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Abstract. The design formulations of pavements and bridges are significantly influenced by the uncertainties associ-
ated with the prevailing vehicle weight characteristics. Accurate modelling of load spectra and the estimation of pos-
sible vehicle growth and composition are the main components in the safety assessment of transportation structures. 
The vehicle weights from the existing traffic form the basis for load spectra development, and the vehicle projections 
are subjective to the socio-economic conditions. In this paper, the methodologies of appropriate data consideration for 
such representation are discussed and demonstrated based on the data from India. The load spectra are also developed 
for vehicular data from Interstate 95 (I-95) in New York State. In lieu of the current status of the design codes for 
pavements and bridges worldwide, most of the developing countries are in need of analogous models for the calibra-
tion of the design basis.  

Keywords: pavement design, bridge safety, vehicle weight, axle load spectra, probabilistic modeling, nonlinear least 
squares, vehicle ownership, GDP per capita, population growth. 

 

 
1. Introduction  

The benefits of mechanistic-empirical pavement 
designs have been highlighted by the American Asso-
ciation of State Highway Transport Officials 
(AASHTO) [1, 2]. Methods to facilitate such designs 
are presently being developed by researchers worldwide 
[3, 4]. This involves accurate treatment of the random-
ness in the design variables based on observed data of 
vehicular characteristics. The probability distributions 
of such weights (load spectra) are a major requirement 
in the development of rational design basis of transpor-
tation structures such as pavements and bridges. The 
safety assessment of these structures also requires accu-
rate simulation of vehicle weights from the load spectra 
and the representation of possible vehicle flow for the 
considered life-time, referred to as the service life of the 
structure [5]. Based on the available data on vehicular 
flow, the probable vehicle growth rates can be esti-
mated with reference to income levels and population 
growth of the considered region for various classes of 
vehicles.  

It is seen that load spectra have different character-
istics depending on the vehicle class and axle position. 
However, the growth rates are seen to be satisfying the 
model requirements, independent of the vehicle type, 
but depending on the country [6]. There exist different 

choices for the selection and finalization of these mod-
els. In the present study, the characteristics and methods 
of such model development are discussed and the re-
sults are shown with appropriate case studies.  

2. Axle weight uncertainties 

The vehicle classes plying on highways consist of 
different types and the frequency diagrams of axle 
weights give an idea of the inherent uncertainties. Typi-
cal histograms of the front and tandem axle weights of a 
two-axle truck are shown in Figs 1 and 2. It is seen that 
the axle weights in some cases can be represented by 
conventional unimodal statistical distributions, whereas 
some axles indicate the presence of more than one 
mode as seen in Fig 2. This is attributed to the different 
loadings on the same class of vehicles on the high-
way [7]. Such trends of multimodal load spectra have 
been observed by many researchers [3, 8–10]. 

The parameters of the distribution models give an 
idea of the inherent uncertainties in the variables. The 
unimodal probability models can be arrived at using the 
widely used maximum likelihood approach, and the 
fitted models can be tested with probability plots and 
goodness-of-fit tests, such as the chi-square test, Kol-
mogorov-Smirnov (KS) test and Anderson-Darling test. 
Using this method, the parameters are estimated such 
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that the likelihood of obtaining the observed database is 
maximized. For a set of values {x1, x2, ..., xn} with a 
probability density function f(.), the likelihood function 
is defined as [11]: 
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where 1,..., mθ θ  are the m parameters to be estimated. 

The distribution parameters are obtained by diffe-
rentiating eq. (1) with respect to the parameters and 
solving the simultaneous equations given by:  
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Fig 1. Frequency diagram for single axle weight 

 

 
Fig 2. Frequency diagram for tandem axle weight 

 
The axle weights with multi-modes are complex 

and are required to be considered appropriately as per 
the proportion of segments. Fig 3 shows the Cumulative 
Distribution Function (CDF) of the empirical distribu-
tion and a unimodal distribution for the multimodal 
data. It is seen that the individual statistical distributions 
cannot represent the models in these cases. The earlier 
attempts to consider these models involved the separa-
tion of axle weight data based on the permissible limits; 
however, these models did not pass the required statisti-

cal tests [8]. Further studies on developing load spectra 
included the polynomial regression analysis of the 
smaller segments of the frequency diagrams [3, 9]. In 
this approach, the model requirements are satisfied in 
lieu of the smaller segments. However, in cases of 
lesser amounts of vehicular database, the practical use 
of such models is very limited. 

A much better approach to consider the multimo-
dal distributions is by involving a mixture of probability 
distributions for load characterization. These models are 
very useful in a wide range of practical and theoretical 
applications and can be checked with the regular hy-
pothesis tests. The presence of multi-modes requires the 
statistical model to be representing it correctly.  
 

 
Fig 3. Observed and empirical distributions 

 
Estimation of multimodal load spectra 

The multimodal distribution model ( ˆ ( )f w ) is de-

rived by expressing it as the weighted sum of univariate 
marginal distributions (fi(w)) defined as: 

1

ˆ ( ) ( ),
n

i i
i

f w p f w
=

= ∑   (3) 

where pi is the proportion of the i-th univariate model. 
Various marginal distributions and their combina-

tions can be tried for the available vehicle weight data-
base and the best fitting distribution models can be 
obtained.  

In the present study, the parameters of the distribu-
tions and the corresponding proportions are obtained 
using the nonlinear least squares fitting of the observed 
data. The trust-region algorithm is used for the nonlin-
ear fitting as it is more efficient compared to other 
popular approaches [12]. In this approach, an approxi-
mate and simpler function is chosen to realistically 
represent the original function that is to be optimised. 
The approximate model is trusted in the neighbourhood 
of the current iterate and the region is recomputed with 
the iterations. If the model representation is acceptable, 
the trust region is expanded otherwise it is contracted. 
The Taylor series representation of the original function 
to the second degree at the considered point is taken as 
the approximating model.  
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The trust-region algorithms can use non-convex ap-
proximate models, are reliable and robust, and have ex-
cellent convergence properties [13]. The trial step com-
putation at the i-th iteration [14, 15] is the solution of  
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where gi is the gradient of the original function at the 
current point, k is the trial step, H is the symmetric 
matrix approximating the Hessian, D is a diagonal scal-
ing matrix, ℜ  is the set of Real numbers and Δi > 0 is a 
trust region radius. In each iteration, the ratio of the 
actual and predicted reduction of the objective function 
is the criteria for acceptance of the point. The selection 
of final distribution model is based on the value of the 
coefficient of determination and on the two sample KS 
test at 2 % significance level.  
 

Load spectra 
The methodologies described in the earlier sections 

are demonstrated by applying to the vehicular data ob-
tained from highways around New Delhi and from I-95 
in New York. Being the capital of India, and with heavy 
industrialization around the city, New Delhi is expected 
to have the heaviest of axle weights with different types 
of trucks. The Interstate highway 95 runs along the east 
coast of the United States and is one of the most heavily 
travelled highways. The data from these locations con-
sists of a variety of vehicular cases and suits the objec-
tive of the present study.  

The load spectra are derived by applying the appro-
priate models to vehicular data. The marginal statistical 
distributions are chosen based on the value of coefficient 
of determination and the hypothesis test results as de-
scribed earlier. The rear, middle and tandem axle weights 
are found to be best described with the mixed distributions 
having the corresponding inverse Gaussian (IG), log-
normal (LN) and normal (N) distributions. A typical fre-
quency diagram and the selected distribution model are 
shown in Fig 4 and a typical CDF plot of the fitted model 
is shown in Fig 5. It is seen that the observed data is very 
closely approximated by the fitted model of the spectra.  

 

 
Fig 4. Typical axle weight distribution 

 
Fig 5. Typical CDF plots of observed and fitted data 

 
The selected distribution models and the statistical 

descriptions of the typical vehicle cases at the two loca-
tions New Delhi (ND) and New York (NY) are given in 
Table 1. The case of third mode is also observed for a 
vehicle at NY. The load spectra thus obtained will be 
combined with the extrapolation models described in 
the next section to carry out the load characterization 
and safety assessment studies.  

3. Vehicle growth projections 

In assessing the safety of the transportation struc-
tures, it is required to consider the possible vehicle 
growth in the considered service period. The vehicle 
ownership in any country depends on the existing social 
conditions and the level of economic growth [6, 16, 17]. 
The population increase rate and the Gross Domestic 
Product (GDP) are the significant factors influencing 
the vehicle population models. 

It is observed that representative models can be 
developed by relating the vehicle ownership with the 
GDP per capita of corresponding years for different 
vehicle types. Suitable functional forms are required to 
be derived to represent the relationship between the 
vehicle ownership and per-capita income. The standard 
approach to represent these relations is by applying the 
sigmoid functions. There exist many choices for choos-
ing the suitable functions such as the quassi-logistic, 
logarithmic logistic, cumulative normal, and Gompertz 
functions. The vehicle ownership models also assist in 
estimating the income elasticities of the vehicle classes. 

The significant studies involving the road vehicle 
growth are based on the models proposed by Dargay [6] 
and Button [16]. It is seen in general that the increase of 
ownership levels of vehicles involve three stages of 
growth [17]: 
• a slow growth rate at lower income levels; 
• a rapid growth rate at increased levels; 
• a slow growth rate as saturation levels of vehicles 

are approached. 
 



S. Sriramula et al. / TRANSPORT – 2007, Vol XXII, No 1, 31–37 34 

Table 1. Probabilistic descriptions of typical vehicle axle weights 

First mode Second mode Third mode 
Loca-
tion 

Vehicle Description Axle 
p1 f1 

Ea 
(kN) 

COVb p2 f2 
E 

(kN) 
COV p3

 f3 
E 

(kN) 
COV 

A1 – IG 19.93 0.35 – – – – – – – – ND  

A2 0.55 LN 22.46 0.26 0.45 IG 70.15 0.30 – – – – 

A1 – IG 22.50 0.26 – – – – – – – – 

A2 0.49 IG 24.09 0.35 0.51 LN 59.70 0.21 – – – – 

ND  

A3 0.43 IG 43.41 0.29 0.57 LN 116.88 0.25 – – – – 

A1 0.69 LN 70.06 0.22 0.31 N 33.38 0.39 – – – – NY  
 
 A2 0.28 IG 194.6 0.36 0.72 LN 288.28 0.13 – – – – 

A1 0.65 LN 49.5 0.19 0.35 IG 35.39 0.24 – – – – 

A2 0.56 IG 122.60 0.38 0.44 LN 181.41 0.20 – – – – 

NY  

A3 0.57 LN 142.8 0.34 0.40 N 275.98 0.27 0.03 IG 149.90 0.12 

 

a E is the mean value of the corresponding axle weight 
b COV is the coefficient of variation 

 
 

Button [16] observed that over an extended period 
of time, countries with lower GDP levels will follow 
the trends made by the industrialized nations. This fac-
tor is considered by introducing a non-dimensional 
“time trend” (T) in the models with T = 1 for the star-
ting year with the available data. The sensitivity of the 
model to the base year was checked by using the 
quassi-logistic and the log-linear forms. The saturation 
level (S), income level (G), country specific variable 
(ck) and time trend (T) are incorporated in the following 
model with the vehicle ownership as: 

( )
,

1 k ka c b t

S
V

e G T− − δ − −
=

∑+
  (5) 

where a, b and t are the constants to be estimated. The 
same data is used to formulate the log-linear model with 
constants and is given by: 

exp( ) exp( ).b
k kV a c G Tt= + δ∑  (6) 

The low income countries were classified into five 
groups based on the per capita income, and ownership 
characteristics and the modelling statistics are based on 
1980 prices.  

Dargay and Gately [17] prescribed using the Gom-
pertz equation for estimating the vehicle growth over 
the considered period. The variations over the period of 
1960–1992 were considered for model estimations. The 
relation between vehicle ownership and the GDP per 
capita is given by the Gompertz model of the form: 

( )( )*
1 1 1exp exp β ,V G= γ α  (7) 

where γ1 is the saturation level, and α1 and β1 are the 
negative parameters defining the shape or curvature of 
the function. The lags in the vehicle ownership and per 
capita income were considered by partially adjusting 
the income estimates. To consider the characteristics of 
the parameters of the Gompertz function, the shape 
parameters were assumed to be same for all countries.  

The parameter β1 is allowed to be country-specific. 
The approximation of the model involves the fol-

lowing two steps: 
• formulation of the database based on the levels of 

population growth and the economic status from the 
past decades; 

• studying the plot of vehicle ownership with the GDP 
per capita and choosing the appropriate sigmoid 
function.  

These models are closely dependent on the country 
of consideration and a typical application to the data 
from India is described in the next section. The vehicles 
are in general classified as cars, buses and commercial 
vehicles. The proportion of different commercial vehi-
cle types can be extracted from the overall percentage 
of that class. The development of models elsewhere can 
be carried out with the same approach.  

 
Application to Indian scenario 

The extensive data available from various publica-
tions of the Central Statistical Organisation of the Min-
istry of Statistics & Programme Implementation, Gov-
ernment of India, is used as the modal basis [18, 19, 
20]. The database of different vehicle classes registered 
in India is available from the year 1951. The initial 

A1 A2 

A1 A2 A3 

A1 A2 

A1 A2 A3 
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years 1951–1991 have a discrete yearly observed data-
base, with extensive yearly data afterwards. The data of 
vehicle classes is analyzed with respect to the corre-
sponding yearly population and the variation is shown 
in Fig 6. The GDP characteristics are available exten-
sively from 1951 for every year and the per capita 
variation is studied to formulate the model. The ob-
served database is depicted in Fig 7.  
 

 
Fig 6. Variation of yearly vehicles per capita 

 
 

 
Fig 7. Variation of yearly GDP per capita 

 

 

The yearly variation of vehicle ownership and 
GDP per capita from Figs 6 and 7 are rationally com-
bined to study the models, and the observed variation of 
these factors for different vehicle types is shown in 
Fig 8. It is seen that the vehicle ownership levels are in 
the second stage of rapid growth rate due to increased 
income levels as outlined earlier.  

The models specified in equations (5), (6) and (7) 
are tested for obtaining the parameters more accurately 
using the large databases presently available in India. 
After carrying out many trials, the following sigmoid 
function is found to be most appropriate to express the 
vehicle ownership representing the database as: 

exp( ) ,b tV a G T=    (8) 

where a, b and t are the constants obtained from nonlin-
ear regression analysis using least squares estimation. 
The available database is considered to obtain the pa-
rameters of the above equation and their values are 
given in Table 2. The estimates of the fitted model for 
the vehicle classes are shown in Fig 9. It is seen that the 
models approximate the available data closely. 
 

 
Fig 8. Variation of yearly vehicle ownership  

and GDP per capita 

 
Table 2. Parameters of the model 

Vehicle Class a b t 

Cars –11.579 0.5814 0.4777 

Commercial 
vehicles 

–10.974 0.2272 4.2801 

Buses –11.454 0.3947 0.0950 

 
The expected vehicles per capita estimates corre-

sponding to the future years require the probable GDP 
per capita growth. The GDP growth characteristics for 
Indian conditions are considered from the World energy 
outlook 2002 of the International energy agency. These 
values are used in equation (8) to estimate the vehicle 
ownership values for the various classes, and the pro-
jected values of the yearly vehicle ownership are shown 
in Fig. 10. It is seen that the possible number of buses 
per capita remain almost the same while the commer-
cial vehicle ownership may exceed that of cars after a 
period of time. The projected values of population are 
used to estimate the probable number of vehicles for the 
future years and the obtained values along with the 
available database are shown in Fig 11. These models 
will also be helpful in the assessment of possible energy 
use and emission characteristics from the vehicles. 
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a) Variation of buses per capita 

 
 

 
b) Variation of commercial vehicles per capita 

 

 
c) Variation of cars per capita 

 
Fig 9. Estimates of the fitted model 

 
 

 
Fig 10. Projected vehicle ownership values 

 
 

 
 

Fig 11. Observed and projected number of vehicles 
 

4. Conclusions  

The importance of vehicle weight uncertainties and 
the possible vehicle growth in the performance based 
design specifications of transportation structures are 
highlighted. The load spectra of vehicle weights involve 
representation of multiple modes representing various 
levels of loading, and the methodologies to estimate the 
accurate spectrum are developed based on the nonlinear 
least squares approach. Typical cases of vehicular 
weights from New Delhi and New York comprising 
different traffic conditions are illustrated. It is seen that 
the trust-region algorithm represents the nonlinear 
models closely. The basis for the number of vehicle 
passages with the composition expected during the 
service lives of these structures are formulated to be 
based on the existing socio-economic characteristics. 
The sigmoid function models suitable for such studies 
are discussed and are shown with the extensive data on 
the yearly variation of vehicle ownership and the in-
come levels obtained from the Central Statistical Or-
ganisation, Government of India. It is seen that the 
ownership levels of commercial vehicles and cars 
change significantly compared to the buses. The com-
mercial vehicle proportion includes the various trucks 
plying on the roads and can be considered accordingly. 
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The models presented in this paper play an important 
role in the present scenario of code calibration studies 
worldwide and can be adopted with the prevailing data-
base. 
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