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Abstract. This paper illustrates how cost-constrained optimization based on a set of real lightweighting and power-
train efficiency options can be used to guide decision-making for automotive manufacturers. The paper provides a 
method for answering the question posed by Original Equipment Manufacturers (OEMs): ‘given a maximum amount 
additional cost which can be passed on to consumers for fuel-saving technology with uncertain manufacturing cost, 
to what degree should it be spent on lightweighting versus powertrain efficiency improving technology’. The optimiza-
tion is formulated as a 0–1 knapsack problem, and dynamic programming is used to find the global optimum technol-
ogy combination at various levels of maximum up-front technology cost. This paper builds on previous work, which 
showed that for continuous marginal cost functions under uncertainty, a decision heuristic to either implement light-
weighting technology or efficiency technology but not both under cost constraints was preferable. This work extends 
that result to provide more quantitative strategies for dealing with uncertainty, and finds that, despite uncertainty, op-
timum lightweighting and efficiency technology selections can be made for the real discrete cases studied. It is found 
that while the optimum efficiency technology set is highly sensitive to the up-front cost a consumer is willing to pay 
for future operational savings, lightweighting options are often selected preferentially to efficiency reduction measures. 
In the same sense, although both technologies are very sensitive to discount rate, lightweighting technologies are less 
sensitive. Fully hybridized vehicles emerge as a robust option, and, surprisingly, rank highly together with fully electric 
powertrains. 
Keywords: cost; fuel consumption; models and algorithms; uncertainty; optimization; lightweighting; powertrain ef-
ficiency; strategy development.

Introduction

Auto manufacturers are facing pressures to improve 
vehicle fuel efficiency, and can turn to reducing vehi-
cle weight or implementing efficiency technologies like 
downsizing/turbo-charging or electrification to meet 
targets. Determining the optimal combination of these 
technical options under cost constraints is not straight-
forward, however, and earlier work recommended sev-
eral strategies based on levels of certainty about future 
costs (Wilhelm et  al. 2012). The original work found 
that if there was substantial uncertainty regarding the 
final manufacturing costs for an advanced fuel-saving 
technology, a decision heuristic to either implement all 
available efficiency measures, or all available lightweight-
ing measures, but not both, within the cost constraints 
would be advisable. The previous work also proposed an 
optimization framework, which could be applied under 

the assumption that continuous marginal cost functions 
could be derived from inherently discrete technology 
choices. This paper examines similar questions, but em-
ploys a more realistic discrete choice optimization meth-
od, uses new and more credible technology cost data 
gleaned from real market prices and rigorous analysis, 
and presents a comprehensive uncertainty analysis. This 
paper also restricts itself to a specific vehicle platform for 
each technology measure to ensure that the cost com-
parisons can be made fairly, and therefore consists of 
theory and a relevant case study.

Manufacturers are making significant investments 
in advanced technologies to both meet consumer de-
mand for fuel efficiency (Allcott, Wozny 2012) as well as 
to meet mandated emissions targets (Klier, Linn 2012). 
There are several vehicles which have recently been put 
into limited production, such as the BMW i3 (Rams-
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brock et al. 2013) and the Volkswagen Up! (Lieberman 
2009), which demonstrate manufacturer’s willingness to 
implement a high degree of powertrain efficiency while 
simultaneously invest in technology to reduce vehicle 
weight dramatically. This investment comes at a substan-
tial cost which must be passed on to the consumer, who 
may not be willing to bear it, given what is understood 
about the willingness to pay for future fuel savings in the 
automotive market (Greene 2010a). There are of course 
some cost savings by reducing weight, for example by 
maintaining range with reduced battery capacity, but for 
the vehicles, being currently brought to market it is un-
clear whether these savings are significant.

This paper presents rigorous methods of addressing 
the question ‘given a fixed up-front amount investment 
in powertrain efficiency technology and/or vehicle light-
weighting technology under manufacturing cost uncer-
tainty, which should be chosen?’ from a manufacturer’s 
perspective. The implicit assumption made is that other 
aspects of vehicle purchase decisions such as safety, 
comfort, prestige, luggage capacity, etc. are able to be 
maintained regardless of the powertrain or lightweight-
ing technology choices made. The methods presented 
here are generally applicable to assisting Original Equip-
ment Manufacturer (OEM) decision-making under un-
certainty.

1. Technology Measures

Whereas the previous work focussed on building func-
tions to describe marginal technology costs, this paper 
examines two vehicle platforms (Ford Focus and Ford 
Fusion) as case studies, representing all of the discrete 
technology options relevant for analysing the optimal 
lightweighting and efficiency technology mix. The effi-
ciency measures are additionally assumed to be mutu-
ally exclusive (i.e. only one can be selected), whereas the 
lightweighting measures are assumed to be able to be 
implemented without any exclusions. 

1.1. Lightweighting
The 19 lightweighting technology options will be based 
on a comprehensive 2012 Environmental Protection 
Agency (EPA) study detailing the tear-down of a 2010 
midsize crossover vehicle (FEV 2012). Together with the 
null option, the optimization routine can select between 
a total of 20 weight reduction options. These include 
reducing the weight of different subsystems like the en-
gine, transmission and exhaust systems. The reported 
marginal cost of weight reduction (in $ per kg reduced) 
and the effective vehicle weight reduction is visualized 
in Fig. 1.

Appendix A tabulates all of the options, which can 
be considered by the optimization routine, and provides 
additional data about each of the technology options. 

It should be noted that no consideration of inertial 
weight effects during dynamic operation is made in this 
study.

1.2. Efficiency 
The efficiency cost estimation outlined in this section 
draws on data from 24 vehicles from the same market 
segment and 2014 model year, and examines fuel effi-
ciency technology applied. For this work, Ford model 
offerings in the US were selected to compare the costs of 
various efficiency measures on a common platform from 
a common manufacturer. All of the efficiency technolo-
gies outlined in Table 1 are applied to 2014 Ford Fusion 
variants. A constant margin factor of 1.4 was used to 
deduce the manufacturing costs from Manufacturer’s 
Suggested Retail Price (MSRP), the retail price. The au-
thors acknowledge the reality that this ignores important 
price variations which manufacturers apply when mar-
keting hybridization options, and also biases efficiency 
technology choices. It is hoped that the methods here 
can be applied to study baseline vehicles from other 
manufactures. The uncertainty in marginal cost will be 
examined in a later section, and we encourage future in-
vestigations to consider using more detailed approaches 
to estimate the marginal costs of efficiency technologies 
should more valuable data become available.

Appendix B contains all of the options which can 
be considered. The Ford Focus electric was selected as 
the Ford Fusion model is not available with an all-elec-
tric powertrain. The most substantial cost uncertainty 
exists for the electric drive vehicle, as it is highly likely 
that manufacturers are selling these vehicles with dra-
matically reduced margins or at losses to gain market 
share for this early-stage technology.

It should also be noted that the data derived from 
EPA fuel consumption testing shown in Table 1 and 
used later in this work underestimate fuel consumption, 

Fig. 1. Marginal costs and associated weight reduction 
considered (FEV 2012)
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which means that the analysis presented in this paper 
regarding lifetime fuel costs are on the conservative side. 
Real-world use will result in greater savings and hence 
greater efficiency improvements should be preferred. 
For simplicity, no correction factors were used to adjust 
test-cycle fuel consumption results.

Table 1. Marginal costs of efficiency technology based  
on MSRP with a constant 40% mark-up

Efficiency 
technology

Efficiency improvement 
relative to baseline 

[L/100 km]

Marginal 
cost [$]

Baseline (None) 0.0
Start-stop (S-S) 0.3 10.71
Downsize/turbo 
(DS/T) 0.6 567.86

Full hybrid (Full) 4.0 2389.29
Plug-in hybrid 
(Hybrid) 5.4 6417.86

Electric drive (EV) 6.8 8025.00

2. Mathematical Formulation

The sensitivity to powertrain efficiency is driven by Eq. 
(1) which was developed by Guzzella and Sciarretta 
(2015) and used extensively in the previous work by 
Wilhelm et al. to explore general trends in weight and 
efficiency trade-offs:

( )( )1
∆ = ⋅ + + ⋅∆

η
E A B C m ,  (1)

where: ΔE is the change in fuel consumption for a 
vehicle caused by the change in mass Δm over a specific 
driving cycle parameterized by A, B, and C with average 
efficiency η. Note that coefficients used in Eq. (1) ne-
glect regeneration effects present in electric drivetrains. 
Regeneration would serve to further diminish the im-
pact of mass changes on highly efficient powertrains, but 
are not considered here. 

This formula makes clear that a change in mass has 
an effect on the change in energy consumption, which 
diminishes with increasing average powertrain effi-
ciency, as shown in Fig.  2 for a 100-kg mass increase. 
In essence, the sensitivity of a vehicle to a fixed 100-kg 
increase in mass diminishes with increased powertrain 
efficiency, all other vehicle characteristics held equal. 

The observation that more efficient vehicles are 
less sensitive to changes in vehicle mass has been made 
in several previous works. Cheah et  al. (2009) found 
a relationship of 0.3  L/100  km for 100-kg weight re-
duction through powertrain simulation. Wilhelm and 
Schenler (2010) found a sensitivity of 0.6 L/100 km for 
conventional vehicles, a 0.4 L/100 km for hybrids, and 
0.2  L/100  km for electric vehicles to a 100-kg weight 
reduction from real-world fuel efficiency data, consist-
ent with the fact that simulation often underestimates 
real-world consumption. Neither study considered the 
constant term (y-intercept of energy use versus mass), 

which is attributed to the drag coefficients as described 
by Magee (1982), although this oversight does not im-
pact the fundamental argument concerning the impact 
of efficiency on sensitivity to mass reduction.

To simply illustrate this point, assuming that the 
vehicle specific energy consumption is described by Eq. 
(1) it is trivial to show that the ratio of energy change 
for two powertrains of different average efficiencies is 
represented by the ratio in Eq. (2) for a change in mass 
of the same magnitude:

2
1 2

1

η
∆ = ⋅∆

η
E E .  (2)

It is this result, which leads to many of the findings 
outlined in this paper.

2.1. Continuous Case
In the previous paper by Wilhelm et al. (2012) the as-
sumption was made, that a marginal cost function could 
be parameterized based on the set of discrete technology 
choices for which data was available. The authors then 
proceeded to solve the case where marginal costs are 
static in an analytical way by employing a Heaviside step 
function. A series of figures with a characteristic ‘cliff ’ 
were then shown illustrating the effect of this analytical 
result on the optimal technology mix. 

Once marginal cost functions were assumed, the 
optimization necessitated numerical solution, and sev-
eral cases were studied which demonstrated equivalent 
properties to the analytical solution. In that paper, the 
authors also presented preliminary results of using a 
simple (and non-globally optimal) discrete solver to 
illustrate that similar results were obtained. They ac-
knowledged, however, that this was a significant short-
coming of the optimization approach taken, and this 
realization precipitated the development of the current 
work.

Fig. 2. The sensitivity of a vehicle with various powertrain 
efficiencies to a 100-kg increase in mass
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2.2. Discrete Case 
This section presents the method of optimally selecting 
between discrete lightweighting and efficiency technolo-
gies under cost constraints. The problem is formulated 
to allow the use of a globally optimal 0–1 knapsack al-
gorithm with dynamic programming. 

The key assumptions made in this work are:
 – there are no mass decompounding effects consid-
ered due to vehicle lightweighting being used to 
revise powertrain sizing (Verbrugge et al. 2009);

 – all technology improvement goes towards reduc-
ing fuel consumption, i.e. performance, volume, 
comfort, range etc. are held at constant levels;

 – the sensitivity of efficiency to lightweighting is 
derived from real vehicles (and is embodied in 
the coefficients b and k described in a later sec-
tion);

 – that gasoline and electricity cost similar amounts 
on an energy basis; this depends strongly on the 
grid mix, but the energy-equivalent cost com-
parison can be made assuming $0.12/kWh and 
$0.95/L, which are representative US prices (EIA 
2012, 2014);

 – these values for vehicle operation, which will be 
further explored in the sensitivity analysis sec-
tion:
 - an 11 year service life,
 - 23935 km driven annually,
 - a fuel price of 0.95 $/L
 - discount rate of 5%, calculated according to Net 
Present Value (NPV) in 2014;

 – that Total Cost of Ownership (TCO) is simpli-
fied, and only consists of the sum of life-time fuel 
costs and up-front purchase costs, and ignores 
maintenance, resale value etc., but will still be 
referred to as the total cost.

The method used to solve the discrete optimization 
problem is based on the 0–1 knapsack problem formula-
tion (Martello, Toth 1990), and begins by defining the 
consumer’s TCO according to Eq. (3):

( ) ⋅ ⋅
∆ = + − ∆ ⋅ +

100x base x x
FP km lifeTCO PP FC FC MC ,

 (3)

where: PP is the purchase price of the baseline vehicle; 
FC is the fuel consumption [Lequivalent/100 km]; FP is the 
fuel price [$/L]; km is the number of kilometres driven 
annually; life is the number of years a vehicle is owned 
for; MCx is the marginal cost of a technology option [$] 
including a mark-up of 40%. 

The optimization approach used in this paper is as 
follows. First, the baseline vehicle cost TCObase with no 
technology improvement is calculated by setting MCx 
and ΔFCx equal to zero to signify that no reduction in 
efficiency has taken place and thereby no additional 
costs were incurred. 

Next, two matrices, ΔFC ∈ R (2×n) and Δm ∈ R (2×m) 
are defined which contain in their first column asso-
ciated marginal costs, and the second column of the n 

efficiency improvements [L/100 km] and m [kg] weight 
reduction technologies respectively. Rounding each of 
the up-front costs in the first column according up to-
ward positive infinity results in values stored in new vec-
tors, ΔEr and Δmr. Next, all of the technologies in either 
vector with weight values which are less than or equal to 
zero are removed, and stored. This is to ensure a positive 
integer weight is assigned to the marginal costs to be 
assigned as a weight wk as is required by the knapsack 
algorithm.

For each j = 1…n in ΔEr and for each i = 1...m of 
Δmr in a nested loop, use Eq. (4) to determine the reduc-
tion in fuel consumption from mass reduction, where 
the variables b and k represent the intercept and slope of 
a line generated by plotting real fuel consumption sen-
sitivities L/100 km/kg against mean vehicle efficiencies 
for the data plotted in Fig. 1 of Wilhelm et al. (2012). 
This dependency is one of the main novelties of the pa-
per, and yields many of the most interesting results. Use 
Eq. (5) to determine the reduction in fuel consumption 
from efficiency measures:

, ,( ( ) )∆ = + + ∆ ⋅ ⋅∆i base r j r iFC b FC E k m ;  (4)

,∆ = ∆j r jFC E .  (5)

Once all of the fuel consumption reductions for the 
options are computed according to Eqs (4) and (5), the 
TCO for each of these options is calculated using Eq. (3). 
Next, the objective value vk for each k = 1…n·m options 
are calculated according to Eq. (6), which may take a 
positive or negative value:

= − ∆k base kv TCO TCO .  (6)

Once all of the values are calculated, a dynamic-
programming approach based on the 0–1 knapsack 
problem formulation is applied (Petter 2009). The value 
V is maximized according to Eq. (7), with the weight 
constraints according to Eq. (8), where U is the total up-
front cost of the technologies selected. The weights wk 
for the optimization are simply the marginal costs MCx 
for each technology option rounded to positive infinity 
from the vectors ΔEr and Δmr: 

1
Maximize

⋅

=
= ⋅∑
n m

k k
k

V v x ;  (7)

max
1

subject to
⋅

=
= ⋅ ≤∑
n m

k k
k

U w x c   (8)

1if selected;
with

0 if not selected;
= 


k
k

x
k

{ }1∈ = … ⋅k N n m ,

where: cmax is the maximum allowable up-front cost. 
Once the optimization algorithm has been completed, 
and an optimal set of technologies selected will be de-
noted ψ, the options with weight less than zero are re-
added to the optimal set, denoted ψ′. One final check is 
performed to ensure that the optimization result is valid. 
Occasionally the efficiency measure in the outer loop for 
which an efficiency advantage was enjoyed in Eq. (4) was 
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not selected. In these cases, the result is deemed invalid, 
and removed from the set of admissible optimization re-
sults. This final set is the optimal set, denoted ψ*. 

In the final step, the maximum value V * of all the k 
efficiency and lightweighting options is selected for the 
maximum up-front value scenario in question. The total 
cost for the optimal vehicle technology set ψ* is then 
determined according to Eq. (9):

*
*

ψ = −baseTCO TCO V .  (9)

Source code for this algorithm is available from In-
ternet: https://github.com/SUTDMEC/LWvsEff

3. Results and Discussion

The brute force approach results in 6291456 designs 
(6 efficiency technologies ×220 combinations of light-
weighting technologies), and finds that the un-con-
strained optimum has the lowest cost of $35094 found 
for a vehicle design with full hybridization (split-series 
parallel but without the plug-in option) and all the light-
weight measures applied except for the ‘Fluid and misc’ 
measures, which have zero cost and no associated weight 
reduction. The brute force approach required roughly 12 
minutes on a quad-core 2.6 GHz 64-bit Windows ma-
chine. By comparison, the 0–1 knapsack problem exe-
cutes an optimization in only about 0.7 seconds by using 
a dynamic programming based approach.

The results plotted in Fig. 3 for the brute-force so-
lution to the optimization problem highlight that the 
search space is discontinuous, and that depending on 
your willingness to spend up-front a large range of total 
costs of ownership are possible once operation costs are 
considered. Note that the implementation of efficiency 
technology dominates the marginal increase in purchase 
cost based on the technology set assumed here, but that 
as the powertrain efficiency increases, the variation in 
the TCO with various lightweighting technology im-
plementation decreases, once again illustrating how less 
efficient vehicles are more sensitive to vehicle mass in-
crease (Pagerit et al. 2006; Wohlecker et al. 2007). 

The main result of this paper is shown in Fig.  4 
where the optimal selection of technologies calculated 
using the 1–0 knapsack optimization algorithm out-
lined in the previous section are shown. The two most 
interesting observations are that (a) for discrete capital 
investment problems, it is often possible to under-spend 
as can be expected from the problem formulation and 
(b) slightly lower TCO may result as some technologies 
with higher up-front costs are displaced by technology 
portfolios with lower total up-front costs. For example, 
if the maximum up-front cost threshold passes beyond 
$150, despite the very large reduction in weight the 
brake system can contribute, it alone already exceeds the 
maximum cost threshold and hence will not be selected. 
In this way, technology selection occurs with increas-
ing preference for high marginal cost reduction. Table 2 
shows how the optimization algorithm gradually de-
selects technology as the maximum allowable up-front 

cost decreases. Finally, at a maximum allowable cost of 
$1 (the lowest allowed by the optimizer) only the info, 
gauge and warning system technology, with an integer 
cost of $1, as well as all of the cost-reducing technologies 
remain selected.

Fig. 3. Brute force approach to the problem finds the 
TCO for very large set of combinations of efficiency and 

lightweighting technology (0% discount rate)

Fig. 4. The 0–1 knapsack dynamic programming 
optimization algorithm always under-spends, but shows  

that in several instances up-front cost constraints  
limit overall performance
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Table 2. Effect of reducing maximum up-front cost  
on technology selection 

Max cost [$] De-selected lightweighting technology
10000–750 None (all LW tech. selected)

500 Climate Control (CC) and steering
400 Brake
300 CC, steering, engine, brake
200 CC, steering, Group B, brake
100 Group B, suspension, brake

50 CC, steering, Group B, Group C, 
suspension, brake, info, gauge and warn

1
Only LW tech with negative cost, and the 
info, gauge and warning system remain 
selected

Unless otherwise stated, the discount rate for all of 
the analysis performed so far was assumed to be zero, 
i.e. consumers valued a dollar up-front with the same 
utility as a future dollar. This is a tenuous assumption, 
with the research showing a wide variety of consumer 
behaviour and discount rates, which can be observed 
(Greene 2010b). The sensitivity of the results to the as-
sumed discount rate is discussed in Section 3.1.

3.1. Uncertainty Analysis 
3.1.1. Uncertainty in Cost of Light 
weighting Technology
In this section, it is shown that as uncertainty increases, 
measured by an increase in the standard deviation of a 
normal vector (Fig. 5), fewer lightweighting technolo-
gies are selected. Selecting a maximum technology cost 
of $10000 to allow all efficiency technologies to be se-
lected, full hybrids and EV’s are selected with fixed non-
stochastic (i.e. completely certain) hybridization costs. 
A clear trend towards lower numbers of lightweighting 
technologies with increasing uncertainty can be seen in 
Fig.  6. This trend persists even if maximum up-front 
costs are capped at $7000 to ensure that only full hy-
brids are selected. As well, the number of lightweight-

ing technologies selected also decreases with increasing 
uncertainty in the case that lightweighting technology 
cost is offset to only have positive costs (i.e. removing 
the potential for cost uncertainty to drive an increase in 
negative marginal costs). 

We assume that the underlying distributions driv-
ing manufacturing uncertainty can be arbitrarily defined 
in this case. Uniform, normal, and triangle distributions 
were evaluated, and very similar results were obtained 
with each. Ultimately, a 1000-point Monte Carlo simula-
tion was used for the following analysis, distributed ac-
cording to the triangle distribution generated using the 
probability density function given by Eq. (10), as shown 
in Fig.  7. The stochastic ‘cost multiplier’ is then used 
to scale the lightweighting and efficiency cost through 
simple multiplication: 

  

( )

( )
( ) ( )

( )
( ) ( )

2
, ;

2
| , , , ;

, ,0,

⋅ −
≤ ≤

− ⋅ −

⋅ −
< ≤

−





= 





⋅ −
< >

x a
a x b

c a b a
c x

x a b c b xCost mult c
c a c b

x a x c

 

(10)

where: b = 1, a = b – σ if b – σ is greater than 0, oth-
erwise a = 0. And c = b + σ, where σ is the uncertainty 
standard deviation factor being considered (MathWorks 
2014). 

As the price uncertainty increases for a technology, 
there will be a greater tendency for the technology to be 
too expensive to be selected in the knapsack optimisa-
tion. It is interesting to note that all of the probability 
distributions tested in this work are skewed to favour 
reductions in cost, since any deviations from the mean 
of 1, which fall negative are stacked on the positive real 
value axis which leads to the uncertainty distribution 
with a skewed tail. Even given this assumption, as uncer-
tainty increases, the average number of lightweighting 
options selected diminishes. 

Fig. 5. Up-front cost under increasing uncertainty  
as a normal distribution

Fig. 6. Increasing stochastic uncertainty in lightweighting 
cost results in a decreasing number of designs selected  

for lightweighting
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The trend shown in Fig. 6 and can be explained by 
understanding that, as uncertainty about a technology’s 
tooling and production cost increases, there is a possi-
bility that its overall NPV becomes negative. This trend 
is validated by Fig. 8, which shows the effect of uncer-
tainty on the mean number of technologies with nega-
tive values as uncertainty increases (over a Monte Carlo 
of 1000-rounds). Note that the negative NPV is not to 
be confused with the negative marginal cost. Negative 
NPV means that the technology no longer contributes 
to the reduction of the TCO, but rather increases its to-
tal cost and is therefore not likely to be in the optimal 
selection set.

In order to understand these results, various stress 
tests of the data were performed. It was established that 
the following effects had no bearing on the trend as the 
uncertainty increases:

 – more technologies with up-front costs which fall 
below 0 or rise above 0;

 – a higher mean value/cost ratio, signifying poten-
tially higher returns for selecting a technology; in 
fact, the vehicle with the lowest number of light-
weighting options selected has a negative mean 
value/cost ratio;

 – that the maximum cost threshold is being ex-
ceeded for the selected efficiency measure; in 
fact the selected measure never exceeds the maxi-
mum up-front cost.

The trend in Fig.  9 shows that as up-front cost 
uncertainty increases, so does the overall TCO. This is 
consistent with the finding that the probability of nega-
tive NPVs increases as uncertainty increases, raising the 
likelihood that a technology which otherwise may have 
reduced the TCO no longer does so, and is therefore no 
longer economical for selection.

3.1.2. Uncertainty in Cost of Efficiency Technology
An identical triangle distribution centred on one with 
increasing variance range identical to the lightweighting 
technology case described in Fig. 7 was used to gener-
ate the multiplier applied to the efficiency technology to 
simulate cost uncertainty. The cost constraint of $7000 
was maintained for the following analysis.

Uncertainty in the cost of efficiency technol-
ogy has the expected effect of obfuscating the optimal 
powertrain choice, as can be clearly seen in Fig. 10. As 
uncertainty about marginal efficiency measure cost in-
creases, the variety of optimal powertrain technology 
increases in the 1000-round Monte Carlo simulation. It 
was interesting to note the number of EVs, which were 
selected, indicating that if uncertainty tends to result 
in lower than expected costs (something which is the 
triangular distribution has a predilection for), then the 
EV quickly becomes a competitive option, even when 
the cap of the maximum upfront cost is 7000, over 1000 
less than the base price EV. The mean TCO increased as 
the uncertainty increases, in a trend, which parallels the 
lightweighting case.

Fig. 7. Input cost multiplier-representing uncertainty 
according to a triangle distribution, selected for its 
repeatability and for having a quantifiable moment  

on the real positive axis 
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Fig. 8. As uncertainty about marginal up-front costs increase, 
the mean number of lightweighting technologies  

with negative values selected increases

Fig. 9. With increasing up-front cost uncertainty, TCO 
increases driven by more technologies with negative NPV 
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The number of lightweighting technologies op-
timally selected is also affected by the increasing hy-
bridization cost uncertainty, as shown in Fig. 11. This 
is expected, as the ballooning cost of efficiency meas-
ures makes less room for lightweighting to be included 
in several cases. It is also interesting to see that, even 
when electric vehicles are selected, the majority of effi-
ciency measures are optimal for selection (although less 
are selected for the EV case than for the other efficiency 
measures). This runs slightly counter to the results of the 
previous paper, which suggested that under uncertain 
conditions, efficiency measures should be selected in 
an ‘all-or-nothing’ fashion. This discrepancy can be ex-
plained by the fact that the finding in the previous work 
was based on a discontinuity resulting from a continu-
ous cost function. This work builds on that observation 
and performs a more rigorous treatment of the uncer-
tainty associated with the decision-making to determine 
global optimal choices.

Additionally, the optimal number of lightweighting 
technologies for more efficient powertrains is lower, as 
is expected.

3.2. Sensitivity Analysis
This section will explore the sensitivity of the models to 
key assumptions about how many kilometres are driven 
yearly, what fuel costs, and how many years a vehicle 
is owned and operated. The findings in this section re-
flect that the optimal technology choices depend in very 
similar ways to uncertainty in the input assumptions. 
For stochastic Monte Carlo simulations, in all three 
instances, as the impact of yearly cost increases (with 
increasing driven km, fuel cost, and length of owner-
ship), TCO rises linearly, as is expected through the 
constitutive relation between these parameters outlined 
in Eq. (3). For the case where the maximum up-front 
cost is constrained at $10000, the magnitude of the in-
crease always experiences a ‘knee point’ where the opti-
mal efficiency technology shifts from full hybridization 
to electric drive. The other condition of the simulation 

constrains maximum up-front costs to $  1000. As ex-
pected, the sensitivity to further increases in yearly costs 
is therefore reduced. A conclusion, which can be drawn 
is that, in general, paying a higher up-front cost is al-
ways advantageous relative to lower up-front costs, even 
with an assumed 0% discount rate. With a 5% discount 
rate, start-stop hybrids are exclusively selected under 
constrained costs, and electric vehicles are almost not 
selected under 10000 constraints. The trends appear the 
same, however, with it almost always being more opti-
mal to invest in technology up-front.

3.2.1. Annual Vehicle Kilometres Travelled 
A normal distribution with a mean of 21562 km and a 
standard deviation of 4000 km was used in this Monte 
Carlo analysis. This resulted in a maximum yearly driven 
distance of 35095 km and a minimum driven distance of 
8861 km. A discount rate of 0% was assumed to generate 
Fig.  12, and it shows that greater efficiency is optimal 
without constraints. In Fig. 13, it can be clearly seen that 
there is a linear increase in TCO, with an infection point 
where electric vehicles are selected beyond full hybrids. 
Also evident from the figure is that for vehicles driven 
less than 10000 km per year, it becomes optimal to select 
start-stop hybrids even in the unconstrained case due to 
the lack of driving time which is available to recoup the 
initial investment. This effect was verified by increasing 
the discount rate, and it was noticed that even in the un-
constrained up-front cost case, the vehicle selected was 
the start-stop hybrid for low utilization.

3.2.2. Cost of Fuel
A normal distribution with a mean of 0.95 $/L and a 
standard deviation of 0.2 was used in this Monte Carlo 
analysis. This resulted in a maximum price of 1.60 $/L 
and a minimum price of 0.22 $/L. The discount rate was 
set at 0%, and up-front costs at $10000 and $1000 re-
spectively for comparison. As in the driven km sensi-
tivity case, it was noted that full hybrids were selected 
until a fuel price of just over 1.1 $/L, after which electric 

Fig. 10. A wider variety of powertrain technology becomes 
optimal with increasing marginal cost uncertainty

Fig. 11. As cost uncertainty increases, the number of 
lightweighting technologies selected decreases slightly

0

100

200

300

400

500

600

700

800

900

1000

Cost uncertainty [s]
0.01 0.5 1 2 3 4

Nu
m

be
r o

f v
eh

icl
es

None
DS/T
S-S
Full
Plug-in
EV

Cost uncertainty [s]
0 0.5 1 1.5 2 2.5 3 3.5 4

None
DS/T
S-S
Full
Plug-in
EV

17

17.5

18

18.5

19

19.5

20

20.5

M
ea

n 
nu

m
be

r o
f l

ig
ht

we
ig

ht
in

g m
ea

su
re

s s
ele

ct
ed



Transport, 2017, 32(2): 209–220 217

vehicles were selected. When discount rate is increased 
to 5%, at a fuel cost of below 0.3 $/L, non-hybrids, and 
start-stop hybrids begin to be selected regardless of the 
cap on up-front technology cost. At a fuel cost above 
$1.4, EV’s begin to be optimal, as shown in Fig. 14.

3.2.3. Lifetime Parameters
A normal distribution with a mean of 11 years and a 
standard deviation of 3 was used in this Monte Carlo 
analysis. This resulted in a maximum lifetime of 24 
years and a minimum lifetime of 3 years. Only integer 
year lifetimes were considered. The discount rate was 
set at 0%, and the maximum up-front cost at $10000 
and $1000. As in the previous two cases, Fig. 15 shows 
that after about 12 years of ownership, electric vehicles 
are selected before full hybrids, and sensitivity decreas-
es. As previously found, it is always optimal to select 
non-hybrids for vehicles owned for fewer than around 4 
years, regardless of the cap on technology cost and even 
at a 0% discount rate, suggesting that these decisions are 
truly sensitive to the length of vehicle ownership.

3.2.4. Discount Rate
The sensitivity of the results to discount rate is shown in 
Fig. 16. It is clear that, as expected, the greater the degree 
of future cost discounting, the lower the overall TCO 
appears, since future costs are less important. This trans-
lates into the exclusive selection of the technology with 
the lowest up-front cost, namely the non-hybridized 
case. Interestingly, even at a 50% discount rate, many of 
the lightweighting technologies with non-negative costs 
are still selected (info, gage, and warning system, electri-
cal dis. and electronic control system, exhaust system, 
fuel system, engine system, suspension system), a factor 
of the high weight reductions with low marginal costs of 
these technologies. As the maximum tolerable up-front 
cost increases, the higher the discount rate, the more 
stable the TCO remains, as is expected since in general 
fewer technologies are chosen. High discount rates lead 
to the selection of the cheapest up-front technologies.

Fig. 12. At 0% discount rate, it is always optimal to select 
greater efficiency measures (legend refers to maximum  

up-front cost in $)

Fig. 13. After about 25000 km of driving, electric vehicles 
become cost-optimal, and sensitivity goes down  

(below 10000 km of driving, regardless of technology  
cost cap, start-stop hybrids become optimal)

Fig. 14. Fuel price below 1.4 $/L result in full hybrids being 
selected for unconstrained cases, and prices below 0.3 $/L 

result in non-hybrids start-stop hybrids being selected  
for all up-front cost cases at 5% discount rate
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Fig. 15. Ownership below 4 years results in non-hybrids 
being optimal for all up-front cost constraint cases even  

at 0% discount rate
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Conclusions

In this work, a set of technology options were proposed 
to study the decision-making methods, which could be 
applied to optimally choose degrees of lightweighting 
and efficiency technologies. It was found that:

 – the fundamental relationships between energy 
use, mass, and efficiency were invoked to derive 
a simple explanation for the reduction in the 
marginal effectiveness of weight reduction under 
changing efficiencies; 

 – by applying first-principles and a dynamic pro-
gramming algorithm, an optimal set of efficiency 
and lightweighting options can be determined, 
and at 0% discount rate with a cap of $1000 to 
spend up-front, all of the lightweighting tech-
nologies are selected;

 – uncertainty in future costs for lightweighting 
technologies result in overall fewer lightweight-
ing technologies being selected, in a manner con-
sistent with the findings of the paper (Wilhelm 

et al. 2012), but for reasons which are now more 
clearly illuminated relating to the probability of 
establishing a negative value through a higher 
up-front cost;

 – uncertainty in future costs of efficiency technolo-
gies result in a broader set of technologies being 
considered optimal, and a global increase in the 
mean total cost of ownership;

 – uncertainty in both technologies results in the 
likely TCO rising regardless of the distribution 
chosen, even which cost decrease is more prob-
able; this is relevant, as it suggests that even if 
technology costs decrease more often than they 
increase, there is still enough positive price pres-
sure from the uncertainty to push to lower adop-
tion of advanced technology;

 – contrary to the paper (Wilhelm et al. 2012), this 
work finds that despite increasing uncertainty, 
there is still an optimal mix of lightweighting and 
efficiency technology application; this discrep-
ancy arises from the more rigorous treatment of 
uncertainty in this paper, and results in a more 
refined picture of the optimization problem;

 – the optimal mix of lightweighting and efficiency 
technology is most sensitive to up-front cost or 
commensurately the discount rate;

 – paying a higher up-front cost is always advanta-
geous relative to lower up-front costs, at assumed 
0% discount rate; as the discount rate rises, the 
point at which up-front costs justify efficiency in-
vestment for various technologies shifts to lower 
yearly costs;

 – as operation costs sink, and discount rate increas-
es, non-hybrids start-stop hybrids are considered 
more often as optimal; tipping points were iden-
tified for various fuel cost, operation length, and 
utilization rates;

 – the optimal mix of efficiency technologies and 
lightweighting technologies is highly sensitive to 
discount rate; the higher the discount rate, the 
less expensive the efficiency package selected, 
and the fewer lightweighting technologies are 
selected; even at a 50% discount rate, however, 8 
lightweighting technologies are still optimal for 
non-hybrids.

Future work should develop a multi-objective op-
timization to study the impact, which corporate average 
fuel economy standards have in the lightweighting/ef-
ficiency technology optimization framework developed 
here. As well, other criteria such as space, volume, safety 
feature impingements could be considered more rigor-
ously. Additional vehicle platforms should be studied to 
validate the generalizability of these methods. As well, 
the impact that reduced maintenance costs achievable 
via powertrain electrification should be added to the 
TCO calculation.
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Fig. 16. As the discount rate increases, the cheaper up-front 
technologies are preferred (many lightweighting technologies 

with positive up-front costs were still selected  
at high discount rates)
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APPENDIX A 

System

System 
mass 

reduction 
[kg]

System 
incremental direct 

manufacturing 
cost impact [$]

System 
incremental 

tooling impact 
cost [$ × 1000]

Average system 
cost/kilogram 
with tooling  

[$/kg]

% vehicle 
mass 

reduction

Transmission system 18.90 (114.15) (7650.80) (6.26) 1.10
Body system (Group A) BIW an closures 68.32 (227.45) (22900.00) (3.51) 3.99
Body system (Group D) glazing and body 
mechatronics 6.16 (15.25) 0.00 (2.48) 0.36

Lighting system 0.53 (0.76) 400.00 (1.01) 0.03
Driveline system 1.50 (0.16) (685.86) (0.36) 0.09
Frame and mounting system 16.34 (3.28) (3700.39) (0.32) 0.95
Fluid and misc 0.00 0.00 0.00 0.00 0.00
Exhaust system 7.52 2.47 0.00 0.33 0.44
Fuel system 12.70 3.91 1625.30 0.38 0.74
Engine system 30.25 33.69 5892.20 1.22 1.77
Electrical dis. and electronic control system 0.89 1.35 103.50 1.58 0.05
Suspension system 66.83 144.71 (7544.37) 2.10 3.91
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System

System 
mass 

reduction 
[kg]

System 
incremental direct 

manufacturing 
cost impact [$]

System 
incremental 

tooling impact 
cost [$ × 1000]

Average system 
cost/kilogram 
with tooling  

[$/kg]

% vehicle 
mass 

reduction

Info, gage, and warning system 0.08 0.19 0.00 2.45 0.00
In-vehicle entertainment system 1.07 2.35 1175.60 2.79 0.06
Body system (Group B) interior 42.00 122.98 9966.15 3.06 2.45
Body system (Group C) exterior 2.37 7.52 0.00 3.17 0.14
Climate control system 2.44 9.34 386.00 3.92 0.14
Brake system 32.75 169.56 (1426.12) 5.15 1.91
Steering system 1.82 11.05 1352.70 6.48 0.11
Vehicle 312.47 148.07 (23006.09) 0.43 18.24

APPENDIX B

No Model Powertrain Weight 
[kg]

MSRP  
[$]

Fuel 
consumption 
[L/100 km]

1 2014 Fusion FWD – Baseline 2.5 L 4 cylinders, automatic 1643 23935 9.0
2 2014 Fusion FWD 2.0 L 4 cylinders, automatic, turbo 1603 25591 9.0
3 2014 Fusion FWD – Downsize/turbo 1.5 L 4 cylinders, turbo 1643 24730 8.4
4 2014 Fusion FWD – Start-stop 1.5 L 4 cylinders, turbo w start-stop 1643 24230 8.1
5 2014 Chevrolet Malibu 2.5 L, 4 cylinders, automatic (S6) 1664 22140 8.1
6 2014 Chevrolet Malibu 2.0 L, 4 cylinders, automatic (S6), Turbo 1655 26750 9.8
7 2014 Chevrolet Malibu eAssist 2.4 L, 4 cylinders, automatic (S6) 1633 25845 8.1
8 2014 Toyota Prius Split parallel-series 1383 30005 4.7
9 2014 Honda Accord Hybrid Transmission-less 1614 29155 5.0

10 2014 Ford Fusion Hybrid FWD – Full hybrid Split parallel-series 1643 27280 5.0
11 2014 Ford C-max Hybrid FWD Split parallel-series 1640 25170 5.5
12 2014 Honda Insight Integrated Motor Assist (IMA) 1249 18725 5.5
13 2014 Toyota Camry Hybrid LE Split parallel-series 1602 27670 5.7
14 2013 Hyundai Sonata Hybrid Transmission-mounted (IMA) 1571 25650 6.2
15 2013 Kia Optima Hybrid Transmission-mounted (IMA) 1589 25900 6.2
16 2014 Toyota Prius Plug-in Hybrid Plug-in: split parallel-series 1439 34905 4.7
17 2014 Honda Accord Plug-in Hybrid Plug-in: transmission-less 1727 39780 5.1

18 2014 Ford C-max Energi Plug-in Hybrid – 
Plug-in Hybrid Plug-in: split parallel-series 1754 32920 3.6

19 2014 Ford Fusion Energi Plug-in Hybrid Plug-in: split parallel-series 1779 36500 5.5
20 2014 Chevrolet Volt Plug-in: series hybrid 1721 34185 6.4
21 2014 Ford Focus Electric – Electric drive Electric drive 1647 35170 2.2
22 2014 Nissan Leaf Electric drive 1474 28980 2.1
23 2014 Chevrolet Spark EV Electric drive 1359 26685 2.0
24 2014 Smart Fortwo electric drive coupe Electric drive 1152 25000 2.2

End of Appendix A


