) θ40 = (±22,2 m/s; 30,9 (m/s)2)T (“+” and “–” stand for velocity at frontal and rear-end colli-

sion, respectively) 
Z50 L(7,8044; 0,19804)c) θ50 = (7,8044; 0,19804)T (mean and standard deviation are 2500 kg of 500 kg) 
Z60 Discrete θ60 is not used in the explicit form; Z60 is a discrete rv distributed over 15 kg, 25 kg and 

40 kg with the probabilities {P(Z60 = 15 = 0,3, P(Z60 = 25) = 0,3, P(Z60 = 40) = 0,4} 
a) U = uniform distribution; b) N = normal distribution; c) L = lognormal distribution 

 
Table 2. Probability distributions quantifying epistemic uncertainty in the parameters of the models used to the accident 
simulation 

Parameter Probability distribution Distribution parameters/Comments 
Distributions of parameters related to the model ),|( 0000 pM θz  

Θ1,60 Be(25; 50)a) 
0,61Θθ = (25; 50)T (beta distribution with alpha = 25 and beta = 50; Z60 is dimensionless) 

Θ2,60 Ex(140)b) 
0,62Θθ = (140) (exponential distribution with the mean of 0,00714; Z60 is dimensionless) 

Distributions of parameters related to the model )|( 111 θzm  
Θ11 N(6;1) 

11Θθ = (6 kg m2/s2; 1 (kg m2/s2)2)T 

1
21
−Θ  G(20; 19)c) 

21Θθ = (20; 19 (kg m2/s2)2)T (gamma distribution with the mean of 1,05 (kg m2/s2)–2, mode 

of 1,05 (kg m2/s2)–2, and standard deviation of 0,235 (kg m2/s2)–2) 
Θ31 Be(10; 20) 

31Θθ  = (10; 20)T (beta distribution with alpha = 10 and beta = 20) 

Distributions of parameters related to the model )|( 222 θzm  
Θ12 N(700×103; 4,9×109) 

12Θθ = (700×103 kg m2/s2; 4,9×109 (kg m2/s2)2)T 

Θ22 N(7×104; 12,25×106) 
22Θθ = (7×104 kg m2/s2; 12,25×106 (kg m2/s2)2)T 

Distributions of parameters of the model )|( 333 θzm  
Θ13 N(−0,125; 1,56×10−4) 

13Θθ = (−0,125; 1,56×10−4)T (the parent variable Π ′′  is dimensionless quantity) 

Θ23 G(15; 0,6) 
23Θθ = (15; 0,6)T (the parent variable Π ′′  is dimensionless quantity) 

Θ33 N(−0,159; 2,53×10−4) 
33Θθ = (−0,159; 2,53×10−4)T (the parent variable Π ′′′  is dimensionless quantity) 

Θ43 N(15; 0,6) 
43Θθ = (15; 0,6)T (the parent variable Π ′′′  is dimensionless quantity) 

Θ53 N(0,1; 1,0×10−4) 
53Θθ = (0,1 MPa m/kg1/3; 1,0×10−4 (MPa m/kg1/3)2)T 

Θ63 N(0,43; 1,6×10−3) 
63Θθ = (0,43 MPa m2/kg2/3; 1,6×10−3(MPa m2/kg2/3)2)T 

Θ73 N(1,4; 2,25×10−2) 
73Θθ = (1,4 MPa m3/kg; 2,25×10−2(MPa m3/kg)2)T 

Θ83 N(6,3; 0,36) 
83Θθ = (6,3 MPa s/(m kg2/3); 0,36 (MPa s/(m kg2/3))2)T 

a) Be = beta distribution; b) Ex = exponential distribution; c) G = gamma distribution 
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where θ ′  is the “threshold” energy value (kg m2/s2); 

),|( 2111 θθθΘ ′′F  is the cdf of rv Θ ′  used to model an 

aleatory uncertainty in θ ′ ; θ31 is the dimensionless 

parameter expressing a mechanical behaviour of vehi-

cles A and B at the collision (0 ≤ θ31 ≤ 1; if θ31 = 0, the 
vehicles are considered perfectly plastic bodies; if 

θ31 = 1, the vehicles are considered perfectly elastic 

bodies). It is assumed that )10( 5−×′Θ  ~ ),( 2111 θθN , 

where 11θ  and 21θ  are the mean and variance of a 

normal pd, respectively. Components of 1θ  = 

T),( 21θθ11  are considered to be uncertain in the epis-

temic sense. Uncertainty in 1θ  is expressed by the 

random vector T),,( 3121 ΘΘΘ111 =Θ  with the joint 

c.d.f )( 11
θΘF  given by the marginal cdf’s )|(

11 1 ii iF ΘΘ θ θ  

(i = 1, 2, 3). Epistemic pd’s of 11Θ  to 31Θ  are speci-

fied in Table 2. 

The model component )|( 1131 θzm  is used to 

decide which of the events E1 or E1  will occur: 
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where j1z  and jθ ′  are the values of 1z  and θ ′ , re-

spectively, used in the jth repetition of the nested 

loop; l1θ  is a value of 1θ  sampled from the cdf 

)|( 1′ ′ θθΘF  in the lth repetition of the outer loop. The 

value j1z  is obtained by sampling from the model 

),|( 0000 pM θz . 

The model )|( 111 θzm  is underpinned by the fol-

lowing assumptions made for the sake of simplicity: 
(i) Frontal and rear-end collision of vehicles A and B 
is possible in the segments l1 and l3 (Fig 1); the condi-
tional probabilities of the frontal and rear-end impact 
given a collision are 0,4 and 0,6, respectively; 
(ii) Collision of vehicles A and B at right angle is pos-
sible in the segment l2 in addition to the frontal and 
rear-end collision; the conditional probabilities of all 
three types of impact given a collision are 0,5, 0,2, and 
0,3, respectively; the energy of the side impact by the 
vehicle B is determined by mass and velocity of this 
vehicle. 

The conditional probabilities assumed above 
should be considered elements of one of the models 

),|( 0000 pM θz  or )|( 111 θzm . In the context of CBA 

these probabilities should be treated as measures of 
aleatory uncertainty. In principle, measures of epis-
temic uncertainty can be assigned to them; however, 
this is not done in the present case study for brevity. 

The expression of the collision energy, )( 121 zm , was 

adopted from [7, 8]. The normal pd of Θ ′  was chosen 

hypothetically. Assigning and updating the pd repre-

sented by cdf )( 11
θΘF  is considered in Appendix. 

3.3. Modelling the explosion of the charge in vehicle 

The explosion in vehicle A is represented by the 

re E2 (see Figs 1 and 2 in [1]). The model )|( 222 θzm  

serves for a simulation of the occurrence or non-

occurrence of E2. In particular, )|( 222 θzm  is used to 

decide whether the collision energy, when it exceeds 
the safe “threshold” value, will cause the explosion. 

Model input is represented by the collision en-
ergy z2 (kg m2/s2). Values of z2 are assigned by 

z2 = )( 121 zm . Model output is an auxiliary dimen-

sionless variable m2 used in the decision rule related 

to )|( 222 θzm . The structure )|( 222 θzm  is: 
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where u is an auxiliary variable uniformly distributed 

over the interval ]0; 1[; )|( 2222 θzF  is the fragility 

function (cdf of a normal pd with the parameter vec-

tor 2θ ); the parameter θ  models an explosion prob-

ability. The output variable m2 models an occurrence 
or non-occurrence of the explosion; m2 can take on 

values 1 (event E2 occurs) or 0 (event E2  occurs). 

Components of 2θ  are considered to be uncer-

tain in the epistemic sense. Uncertainty in 2θ  is ex-

pressed by the random vector T),( 22122 ΘΘ=Θ  with 

the joint cdf )( 22
θΘF  expressed as a product of the 

marginal cdf’s )|(
22 2 ii iF ΘΘ θ θ  (i = 1, 2). Epistemic 

pd’s of 12Θ  and 22Θ  are specified in Table 2. 

The value )|( 222 ljzm θ  is used to decide which 

of the events E2 or E2  will take place: 
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where z2j is the jth collision energy value; uj is the jth 
value of u sampled from the uniform pd U(0, 1); and 

l2θ  is the value of 2θ  sampled in the lth repetition of 

the outer loop. 

The model )|( 222 πzm  is underpinned by the as-

sumption that an exceedance of the “threshold” en-

ergy valueθ ′  used in the model )|( 111 θzm  does not 

necessarily cause an explosion of the charge in vehi-
cle A. However, the probability of such an explosion, 
θ , is the higher the larger is the collision energy z2. 

The cdf of a normal pd was chosen as the fragility 

function )|( 2222 θzF  hypothetically. Assigning and 

updating the cdf )( 22
θΘF  is considered in Appendix. 
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3.4. Modelling used to predict characteristics of the 

incident blast wave 

The model )|( 333 θzm  serves for predicting 

characteristics of the incident blast wave represented 
by the vector x (Fig 1). This model is used to relate 
the charge mass and position of explosion centre to x. 

Input )|( 333 θzm , is represented by 3z  = (z13, 

z23, z33, z43)
T, where z13 and z23 are the charge mass 

(kg) and standoff (m), respectively; z33 and z43 are 
the coordinates of explosion centre. Values are as-

signed to components of 3z  by the expressions 

6013 zz = , )( 11123 zmz = , 1033 zz = , and 2043 zz = . 

Model output is given by the vector m3 = (m13, m23, 
m33)

T, the components of which are peak positive 
overpressure (MPa) positive impulse (MPa s/m2), 
and angle of incidence (degrees), respectively. In 
terms of the notation used in Sec. 4 of the first part 

of this paper, 131 mx = , 232 mx =  and 333 mx =  [1]. 

The model )|( 333 θzm  has the following struc-

ture: 
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where ′′π and ′′′π  are the dimensionless adjustment 

factors (relative overpressure and relative impulse of 
the explosive in vehicle A compared to an equivalent 

weight of TNT explosive); ),,|( 736353313 θθθzm′  and 

)|( 83323 θzm′  are the models relating components of 

3z  to the overpressure and impulse of TNT explo-

sion, respectively; ),|(ln 2313ln θθπΠ ′′′′F  and 

),|(ln 4333ln πππΠ ′′′′′′F  are the cdf’s expressing an alea-

tory uncertainty in logarithms of the factors 

′′π and ′′′π . The rv’s ′′Π  and ′′′Π  are used to model 

the aleatory uncertainty: ln ′′Π  ~ ),( 2313 θθN  (a nor-

mal distribution with an uncertain mean 13θ  and vari-

ance 23θ ); ln ′′′Π  ~ ),( 4333 θθN  (a normal distribu-

tion with an uncertain mean 33θ  and variance 43θ ). 

Components of 3θ  (distribution parameters 

θ13, θ23, θ33, θ43 and regression parameters θ53, θ63, 

θ73, θ83) are considered to be uncertain in the epis-

temic sense. Uncertainty in 3θ  is expressed by the 

random vector 3Θ  = T) , ... ,,( 83233 ΘΘΘ1  with the 

joint cdf )( 33
θΘF  defined through the marginal cdf’s 

)|(
33 3 ii iF ΘΘ θ θ  (i = 1, 2, … , 8). Pd’s of components 

of 3Θ  are specified in Table 2. 

The models ),,|( 736353313 θθθzm′  and )|( 83323 θzm′  

were adopted from [9]. The lognormal pd’s of the 

random adjustment factors ′′Π and ′′′Π  were cho-
sen hypothetically. Deterministic values of these 
factors suitable to an adjustment of the TNT models 

),,|( 736353313 θθθzm′  and )|( 83323 θzm′  can be found, 

e.g., in [10]. Assigning and updating the cdf )( 33
θΘF  

is considered in Appendix. 

4. The process and results of accident simulation 

The accident on the road was simulated with 
np = 300 and n0 = 1000. The simulation generated a 

sample of frequencies, 00 /nnp all  (l = 1, 2, … , 300), 

and samples of action characteristics, lx  (l = 1, 2, 

… , 300). Descriptive measures of the samples con-

sisting of the values nal and 00 /nnp all  are given in 

Table 3. A gamma distribution with the parameter 

vector aθ  = (1,341; 19,69 year) can be fitted to the 

sample 00 /nnp all  (l = 1, 2, … , 300) as cdf 

)|(
aa PaP pF θ  (Fig 2 a). This distribution expresses the 

epistemic uncertainty in the explosion frequency pa. 

 
Table 3. Descriptive measures of samples related to the 

likelihood of occurrence of accidental explosion on the 

road 

Descriptive 
measure 

Sample nal 
(l = 1, … , 300) 

Sample 00 /nnp all
 (l = 1, 

… , 300; n0 = 1000) 
Mean 338 0.0682 year–1 
Coefficient 
of variables 

0,486 % 0,873 % 

Minimum 4 0,465×10−3 year–1 
Maximum 731 0,3778 year–1 
Skewness 0,147 1,83 
Kurtosis – 0,729 4,72 

 
 
 

The cdf’s )|( xii
F θxX  (i = 1, 2, 3) can be chosen 

by applying the heuristic procedure suggested in 
[11, 12]. This procedure requires to preset number n 
and probabilistic weights pi (i = 1, 2, … , n) in ad-
vance. In the present case study, it is assumed that 
n = 3 and p1 = p3 = 0,3, p2 = 0,4. With these values, 

the samples lx  (l = 1, 2, … , 300) were grouped in 

three clusters ix′
 (i = 1, 2, 3) with descriptive meas-

ures given in Tables 4 and 5. Fig 2 b, c, d shows three  
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Table 4. Descriptive measures of the clusters ix′  obtained by grouping the simulated samples lx  (i = 1, 2, 3) 

No. of 
cluster i 

Weight 
pi 

Size of 
cluster nci 

Mean of 
cluster 

Coef. of 
var. (%) 

Skewness Kurtosis Min Max 

Simulated values of the initial overpressure X1 (MPa) 
1 0,3 37 258 8,90×10−3 47,2 1,35 2,40 1,85×10−3 35,1×10−3 
2 0,4 36 444 7,58×10−3 44,5 1,26 1,72 1,78×10−3 25,0×10−3 
3 0,3 27 723 6,82×10−3 47,4 1,42 2,75 1,70×10−3 27,6×10−3 

Simulated values of the initial impulse X2 (MPa s/m2) 
1 0,3 37 258 1,231 46,1 1,11 1,544 0,264 4,499 
2 0,4 36 444 1,007 41,2 0,927 0,754 0,263 2,929 
3 0,3 27 723 0,908 42,6 1,03 1,201 0,238 2,927 

Simulated values of the angle of incidence X3 (degrees) 
1 0,3 37 258 43,94 44,9 0,156 – 0,360 0,00409 85,8 
2 0,4 36 444 43,82 45,2 0,160 – 0,374 0,00013 85,7 
3 0,3 27 723 43,03 45,8 0,170 – 0,310 0,01393 85,8 

 

Table 5. Correlation matrices of the components constituting the clusters ix′  (i = 1, 2, 3) 

No. of cluster i 1 2 3 

Correlation matrix 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−

10,4210,533

0,42110,609

0,5330,6091
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−

10,4680,568

0,46810,846

0,5680,8461
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−

10,4380,529

0,43810,725

0,5290,7251
 

 

   
                                           (a)                                                                                            (b) 

   
(c) (d) 

Fig 2. Diagrams showing results obtained by a simulation of accident on the road: (a) fitting a gamma distribution used to 
express epistemic uncertainty in the frequency of explosion; (b)…(d) scatter diagrams of the simulated characteristics of 

the incident blast wave, x1, x2, and x3, drawn for the second cluster 2x′  
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scatter diagrams of the second cluster 2x′ . The size 

of the second cluster, nc2, (number of points in the 

diagrams (b) to (d) given in Fig 2) is equal to 36 444 

(see Table 4). Scatter diagrams of 1x′  and 3x′  are 

similar to the ones shown in Fig 2. 

From Table 5 and Fig 2 it may be deduced that 

there exists relatively complicated dependence between 

the blast wave characteristics Xi (i = 1, 2, 3). Thus fit-

ting a widely known three-dimensional pd to the clus-

ters ix′
 (i = 1, 2, 3) is problematic. In theory, one can 

apply complicated transformations of ix′  in order to 

make fitting a standard distribution possible [11]. 

However, it is not always possible to set up such trans-

formations.  

A simple, practical alternative to the formal fit-

ting cdf’s )|( xii
F θxX  to the clusters ix′  is describing 

them by empirical distribution functions )(xˆ
iF . 

They can represent corresponding clusters ix′  with 

reasonable accuracy and so can replace cdf’s 

)|( xii
F θxX  in the action model defined by Equation 

given in the first part of the paper [1]. The result of 
such a substitution will be the model: 

 0,3),),((),|({)( 1 xˆxX FpFFr
αaPa

θ=   

           0,3)}),((0,4),),(( 32 xˆxˆ FF . (1) 

The pam )(xXFr  defined by Equation can be 

considered a result of uncertainty propagation. The 
“lower-level” aleatory uncertainties in characteristics 
of the initiating event E0 are transformed into the 
“higher-level” aleatory uncertainties in the compo-
nents of x. The “lower-level” uncertainties are quan-

tified by cdf )|( 000 θzF , whereas the “higher-level” 

uncertainties are expressed by the family of empiri-

cal cdf’s )(xˆ
iF  (i = 1, 2, 3). At the same time, the 

“lower-level” epistemic uncertainties related to the 

models ),|( 0000 pM θz , )|( 111 πzm , )|( 222 πzm , and 

)|( 333 πzm  are transformed into the “higher-level” 

distributions pi (i = 1, 2, 3) and )|(
aa PaP pF θ . 

This case study served only illustrative pur-
poses. Therefore input information expressed by 

pd’s related to ),|( 0000 pM θz , )|( 111 πzm , 

)|( 222 πzm , and )|( 333 πzm  is hypothetical. In prac-

tice, the selection of the pam )(xXFr  would require 

collecting hard data and eliciting expert judgements. 
On the other hand, the present case study may be 
considered to be a useful intermediate result. It pro-
vides a list of physical variables and model parame-
ters for which initial information is to be obtained in 
order to specify probability distributions used as 

input in the problem of selecting )(xXFr . 

5. Conclusions 

This paper illustrated an application of the 

simulation-based procedure developed for forecast-

ing mechanical effects of accidental explosions on 

the road [1]. The form of this forecasting was a 

probabilistic model selected for actions induced by 

an accidental explosion (AE). It was suggested to fit 

the model to the multi-dimensional statistical sam-

ples generated during a stochastic simulation of ac-

cident involving AE. This simulation was applied to 

propagating of uncertainties in the physical phe-

nomena leading to an occurrence of AE. 

The simulation was based on the classical Bayes-

ian approach to the quantitative risk assessment. Its 

final  result  (the probabilistic action model) was for-

mulated in line with this approach and expressed the 

aleatory and epistemic uncertainties related to char-

acteristics of the incident blast wave generated by AE. 

The main message which can be concluded 

from the case study described above is that a rela-

tively large amount of knowledge is necessary for 

selecting probabilistic action model for AE. In addi-

tion, subjective information (expert opinions) may 

play a substantial role in input information used for 

the accident simulation. The classical Bayesian ap-

proach provides mathematical means for expressing 

this information in the form of prior (posterior) 

probability distributions. The case study gave recipes 

how to handle them in light of predicting actions 

induced by AEs. It was found that the number of 

prior distributions to be specified is not too high. 

An intermediate result of modelling the road ac-

cident involving AE was a large number of statistical 

samples generated by means of the stochastic simula-

tion. A classification of these samples was applied to 

select the action model in the form of a family of prob-

ability distributions expressing both aleatory and epis-

temic uncertainty. This model can be updated if new 

information becomes available. The number of simula-

tions (Monte Carlo trials) used to generate the afore-

mentioned samples was relatively low. 

In view of the structural engineering, the model 

describing effects of AEs is an intermediate result 

characterising the incident blast wave. To carry out 

the assessment of damage from AE, this model must 

be transformed into one which describes blast wave 

reflected by the specific exposed building. However, 

such a transformation is not directly related to the 

problem of transportation of hazardous materials. 

Therefore it was beyond the scope of the case study 

presented in the second part of this paper. 
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Appendix. Assigning and updating the epistemic uncertainty distributions used in the case study 

Epistemic cdf )|(
00 0 PP pF θ  of parameters 

0Pθ  of ),|( 0000 pM θz  
New data: E = {r collisions in the time interval [0, t]} 
Updating prior: for the alpha parameter, rPP +=′

00 11 θθ ; for the beta parameter, tPP +=′
00 22 θθ  

Constructing prior: constructing the prior distribution for 
0Pθ  is considered e.g. in [13] 

Epistemic cdf )( 6060
θΘF  of parameters 60θ  of cdf )( 606060

θ|zFZ  
New data: E = {z60,i, i= 1, 2, …}, where z60,i = value of Z60 obtained from the ith experiment (collision) 
Updating prior: posterior distributions must be evaluated numerically using the Bayes formula for density updating 
Constructing prior: constraints on the distribution moments, 0<θ1,60<1 and 0<θ2,60<0.25, allow to apply the maximum-entropy 
method to assigning the prior density )( 6060

θΘf  [13] 

Epistemic c..d.f. )( 22
θΘF  of parameters components of 2θ  of cdf )|( 2222 θzF  

New data: E = {(z2i, )|( 22 ie zEP ), i = 1, 2, …}, where z2i = value of the collision energy z2; )|( 22 ie zEP  = estimate of the prob-
ability of explosion E2 given a collision with the energy z2i 
Updating prior: assigning and updating cdf )( 22

θΘF  can be stated as a problem of a simple linear regression analysis in the 
Bayesian setting if the pairs (z2i, )|( 22 ie zEP ), i = 1, 2, … are represented in the coordinate system of a normal probability 
graph paper; the components of 2θ  can be expressed as functions of uncertain linear regression parameters and the prior 

)( 22
θΘF  improved by updating these regression parameters, see e.g. [14] for updating priors of regression parameters 

Constructing prior: see [14] for assigning priors to parameters of linear regression models; see also [15]for estimating fragility 
functions from expert opinions 

Epistemic cdf’s )|(
11 1 ii iF ΘΘ θ θ  (i = 1, 2), )|(

33 3 ii iF ΘΘ θ θ  (i = 1, 2, 3, 4) of the respective parameters 
θ11, θ21, θ13, θ23, θ33, θ43 of )|( 111 θzm  and )|( 333 θzm  

New data: E′ ={ iπ ′ , i = 1, 2, …}, E ′′ ={ iπ ′′ln , i = 1, 2, …}, E ′′′ ={ iπ ′′′ln , i = 1, 2, …}, where iπ ′ = experimental value of the 
tolerable energy of collision; iπ ′′  and iπ ′′′  = experimental values of relative overpressure and relative impulse 
Updating prior: procedures developed for updating priors of mean and variance (precision) of a normal pd allow expressing 
posterior distributions in closed form, see e.g. [14] 
Constructing prior: see prior constructing procedures given in [14] 

Epistemic cdf’s )|(
33 3 ii iF ΘΘ θ θ  (i = 5, 6, 7, 8) of the respective parameters π53, π63, π73, π83 of )|( 333 θzm  

New data: E′ ={( +
ip , z13,i, z23,i), i = 1, 2, …}, E ′′ ={( i

+ι , z13,i, z23,i), i = 1, 2, …}, where +
ip  and i

+ι  = values of the positive 
overpressure and positive impulse measured in the ith experiment, respectively; z13,i and z23,i = mass and standoff of explosive 
charge used in the ith experiment, respectively 
Updating prior: θ53, θ63, θ73, and θ83 are parameters of the nonlinear, multiple regression models )|( 313 ⋅′ zm  and )|( 323 ⋅′ zm ; to 
the best of our knowledge posterior distributions of these parameters can not be expressed in closed form and, moreover, prac-
tical procedures of numerical updating priors of θ53, θ63, θ73, and θ83 specifically and parameters of nonlinear regression mod-
els generally are still to be developed 
Constructing prior: the cdf’s )|(

33 3 ii iF ΘΘ θ θ  (i = 5, 6, 7, 8) were chosen by assigning normal distributions to respective regres-
sion parameters; mean values of these distributions were chosen to be equal to values of conventional least squares estimates 
of θ53, θ63, θ73, and θ83 given in [9] 




