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Abstract. The article presents a mathematical model for assessing the real operating conditions of railway rolling 
stock, taking into account the situations when the wheel loses contact with rail. The obtained amplitudinal fluctuation 
characteristics depend on the set roughness function and the running speed of the wheel. When calculating dynamic 
processes, the contact between wheel and rail should be considered unstable. With the increase of speed, the impact of 
this instability increases.
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1. Introduction 

The determination of forces acting between wheel and 
rail and shifts is very important not only for the opera-
tional characteristics of rolling stock – traction, vibra-
tions, fuel consumption etc. – but also for the reliabil-
ity and durability of chassis and the entire rolling stock. 
Having determined the above introduced parameters, 
it is possible to more positively solve the tasks of traffic 
smoothness and comfort and noise reduction. The arti-
cle presents some examples of a dynamic calculation of 
the wheel-rail pair.

2. Survey of works 

Many researchers, when modelling the movement of 
railway stock chassis on rails, use the geometric and me-
chanical properties of contacting bodies and apply vari-
ous theories to determine the acting forces of slipping 
bodies by Kalker (1967), Lata (2008), Polách (2002), Cza-
plicki (2007), Verigo and Kogan (Вериго, Коган 1986). 
However, considering or ignoring the track roughness, 
they most frequently examine the models of wheel-to-
rail interaction with the assumption that the wheel rolls 
in an uninterruptible manner. In order to simplify the 
mathematical models, the authors choose plane-type 
calculation schemes i.e. on vertical or horizontal planes. 
Nevertheless, in order to more accurately determine 

variation parameters, it is expedient to examine a spa-
tial scheme of the model. A number of authors includ-
ing Danovich (Данович 1981) and Myamlin (Мямлин 
2002) have examined mathematical variation models but 
only some of the works by Myamlin (Мямлин 2003) at-
tempted to mathematically describe the process of the 
detachment of wheel from rail.

A correct mathematical description of the inter-
action between wheel and rail when determining the 
forced vibrations of chassis will be very helpful to more 
accurately calculate dynamic indices, especially those 
having a strong influence on traffic safety.

3. Mathematical model

We will examine a mathematical model of wheel-to-rail 
interaction, taking into consideration the detachment of 
wheel from rail when the wheel looses contact with rail.

Let’s suppose that the wheel is affected by force Q. 
Then y shall be rail bend, and R(y) – rail reaction to the 
bend. When there is contact between wheel and rail, we 
may generate the following differential equation:

( )
2

2
d y

m R y Q
dt

⋅ = − + , (1) 
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where: m is the weight of the wheel; t is time; y is vertical 
displacement (rail bend).

This is the main equation which allowed for Blochin 
et al. (Блохин и др. 1986) to obtain tensions in linear rail 
and in rail with roughness η(x) when the wheel rolls in 
steady speed ν; x is horizontal displacement.

Instead of equation (1), let’s examine the equation 
of the following type:

( ) ( )
2

2
d y

m R y H y Q
dt

⋅ = − ⋅ + , (2)

where H(y) is a Heaviside function, i.e..:

( ) 0, 0;
1, 0.

when y
H y

when y
≤=  >

In case of the presence of inequalities on rail, then, 
when selecting under x reference point in the beginning of 
inequality, the differential equation may be put as follows:

( ) ( ) ( )22

2 2

d v td y
m R y H y Q m

dt dt

η ⋅
⋅ = − ⋅ + − ⋅ ,   (3)

and it is correct in case of 0, /t v⊂    , where  is the 
length of inequality; η(x) = η(ν · t) is rail roughness.

Further, we will assume that rail reaction to the 
bend y conforms to the reaction of a resilient – plastic 
body and may be expressed as follows:

( ) dy
R y k y

dt
= β⋅ + ⋅ ,  (4)

where β is damping coefficient, k is stiffness coefficient.
Strictly speaking, this reaction also depends on the 

location where the wheel contacts the rail (between ties or 
at a tie), then instead of (4) we will use the expression:

( ) ( ),
dy

R y x k y x
dt

 = β⋅ + ⋅ ⋅ϕ   ,  (5)

where φ(x) is a periodic function with the period equal 
to the distance between ties.

In order to make the mathematical model of the 
wheel – rail interaction that better conforms to real condi-
tions, let’s examine the calculation scheme shown in Fig. 1.

Just as previously, y1 will mean rail bend in the place 
of contact with the wheel, and y2 – h will mean the weight 
centre coordinate of body C, then:

( ) ( )1 2m y r M y h
y

m M
⋅ + + ⋅ −

=
+

,  (6)

where: m is the weight of the wheel; M is the weight of 
the body C; r is the wheel radius, the following system of 
differential equations is made:

m
d y
dt

R y x H y R y m g⋅ = − ( )⋅ ( ) + ( ) + ⋅
2

1
2 1 1 1 2, , (7) 

m M
d y
dt

R y x H y m M g

+( )⋅ =

− ( )⋅ ( ) + +( )⋅

2

2

1 1, ,  (8)

where M is the weight of body C, r is wheel radius, R1(y2) 
is the reaction of the resilient suspension that may be ex-
pressed as follows:

( ) 2
1 2 1 1 2

dy
R y k y

dt
= β ⋅ + ⋅ . (9)

where β1 is damping coefficient, k1 is stiffness coefficient.
From (6) we determine the y2:

( )1
2

y y r h
y

− α ⋅ + + β⋅
=

β
, (10)

where 
m

M m
α =

+
; M

M m
β =

+
.

Now, after inserting y2 into equations (7) and (8), 
we obtain the following system of differential equations:

( ) ( )
( )

( ) ( ) ( ) ( )

2
1

1 12

1
1 1

2

1 12

,

;

, ,

d y
m R y x H y

dt
y y r

R y r h m g

d y
m M R y x H y m M g

dt


⋅ = − ⋅ +


  − α ⋅ + ⋅ − − − + ⋅  β 

 + ⋅ = − ⋅ + + ⋅
  
 

(11)

which describes the interaction between wheel and rail 
when there are no inequalities neither on the rail nor on 
the wheel rolling surface.

After writing down the equation (1) as follows:

2

22 2
d z dz

n p z g
dtdt

+ ⋅ + ⋅ = , (12)

where: z is transformed vertical displacement; n is damp-
ing coefficient; p2 is stiffness coefficient.

The obtained general solution in analytical forms is 
as follows:

Fig. 1. Wheel and rail contact calculation scheme  
with resilient suspension
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( )
( )( ) ( )

( )( ) ( )

2 2

2

2 2

2 2

:

1
2

1
2

n a t

n a t

sol z t

e n g n p a g a p

a p

e n g n p a g a p g
a p p

− + ⋅

− − ⋅

= =

⋅ − ⋅ + ⋅ − ⋅ + ⋅
⋅ +

⋅

⋅ ⋅ − ⋅ − ⋅ + ⋅
⋅ +

⋅ , (13)

where 2
2a n p= − .

When assuming that n = 5 kg/s; p2 = 500 N/m; g = 
9.8 m/s2 the solution acquires the following form:

z t e
t( ) = − ⋅ ×

+ ⋅ −( ) ×

− −

− + −( )⋅( )1
475000

2451 0 490 2 475

475
1

475

5 475

. .

0000
2451 0 490 2 475

475 0 0196

5 475
⋅ ×

− + ⋅ −( ) ×

− +

− − −( )⋅( )e
t

. .

. .  (14)

A graphic interpretation of this solution is present-
ed in Figure 2.

Under the same assumptions, equation (2) will ac-
quire the following form:

( ) ( ) ( )

( )( )

2

2: 10 500

Heaviside 9.8.

d y t dy t
dee y t

dtdt

y t

    
= + ⋅ + ⋅ ×    

   

=  (15)

In general case, there are no possibilities to obtain 
an analytical solution of this equation, though it could be 
presented as a solution of equation (1), when y(t) ≥ 0 and 
when y(t) < 0 we get the following:

2

2 9.8
d y
dt

= . (16)

When the initial conditions y(t*) = 0 and ′ ( ) = ′( )y t z t* * = 
′ ( ) = ′( )y t z t* * , where ′ ( ) = ′( )y t z t* * is minimum time when y(t) becomes 

equal to 0. Using the presented solution methods of dif-
ferential equations, we get the results shown in Fig 3.

When comparing the charts presented in Figs 2 and 
3, we can see that y(t) disagrees not only quantitatively 
but also significantly differs qualitatively.

All calculations were made using the Maple bundle 
by Matrosov (2001) that allows obtaining the analytical 
solution when it is presented as elementary functions or 
a numeric solution in a graphic form.

Let’s make some calculations for a rolling wheel 
when inequality:

( )
21 cos

2

v tf
t

 ⋅ π ⋅ ⋅ ⋅ −     
η =



, (17)

when f is coefficient.

–0.01

Fig. 2. Chart of the solution of equation (1)
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Fig. 3. Chart of the solution of equation (2)
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Fig. 4. Chart of the solution of equation (1) (v = 60 m/s)
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Fig. 5. Chart of the solution of equation (3) (v = 60 m/s)
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For example, when speed v = 60 m/s (216 km/h) 
(1), the equation will look as follows:

del
d z t

dt

dz t
dt

z t:

. . cos

=
( )

+ ⋅
( )







 + ⋅ ( ) =

− ⋅ ⋅

2

2 10 2195

9 80 3 60 12 ππ π⋅( )⋅t 2 ,  (18)

and its solution is shown in Fig. 4.
In this case, equation (3) acquires the following 

form:

( ) ( )

( ) ( )( )
( )

2

2

2

: 10

2195 Heaviside

9.80 3.60 cos 12 .

d y t dy t
dee

dtdt

y t y t

t

 
= + ⋅ + 

 

⋅ ⋅ =

− ⋅ ⋅ π ⋅ ⋅ π  (19)

The solution was made using the Runge-Kutt meth-
od a graphic interpretation of which is shown in Fig. 5.

In order to compare the impact of speeds, let’s make 
the solutions of equations (1) and (3) when speed v = 
80 m/s (288 km/h) (see Figs 6 and 7).

4. Conclusions

1. The presented numeric calculations should be eva-
luated as modelling examples which confirm that 
when calculating the dynamic processes taking pla-
ce in railway rolling stock, it is necessary to come 
into the contact between wheel and rail as unstable 
and having a significant influence on the operational 
parameters. 

2. The higher is the speed, the stronger is the 
influence. 

3. This is very important for selecting chasses for 
modern rolling stock, since with the increase of 
speeds higher requirements are put in respect of 
passenger comfort.
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