
TRANSPORT
ISSN 1648-4142 / eISSN 1648-3480

2017 Volume 32(2): 146–159
doi:10.3846/16484142.2015.1062417

DYNAMIC QUEUING TRANSMISSION MODEL  
FOR DYNAMIC NETWORK LOADING

Nevena Raovic1, Otto Anker Nielsen2, Carlo Giacomo Prato3

1, 2Dept of Transport, Technical University of Denmark, Kongens Lyngby, Denmark
3School of Civil Engineering, University of Queensland, Brisbane, Australia

Submitted 16 January 2015; resubmitted 13 April 2015; accepted 18 May 2015;  
first published online 13 July 2015

Abstract. This paper presents a new macroscopic multi-class dynamic network loading model called Dynamic Queu-
ing Transmission Model (DQTM). The model utilizes ‘good’ properties of the Dynamic Queuing Model (DQM) and 
the Link Transmission Model (LTM) by offering a DQM consistent with the kinematic wave theory and allowing for 
the representation of multiple vehicle classes, queue spillbacks and shock waves. The model assumes that a link is split 
into a moving part plus a queuing part, and p that traffic dynamics are given by a triangular fundamental diagram. A 
case-study is investigated and the DQTM is compared with single-class LTM, single-class DQM and multi-class DQM. 
Under the model assumptions, single-class models indicate that the LTM and the DQTM give similar results and that 
the shock wave property is properly included in the DQTM, while the multi-class models show substantially differ-
ent travel times for two vehicle classes. Moreover, the results show that the travel time will be underestimated without 
considering the shock wave property.
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Introduction

In order to predict more realistically traffic flows and 
travel times on road networks, conventional static as-
signment models and Dynamic Traffic Assignment 
(DTA) models (for an extensive overview, see Peeta, 
Ziliaskopoulos 2001) have been developed with a focus 
on their application on large-scale networks. Dynamic 
Network Loading (DNL) models are one of the two 
components necessary to the process of solving DTA 
models (the other being the path reassignment), and 
they aim at propagating vehicles on the road network 
over time and producing as output the number of ve-
hicles and the travel times on the links. The need for a 
realistic representation of traffic dynamics comes espe-
cially to the fore in the case of congested networks due 
to the phenomenon of queue spillbacks, which cannot 
be represented with a static traffic assignment. 

The main challenges in the realistic representation 
of traffic dynamics on road networks are related to the 
balance between computation time and level of detail, 
and hence are dependent on the network size and the 
application of a particular model. The current study fo-
cuses on DNL models used in a planning context for 

large-scale applications, which are characterized by un-
certainty about future data and do not require as precise 
a representation of traffic dynamics as the models used 
in real-time traffic management (Balijepalli et al. 2014). 
Therefore, the focus of the current study is on macro-
scopic DNL models, which give a less detailed traffic 
flow description than microscopic or mesoscopic mod-
els, but are still able to represent crucial phenomena in 
congested networks such as queue spillbacks. 

Existing literature on DNL models proposes sev-
eral approaches to represent vehicle propagation in 
macroscopic models, and Table 1 presents an overview 
of the characteristics of DNL models based on different 
approaches. The first attempt of time-dependent traffic 
flow representation is the Point Queue (PQ) model that 
is inspired by fluid queue models for dam processes pro-
posed in the 1950s, is based on the bottleneck model 
(Vickrey 1969), and has been applied to represent traffic 
dynamics on traffic links (e.g., Drissi-Kaïtouni, Hameda-
Benchekroun 1992; Kuwahara, Akamatsu 1997; Han 
et  al. 2013a). A variational inequality formulation of 
the PQ model has been recently formulated to allow the 
flow to be a distribution instead of an integrable func-
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tion (Han et al. 2013b) and has been applied to a real-
world network (Han et  al. 2013c). A later attempt of 
time-dependent and dynamic traffic flow representation 
was proposed in the work of Merchant and Nemhauser 
(1978) by introducing the concept of exit functions, 
where the outflow from a link is a function of the cur-
rent number of vehicles on the link. Several models were 
developed under this theory (e.g., Smith 1984; Friesz 
et al. 1989). A significant number of models used travel 
time functions to describe vehicle propagation, where 
the travel time of vehicles entering a link is related to 
the current state and the number of vehicles on the link 
(e.g., Friesz et  al. 1993; Astarita 1996; Wu et  al. 1998; 
Carey et  al. 2003; Carey, Ge 2007). Models based on 
the Kinematic Wave Theory (KWT) represented vehi-
cle propagation as based on a fundamental diagram of 
traffic flow instead of a travel time function (Lighthill, 
Whitham 1955). Two major models were developed 
under this theory: the Cell Transmission Model (CTM) 
and the Link Transmission Model (LTM). The widely 
used CTM divides the links of the network into cells 
and propagates vehicles through the cells, thus requir-
ing both time and space discretization (Daganzo 1994, 
1995). This discretization problem may be overcome by 
considering whole links and avoiding space discretiza-
tion in the LTM (Yperman 2007) by using Simplified 
KWT (SKWT) (Newell 1993a, 1993b, 1993c). The LTM 
represents links as a unit and describes traffic dynamics 
by proposing the concept of sending and receiving flows. 
Models based on KWT are typically representing a sin-
gle class of vehicles, although an overview of multi-class 
KWT models can be found in the work of Logghe and 
Immers (2008), and a preliminary multi-class LTM mod-
el has been briefly illustrated (Smits et al. 2011) without 
however presenting extensive testing or results and with-
out following up on the theory. Models based on the DQ 
theory were widely used in state-of-the-art DTA models 
(Chabini 2001; Bliemer 2007) and discussed in Zhang 
et al. (2013). According to the underlying theory, these 
models were defined Dynamic Queuing Models (DQM) 
where links are split into a moving part plus a queuing 
part. It is also relevant to mention some recent work on 
quasi-dynamic network loading models, which combine 

static traffic assignment with some dynamic phenom-
ena such as queuing and spillbacks (Bliemer et al. 2012). 
Specifically, this model overcomes the drawback of static 
assignment via an approach that is consistent with the 
traffic flow theory instead of the travel time function, 
hence yielding a more accurate representation of queues 
and spillbacks in the static framework.

The aforementioned models are observed through 
their ability to represent queue spillbacks, shock waves, 
or multiple vehicle classes. Each of the models presents 
some drawbacks in the representation of these three 
characteristics, which were the motivation for the de-
velopment of the model presented in this study. As il-
lustrated in Table 1, neither the exit function nor the 
travel time function approach can capture these proper-
ties. This is mainly because these approaches may violate 
the First-In-First-Out (FIFO) rule and lead to a bias in 
travel time and queue spillback representation, although 
recent extensions of the travel time model allow for a 
better representation of behavior when traffic flow is 
varying over time (Carey et al. 2014). The models based 
on the KWT have overcome this limitation, but their 
main problem is the inability to represent multiple ve-
hicle classes. The CTM model allows for representation 
of overtaking and has been recently extended to attempt 
capturing spillback, while the LTM model relies on the 
FIFO rule. However, the issue of representing multiple 
vehicle classes is still open and unresolved, although 
some research has been conducted in the direction of 
extending models based on the KWT to multiple vehi-
cle classes. Moreover, the accuracy of the CTM highly 
depends on the length of the time step (i.e., the number 
of cells), which makes this model less attractive than the 
LTM. DQM are able to represent multiple vehicle class-
es, where overtaking is allowed within a moving part, 
but they are not able to describe shock waves and this is 
a drawback that can influence the realism of the queue 
representation. As for the compromise solution of the 
quasi-dynamic model, it appears suitable for planning 
purposes, although DTA models are able to describe 
traffic dynamics more accurately with acceptable com-
putation times. 

Table 1. Overview of DNL models

Model(s) Traffic  
dynamics

Queue  
spillbacks

Shock wave 
representation

Multiple vehicle 
classes

Merchant, Nemhauser (1978); 
Smith (1984);
Friesz et al. (1989)

Exit function No No No

Astarita (1996); 
Friesz et al. (1993); 
Wu et al. (1998)

Travel time function No No No

Point Queue Model Vickrey’s model Yes No No
Cell Transmission Model KWT Yes Yes No
Link Transmission Model KWT Yes Yes No
Dynamic Queuing Models DQ (moving + queing) Yes No Yes
Dynamic Queuing Transmission Model KWT, DQ Yes Yes Yes
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This study proposes the development of a DNL 
model that is able to represent shock waves and multiple 
vehicle classes at the same time. The developed model is 
called Dynamic Queuing Transmission Model (DQTM) 
as it combines the ‘good’ properties of the LTM and the 
DQM (Bliemer 2005). The advantage of the combina-
tion of these two models lies in the inclusion of both 
the shock wave property of the LTM (that the DQM 
does not have) and the multiple vehicle class property 
of the DQM (that the LTM does not have). The DQM 
framework allows representing multiple vehicle classes 
by splitting each link into a moving and a queuing part. 
Flows are consistent with the SKWT and each vehicle 
class is characterized by its own fundamental diagram. 
The inflow capacity changes based on the SKWT, and 
the queue density is calculated dynamically from the 
fundamental diagram on the basis of the outflow rates 
and is used then to calculate the length of the queuing 
part. 

This paper is organized as follows. The next section 
describes the model and provides a theoretical compari-
son of the DQTM with the LTM and the DQM. The 
third section presents a case-study of a simple road net-
work consisting of two routes, where both a single-class 
and a multi-class model are observed. Based on the ve-
hicle class features, the single-class DQTM is compared 
with the single-class LTM and a single-class DQM, while 
the multi-class DQTM is compared with the multi-class 
DQM. The fourth section reports on the results of the 
case-study and highlights the differences in the repre-
sentation of spillbacks and shock waves. Finally, the fifth 
section provides conclusions and directions for further 
research.

1. Model Description

This section focuses on the theoretical description of the 
proposed DQTM. Initially, a list of the notations and the 
definitions used in the model is provided, followed by 
a general description of the link and the node models.

1.1. Notations and Definitions
Sets:
A – set of links; 
M – set of vehicle classes;
N – set of nodes;
P – set of all routes on the network;
R – set of origin nodes;
S – set of destination nodes;
T – total simulation period.
Indices:
a – link index, a ∈ A;
m – vehicle class index, m ∈ M;
n – node index, n ∈ N;
p – route index, p ∈ P;
r – origin node index, r ∈ R;
s – destination node index, s ∈ S;
i – time step index.

Input characteristics:
Ca – capacity of link a [pcu/h];

jam
ak  – jam density of link a [pcu/km];
critical
ak  – critical density of link a [pcu/km];

La – length of link a [km];
la – the number of lanes on link a;
c
aq  – critical capacity of link a [pcu/h];

Vam – speed of vehicle class m on link a [km/h];
wa – backward wave speed of link a [km/h];
ρm – passenger car unit [pcu] for vehicle class m.

Variables: 
( )af i  – outflow rate from link a [pcu/h];
( )rs

ampf i  – outflow rate of class m out of link a at time
   step i using route p from origin r to destination
               s [veh/h];

( )amf i  – outflow rate of class m out of link a at time
   step i [veh/h];

( )rs
ampf i  – potential outflow rate of class m out of link

   a at time step i using route p from origin r to
   destination s [veh/h];
( )ai i  – potential inflow rate to link a at time step i 

   [pcu/h];
queue
ak  – queue density of link a [pcu/km];
( )q

aL i  – queue length on link a at time step i [km];
( )rs

ampq i  –  inflow rate of class m vehicles into the 
   queue of link a taking route p from origin r to
   destination s at time step i [veh/h];

( )q
amX i  – the number of vehicles class m in the queuing

   part of link a at time step i;
( )q

aX i  – the number of vehicles in the queuing part of
   link a at time step i;

( )aU i   – cumulative inflow into link a at time step i;
( )aF i   – cumulative outflow for link a at time step i.

1.2. General Description
The proposed DQTM aims at utilizing ‘good’ proper-
ties of the DQM and the LTM. Thus, the framework of 
the proposed model is inspired to the DQM framework, 
but with important changes that allow capturing shock 
waves.

Based on the available literature, the DQM embed-
ded in the Indy software (Bliemer 2005) is used in this 
study in both the theoretical development of the DQTM 
and the case-study. The general framework of the DQM 
Indy considers a link as being divided into a queuing 
and a moving part. The lengths of these two parts are 
variable, and thus are calculated by simulation. The 
moving part is characterized by the free flow conditions, 
where each vehicle can travel with its given free flow 
speed and hence overtaking is not observed between ve-
hicles in the same class (i.e., having the same free flow 
speed), while overtaking is allowed between vehicles of 
different classes. The queuing part is characterized by all 
vehicles having the same speed and the FIFO rule ap-
plies between vehicle classes. The length of the queuing 
part depends on the queue length, which is computed 
by the queue density and the number of vehicles in the 
queue. An important assumption of the DQM Indy is 
that the queue density has a fixed value and is given as 
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an input. Vehicles are expressed in passenger car unit 
[pcu] values in order to represent different classes as a 
homogeneous vehicle class. 

The framework of the LTM observes whole links 
and simply implies calculating the cumulative flows 
at the upstream and the downstream ends of the link. 
What happens in the link is therefore irrelevant, and 
the actual outflow can be simply obtained from the 
sending and the receiving flows. The flow dynamics are 
given by Newell’s SKWT and the triangular fundamen-
tal diagram. The additional property of the LTM is its 
consistency with the FIFO rule, which implies ability of 
representing only a single vehicle class. 

By combining the ‘good’ properties of these models, 
the DQTM is developed as follows. Consider a road net-
work ( )= ,G N A  consisting of nodes N and links A. It 
is assumed that the route choice is known for the entire 
analysis period [0,T]. The DQTM consists of a link and 
node model where, for link a, the input consist of link 
length La [km], free flow speed Vam of vehicle class m 
on link a [km/h], capacity Ca [pcu/h], jam density jam

ak  
[pcu/km]. The link and the node models are detailed in 
the following sections.

1.3. Link Model
The flow-density relationships on the links are captured 
by the triangular fundamental diagram which is given 
for each vehicle class m and link a. The fundamental 
diagram of two vehicle classes is represented in Fig. 1. 
It is assumed that each link a is divided into a moving 
and a queuing part, which are characterized by the free 
flow and congested regimes of the fundamental diagram, 
respectively. Each vehicle class m is characterized by the 
free flow speed Vam, which remains the same over the 
moving part of link a to ensure the FIFO rule within 
the same vehicle class. On the other hand, overtaking is 
possible between different classes (e.g., cars can overtake 
trucks) as in the DQM Indy. The backward wave speed 
wa is given for each link a, and it is the same for all ve-
hicle types traversing the link. This implies that the slope 
of the second part of the fundamental diagram repre-
senting the congested regime is the same for the funda-
mental diagrams of different vehicle classes on link a, 
and this further implies that there is no overtaking in the 
queuing part of link a, where the FIFO rule applies to all 
vehicle classes (e.g., cars stay in queue behind trucks).

In order to calculate the real inflow to the link and 
the real outflow from the link, it is necessary to know 
the queue length ( )q

aL i , the potential outflow ( )rs
ampf i  

[pcu/sec] given for each route p, origin-destination pair 
(r,s), link a, and vehicle class m, and the potential in-
flow ( )ai i  [pcu/sec]. These variables are calculated in 
the link model, and then used in the node model to ob-
tain the actual inflows and outflows.

The queue length is needed in order to determine 
the length of the queuing part, and hence the length of 
the moving part, and it is expressed as:

( )
( )

( )

ρ −
=
∑ 1q

m am
q m
a queue

a a

X i
L i

l k i
,  (1)

where: ρm is measured as [pcu] for vehicle type m; 
( )−1q

amX i  is the number of vehicles of class m in the 
queuing part of link a at time step i–1; la represents the 
number of lanes on link a; queue

ak  is the queue density 
on link a [pcu/km].

Compared to DQM Indy, the queue density is not 
given exogenously as a fixed value, but it is calculated 
from the fundamental diagram and expressed in [pcu] 
as follows:

 
( ) ( ) ( )− −

= + −
1

a

c
a aqueue jamcritical critical

a a ac
a

q f i
k i k k k

q
,  (2)

where: critical
ak  is the density [pcu/km] that corresponds 

to the link capacity; c
aq  is the capacity flow for link a 

[pcu/h]; jam
ak  is the jam density [pcu/km].

All the variables are given as input, with the excep-
tion of the outflow rate fa(i–1) that is calculated in the 
previous time step (i–1). 

Once the queue length is computed, the potential 
inflow and the potential outflow can be calculated. The 
potential outflow represents the flow that would leave a 
link if there were no capacity constraints on the follow-
ing link. It is given by the expression from the DQM 
Indy, and it is characterized by two possible cases, name-
ly whether there is a queue or not. The first case implies 
that, if there is no queue on the link, the outflow rates 
for the vehicle classes are equal to the inflow into the 
tail of the queue, where the tail of the queue is actually 
the downstream end of the link. The second case implies 
that, if there is a queue, the path-specific outflow rate 
for vehicle class m is given by the share of the capacity 

Fig. 1. The fundamental diagram for two vehicle classes
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between different vehicle classes that are on the head of 
the queue. The potential outflow rate can be expressed 
as follows:

( )

( )
( )

( )′ ′
′ ′ ′

′ ′ ′

 >

=  > ρ

∑ ∑ ∑

*

*

( , ) '

, if ( ) 0;

, if ( ) 0,

qrs
amp a

rsrs amp qamp
a ar s

m am p
m r s p

q i X i

q if i C X i
q i

 (3)

where: ( )q
aX i  is the total number of vehicles in the 

queuing part of link a at time step i expressed in [pcu]; 
( )rs

ampq i  is the path-specific inflow into the tail of the 
queue for vehicle class m at time step i; ( )*rs

ampq i  is the 
path-specific inflow into the tail of the queue for vehicle 
class m at time step *i  which coincide with the flow that 
is currently (at time step i) at the head of the queue. 

The potential inflow is defined using the idea of the 
receiving flow from the LTM. It represents the flow that 
would be accepted to the link if there was an infinite 
capacity on the link. It is based on the Newell’s SKWT 
and says that, ‘[…] if a congested traffic state occurs at 
the upstream boundary of the link at time t+Δt it must 

be emitted from the downstream boundary – a

a

L
w

 time 

units earlier, since a congested traffic state travels with 
a (negative) speed w’ (Yperman 2007). Accordingly, 
the following expression defines the potential inflow  
[pcu /sec.] as the minimum of the difference between the 
cumulative flows at the upstream and the downstream 
ends of the link and the capacity of link a divided by 
time step ∆t: 

( ) ( ) ( )
  
  + − + − ∆
  ∆

  =
∆

min 1 ,

( )

q
jam qa c

a a a a a
a

a

L i
F i k L i U i q t

w t
i i

t
, 

(4)

where: Δt is the time step; 
( ) 

 + −
 ∆
 

1
q
a

a
a

L i
F i

w t
 is the cu-

mulative outflow for link a at time step 
( )

+ −
∆

1
q
a

a

L i
i

w t
; 

( )jam q
a ak L i  represents the maximum flow that can be on 

link a [pcu]; ( )aU i  is the cumulative inflow into link a 
at time step i. The component ∆caq t  refers to the num-
ber of vehicles corresponding to the capacity rate c

aq   
[pcu/sec] that can be sent at time step Δt. It should be 
noted that the potential inflow expressed in Eq. (4) de-
pends on the assumption that the backward wave speeds 
are equal across vehicles of different classes.

The outflow rate is calculated for each vehicle class 
m and can be translated into [pcu] values using the fol-
lowing expression:

( )
( ) ( )

( )− = ρ −∑ ∑ ∑
,

1 1rs
a m amp

r s p m
f i f i .  (5)

Considering that this is a very simple calculation, 
it will not increase the computation time substantially 
even for large-scale networks. 

1.4. Node Model
In the node model, the actual outflow and inflow rates 
are calculated. The actual outflow depends on both the 
potential inflow and potential outflow. If there is no con-
gestion, potential inflow will be higher or equal to the 
potential outflow of link a, and all vehicles that want to 
leave the link a will actually leave. In other words, the 
potential outflow will be the actual outflow. In the oppo-
site case, when the potential outflow is higher than the 
potential inflow, the actual outflow will be constrained 
by the potential inflow. This means that some vehicles 
will stay on the link a, and a queue will form. In this 
way, the congestion will be located at the downstream 
end of the link and propagated with the backward wave 
speed w towards the upstream end of the link. Based on 
the queue length that forms in such case (calculated with 
(1)), the length of a queuing and a moving part will be 
calculated. The actual inflow is simply the actual outflow 
from the previous links on the same route.

Although apparently similar to the DQM Indy, very 
important changes have been made and, as supported by 
the example in Section 2, they lead to a more realistic 
output. Firstly, the queue density is assumed to be fixed 
in the DQM, while in the DQTM it is calculated on the 
basis of the link outflow expressed in Eq. (2). Secondly, 
the potential inflow expressed in Eq. (5) is calculated 
using the Newell’s SKWT, which is also used in the LTM 
to calculate the receiving flow, but only for the single-
class model. In the DQM, this variable is represented 
by the inflow capacity, depends on the queue length 
and simply takes the capacity value if the queue length 
is shorter than the link length, and zero if the queue 
length is higher than the link length (i.e., if there is a 
queue spillback). In the DQTM there is no reliance on 
the queue length, but rather on the shock wave effect 
described above. The queue length is however calculated 
in order to use the framework of the multi-class DQM.

2. Case-Study

A case-study is considered using the same network ex-
ample presented in Fig. 2. Firstly, the case-study presents 
a comparison of three single-class models: LTM, DQM 
Indy and DQTM. Secondly, the case-study proposes a 
comparison of a multi-class DQTM and a multi-class 
DQM Indy, since LTM is not able to represent multiple 
vehicle classes. The network consists of one origin-des-
tination pair and two routes. Route 1 includes links 1, 
2, 4 and 6, while route 2 includes links 1, 3, 5 and 6. As 
illustrated in Table 1, link 1 and link 6 have three lanes 
and the largest capacity, links 2, 3, and 5, have two lanes, 
while link 4 has only one lane and hence acts as a bottle-

Fig. 2. Network configuration
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neck. The lane drop on the link 4 will cause congestion 
and potential queue spillback to the upstream links. For 
the single-class case-study, only the free flow speed value 
for class 1 from Table 1 is considered. 

The demand for each route is presented in Table 2 
for both the single-class and the multi-class models. The 
vehicles enter the network during the first 1200 seconds 
of the full simulation time and, in the period between 
300 and 600 seconds of the simulation, the demand ex-
ceeds the capacity of link 4. Before and after this pe-
riod, the demand is less than the network capacity. The 
simulation is completed when all vehicles are propagated 
through the network.

3. Results

The following figures represent the results of the com-
parisons that focus on the travel time and the cumula-
tive flows on the network links. 

The first comparison concerns the single-class 
LTM, DQM Indy and DQTM, and Fig. 3 represents the 
travel times obtained for these three models, each route 
and each vehicle class. It can be seen that there is con-
sistency in the results obtained from the LTM and the 
DQTM. Specifically, in both the LTM and the DQTM 
the queue on route 1 starts forming from about 150 
seconds and the vehicles with this departure time ex-
perience longer travel time. The queue formation then 
follows the increase in demand which is observed from 
300 seconds to 600 seconds. The queue on route 2 starts 
forming together with the increase in the demand. Given 
the network characteristics presented in Table 2 and the 
demand showed in Table 3, it is expected a bottleneck to 
appear at link 4, and hence it is expected that travelers 
on route 1 will experience longer travel time. The de-

mand drops after 600 seconds and the queues start dis-
sipating. Since route 1 has a longer queue, it takes more 
time for its queue to resolve. The difference between 
the LTM and the DQTM is in the peak values of travel 
times for both routes. The similarity between the results 
in these two models can be explained by the same un-
derlying assumptions that describe vehicle propagation. 
In both models, traffic dynamics are given by the trian-
gular fundamental diagram. The additional property of 
the DQTM is the explicit representation of queues since 
it uses the DQM framework where links are divided into 
queuing and moving part. Compared to the LTM and 
the DQTM, the DQM Indy model gives significantly dif-
ferent results. The travel time is shorter for both routes, 
and the queues start forming later and dissipate faster. 
The queues on both routes start forming at the same 
time. The peak values are significantly smaller compared 
to the peak values in the other two models, especially 
for the route 2 where the longest travel time reaches 100 
seconds, which is only 10 seconds more than the free 
flow travel time.

Figs 4–6 represent the cumulative inflows and cu-
mulative outflows for each link obtained for the LTM, 
DQTM and DQM Indy, respectively. Figs 5–6 contain 
additional information on cumulative flows entering the 
queue, since there is an explicit queue representation in 
those two models. 

Fig. 4 represents cumulative inflows and outflows 
for the LTM. In general, the smaller the difference be-
tween these two curves, the faster a vehicle travels over 
a specific link. The horizontal distance between those 
two curves represents the time that a vehicle spends on 
the link. When there is no queue, this time is equal to 
the free flow travel time. When the queue appears, this 

Table 2. Network characteristics

Link characteristics Link 1 Link 2 Link 3 Link 4 Link 5 Link 6

Length [km] 0.9 0.6 0.6 0.3 0.3 0.9
Capacity [pcu/h] 5400 3600 3600 3600 1800 5400
Number of lanes 3 2 2 1 2 3
Jam density [pcu/km] 130 130 130 130 130 130
Free flow speed class 1 [km/h] 108 108 108 108 108 108
Free flow speed class 2 [km/h] 54 54 54 54 54 54
Backward wave speed [km/h] 36 36 36 36 36 36

Table 3. Demand characteristics

Model Time intervals [s]
Demand – Route 1 [veh/h] Demand – Route 2 [veh/h]

Car Truck Car Truck

Single-class models
0–300 1600 – 2200 –

300–600 2300 – 2800 –
600–1200 1000 – 1200 –

Multi-class models
0–300 1000 200 1200 300

300–600 1400 350 1600 400
600–1200 800 100 1000 100
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distance will become larger (see, e.g., link 2) and will 
include also a waiting time spent in the queue. It can be 
noticed from Fig. 4 that the significant queues form on 
link 1, link 2 and link 4, while link 3 and 5 have very 
short queues. The queues on these links appear due to 
reduced capacity (or potential inflow) on the following 
link. However, this capacity drop has different origins. 
The queue on link 2 forms due to the bottleneck on 
link 4, and the bottleneck effect is even larger due to 
the queue on link 4. The queue on link 4, however, has 
an origin in the shock wave effect. A shock wave influ-
ences the capacity of a specific link, and hence can cause 

a queue on the previous link. It is especially easy for a 
queue to occur on link 4 since it has only one lane. The 
shock wave on link 5 causes a small queue on link 3. 
Link 1 has a queue from 450 to around 850 seconds, 
not due to the spillback from link 2 (the queue on link 
2 does not reach the link length), but due to the reduced 
capacity and potential inflow on link 2. These graphs 
also explain the travel time for LTM in Fig. 1. We can see 
that the queue on link 2 starts forming from 400 seconds 
and it is present until almost the end of the simulation. 
Also, link 4 has a queue from almost the beginning to 
the end of the simulation. This explains the much longer 
travel time on route 1 than on route 2, since link 3 and 
link 5 have only negligible queues. Only link 6 does not 
have queues since it is assumed that the capacity after 
this last link is infinite, so all vehicles on link 6 will al-
ways travel at the free flow speed.

The results obtained for the DQTM are represented 
in Fig. 5 and are very similar to the LTM case. Fig. 5 con-
tains only additional information on cumulative flows 
entering the queue for each link, since there is an explicit 
queue representation in the DQTM. When there is no 
queue, this curve overlaps with the cumulative link out-
flow curve. In this case, the vehicles enter an imaginary 
queue located at the end of the link, and leave it auto-
matically. However, when there is a queue, there will be 
a difference between these two curves showing the travel 
time spent in the queue (horizontal difference) and the 
number of vehicles in the queue (vertical difference). 
When there is a queue, the cumulative link inflow curve 
and the cumulative queue inflow curve will be closer, 
indicating a reduced free flow travel time on the link. 
As in the LTM, the significant queues form on links 1, 2 
and 4, and very small queues form on link 3 and link 5. 
Again, the shock wave effect from link 6 has a higher 
influence on link 4 than link 5, since it has only one lane 
and half the capacity of link 5. As previously discussed, 
link 6 does not present any queues.

Fig. 6 represents the cumulative flow for the single-
class DQM Indy. The obtained results are significantly 
different compared with the results from the other two 
models. The first difference is that queues do not form 
on links 1 and 3. Moreover, the queues that form on 
links 2, 4 and 5 are substantially shorter. The reason be-
hind this is that the shock wave property is not included 
in the DQM Indy. The queues that form are due to the 
lane drop on link 4. The travelers on route 2 will also 
experience some waiting time on link 5, since links 4 
and 5 merge into link 6 and a queue on link 4 can also 
block link 5. As a result, vehicles propagate faster and 
have shorter waiting time and travel time. However, the 
absence of queues on links 1 and 3 influences the travel 
time on route 2 significantly, which can explain close to 
free flow travel time on this route (Fig. 3).

Although the LTM and the DQTM present similar 
results, we can observe that, the latter is able not only 
to capture the shock wave effect and to represent the 
queues explicitly, but also to account for multiple vehicle 
classes. Accordingly, the second comparison concerns 
the multi-class DQTM and the multi-class DQM Indy. 

Fig. 3. Travel time for the single-class models
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Fig.  7 represents the travel times obtained for 
each route and each vehicle type for the DQTM and 
the DQM. It can be noticed a significant difference in 
travel times between different vehicle classes, with class 
2 having a higher travel time for both routes and both 
models. Since this vehicle class has indeed a lower speed 
(Table 2), the longer travel time is correctly captured by 
the models. However, the values of the travel times for 
the two models are substantially different. For route 
1, the travel time in both models has a free flow value 
(90 seconds for class 1 and 180 seconds for class 2) for 
around 300 seconds of the simulation (when the demand 
is less than the network capacity) and starts increasing 
with the increase in the demand. However, it can be seen 
that the DQTM has a higher travel time on route 1 than 
the DQM for both vehicle classes. For class 1, the travel 

time reaches around 320 seconds in the DQTM, while 
in the DQM it is around 200 seconds. For class 2, the 
difference is the same, only that the travel times are even 
higher and reach 400 seconds for the DQTM and about 
325 seconds for the DQM. Moreover, the queue on route 
1 dissolves more slowly in the DQTM and it is present 
until almost the end of the departure time (since the 
travel time is higher than the free flow travel time until 
the end of the departure time period). As for route 2, 
in the DQM both vehicle classes travel with their free 
flow speeds during the entire departure time period and 
there is no queue. In the DQTM, a queue forms on route 
2 as well, and it results in the increased travel time for 
both vehicle classes. For class 1, the vehicles departing 
after 300 seconds experience a queue, which is present 
until 900 seconds of the departure time. For class 2, the 
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Fig. 4. Cumulative flows for single-class LTM
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queue forms and dissolves a little bit later. Noticeably, 
it can be concluded that the models give quite different 
output and the following figures explain the origin of the 
differences in more detail.

As in the single-class case, the multi-class models 
are observed thorough their cumulative link values. As 
both DQM Indy and DQTM can present queues ex-
plicitly, three cumulative link values are considered in 
Fig. 8 for the DQTM and Fig. 9 for the DQM: cumula-
tive link inflow, cumulative queue inflow and cumulative 
link outflow. In the DQTM the queues form for both 
vehicle classes on all links with the exception of link 6. 
The origins of these queues are the same as in the single-
class case. The queue on link 2 is the longest due to the 
presence of the lane drop on link 4, as well as the shock 
wave from link 2 and the reduced potential inflow to 

link 4. The queues on the other links are caused by the 
shock waves on the respective previous links. Further, 
the cumulative number of vehicles for class 2 are smaller 
than for class 1 for all links, and this is due to the lower 
demand of this vehicle type (Table 3). It can be noticed 
from Fig. 8 that the queues for both vehicle classes are 
present during similar time periods for all links. Also, 
the waiting time in the queues is almost the same for 
the two classes, which is indicated by the horizontal dif-
ference between the cumulative queue inflow and cu-
mulative link outflow. However, the vertical difference 
is significantly smaller for class 2, indicating the smaller 
number of vehicles of class 2 on the network. In some 
cases, class 1 has even a longer waiting time. This is be-
cause this class is faster and overtakes vehicles from class 
2 on the moving part of the links, and hence arrives first 
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Fig. 5. Cumulative flows for single-class DQTM
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Fig. 6. Cumulative flows for single-class DQM
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Fig. 7. Travel time for multi-class DQTM and DQM
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into the tail of the queue and then experiences longer 
waiting time. This phenomenon can be observed also 
on Fig. 6 for the DQTM, where class 1 on route 2 has a 
jump in the travel time from 90 seconds (free flow travel 
time) to 160 seconds, while class 2 has a jump from 180 
seconds (free flow travel time) to 225 seconds. However, 
a very similar waiting time in the queue is due to the 
FIFO rule in the queuing part. The different moment of 
arrival into the tail of the queue results in longer waiting 
time for faster vehicle class.

The same plots are given for the multi-class DQM 
in Fig. 9. In this model, for the same demand, queues 
form only on link 2 and link 4, which explains the free 
flow travel time on route 2 throughout the simulation. 

Even the queues that form on links 2 and 4 are smaller 
and present during a shorter time period compared to 
the queues on these links in the DQTM (Fig.  8). The 
significantly different results can be explained by the 
representation of shock waves in the DQTM. First of all, 
the queues on the other links that appear in the DQTM 
are due to this property, and hence cannot be captured 
by the DQM. Furthermore, the queues that exist in both 
models are different due to a different representation of 
link capacities in these models and again, the shock 
waves influence the value of the potential inflow in the 
DQTM. Queues dissipate slowlier in the DQTM due to 
the fact that empty car slots are not automatically no-
ticed by the vehicle behind it, but this information is 

Fig. 8. Cumulative flows for multi-class DQTM
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propagated with the backward wave speed. On the other 
hand, in the DQM an empty car slot is automatically 
noticed, even if a queue is very long. This is counterin-
tuitive, since it takes some time for all the vehicles in a 
queue to advance and make space for a new vehicle at 
the tail of the queue. This indicates that queues dissipate 
in different directions in the DQTM and the DQM, as 
also noticed for the LTM an the DQM Indy by Yperman 
(2007). The queues in the DQM Indy dissipate from the 
tail, while the queues in the DQTM dissipate from the 
head of the queue.

Summary and Conclusions

The realistic vehicles propagation in a congested net-
work plays an important role in transportation network 
analysis. During the last few decades, research has been 
conducted in order to represent traffic dynamics, queues 
and spillbacks as realistically as possible. Macroscopic 
DNL models offer very well-known CTM and LTM as 
the models able to capture the shock wave effect, but 
not able to take multiple vehicle classes into account. On 
the other hand, DQM suggest a different approach on 

Fig. 9. Cumulative flows for multi-class DQM
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vehicle propagation without capturing shock waves, but 
being able to include multiple vehicle types. 

This paper offers a new DNL model called DQTM. 
The main advantage of the proposed model lies in its 
ability to represent both multiple vehicle classes and 
shock waves, as the existing models deal with only either 
one of these properties. The model has been applied to a 
simple network problem where it is compared with the 
LTM and the DQM from the INDY software package 
through a case-study. 

The first comparison deals with the single-class 
LTM, DQM and DQTM, while the second case-study 
compares multi-class DQTM and multi-class DQM. The 
first case-study indicates that the LTM and the DQTM 
give similar results and hence that the shock wave prop-
erty is properly included in the DQTM. Substantially 
different results obtained by the single-class DQM show 
the importance of capturing shock waves, and that the 
travel time will be underestimated without this property. 

The second comparison indicates that the DQTM 
is able to represent multiple vehicle types. Namely, the 
significant difference in the travel times for different 
vehicle types in both models indicates the importance 
of the multi-class DNL model. This difference appears 
due to different free flow travel times, and also differ-
ent moment of vehicle arrival into the tail of the queue. 
A faster vehicle can experience longer waiting time, be-
cause it can overtake a slower vehicle type on a moving 
part and enter a queuing part earlier. However, the travel 
times obtained by the DQTM and the DQM are, as ex-
pected, very different. The shock wave effect in DQTM 
plays a tremendous role in the vehicle propagation. It 
ensures a more realistic representation of queue forma-
tion and dissipation and gives more accurate travel time 
as an output. The DQM Indy gives shorter travel time 
compared to both the single-class LTM and DQTM, and 
the multi-class DQTM. This shows that the absence of 
shock wave property in the model can underestimate 
travel time. 

Lastly, the computation performances of the mod-
els are comparable on the small-scale test network, and 
further research is needed to implement the model 
in large-scale networks. Moreover, depending on the 
model application, there are several aspects that can be 
further developed for the application of the model. If 
the model is applied in practice, the triangular funda-
mental diagram can be modified based on the empirical 
data, so that it can more accurately describe a specific 
flow-density relationship. In addition, an explicit repre-
sentation of lane groups would lead to a more realistic 
output. Namely, it could happen that a queue in one 
turning movement artificially blocks vehicles in other 
movements if there is no explicit queue representation 
throughout different lane groups. Finally, as the KWT is 
usually used to describe traffic dynamics on motorway 
networks, the model can be extended in order to include 
intersection modelling, and hence can be applied also to 
urban networks.
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