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1. Introduction and background

Delay is one of the principal parameters used as the 
measure of effectiveness (MOE) to determine the level 
of service (LOS) at signalized intersections. The accurate 
prediction of delay is, therefore, important. Delay can be 
measured in the field or estimated using analytical mod-
els. Stochastic steady state, which was investigated by 
Webster (1958), Tanner (1962) and Miller (1968), and 
deterministic models, which were investigated by May 
and Keller (1967), Neuberger (1971) and Pignataro el al. 
(1978), have been commonly used in the estimation of 
delay at signalized intersections for undersaturated and 
oversaturated traffic conditions, respectively. However, as 
pointed out by Hurdle (1984), both types of delay mod-
els are entirely incompatible when degree of saturation is 
equal to 1.0. While the first model predicts infinite delay 
the latter estimates zero delay at this degree of saturation. 
To provide more realistic delay estimates and overcome 
the deficiencies in both models, time-dependent delay 
models have been developed, this problem is investigat-
ed by Burrow (1989), Catling (1977), Brilon, Wu (1990), 
Akcelik (1980, 1988), in Special Report (1994), Highway 
Capacity Manual (2000) and by Teply (1995). They are 
actually a mix of steady state and deterministic models 
utilizing the coordinate transformation techniques de-
scribed by Kimber and Hollis (1978, 1979). The coordi-
nate transformation is applied to the steady state curve, 
and smoothes it into deterministic line by making the 

steady state curve asymptotic to the deterministic line as 
shown in Fig. 1. 

Thus, time-dependent delay models predict delay for 
both undersaturated and oversaturated conditions with-
out having a discontinuity at the degree of saturation 1.0.  
Generally, time-dependent delay models consist of uni-
form and overflow delay terms given by Equation 1: 

d = du + d0 (1)

in which d is average total delay (sec), du is uniform delay 
(sec) and d0 is overflow delay (sec).

1.1. Uniform delay
Uniform delay resulting from the interruption of 

traffic flow by the traffic signals at intersections is esti-
mated by assuming that vehicles arrive at a uniform and 
constant arrival rate during each signal cycle, and can 
be derived from a deterministic queuing theory. For un-
dersaturated conditions, the uniform delay is calculated 
using the well-known delay model developed by Webster 
and Cobbe (1966) as follows: 
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where C is cycle time (sec), g is green time (sec), and x 
is degree of saturation indicating the ratio of arrival flow 
(or demand) to capacity (i.e., v/c). 
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Values of x beyond 1.0 are not used in evaluating the 
delay in Equation 2. Therefore, uniform delay is comput-
ed by Equation for oversaturated conditions:

0.5( )ud C g= − . (3)

1.2. Overflow delay
Overflow delay is additional delay experienced by vehi-
cles arriving during a specified flow period, which result-
ed from temporary oversaturation and continuous over-
saturation. Overflow delay, which is defined in Equation 
4 and estimated by Equation 5, consists of random and 
continuous overflow delays. Random overflow delay is 
caused by the fluctuation in vehicle arrivals. It occurs 
during some signal cycles in both undersaturated and 
oversaturated conditions. For low degrees of saturation, 
the effect of the randomness in arrivals is not important 
because total arrivals are much less than the capacity. 
Conversely, for high degrees of saturation and especially 
when arrival flow approaches the capacity, the effect of 
randomness increases sharply. Continuous overflow de-
lay is the delay experienced by vehicles which are unable 
to discharge within the signal cycle since the arrival flow 
is greater than the capacity.  Continuous overflow delay, 
as seen in Equation 6, is directly proportional to analysis 
period T.

o ro cod d d= + , (4)
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1.3. Delay parameter
Arrival and service characteristics at a signalized in-
tersection determine level of delay, stop rate, emission 
consumption, and a queue on the approach.  These char-
acteristics are described by a delay parameter k.  The an-
alytical equations developed for estimating the delay pa-
rameter k are obtained by using either queuing analysis 
approach or empirical approach. The queuing analysis 
approach, which is mostly based on statistical distribu-
tions and probability theory, can be employed for a de-
terministic or a stochastic process, this problem is inves-
tigated by May (1990), Gerlough and Huber (1975). To 
estimate the delay parameter k with the queuing analysis 
approach, it is necessary to know the arrival, service and 
queue discipline characteristics on the road. On the oth-
er hand, if there is not any information about the queu-
ing characteristics, an empirical approach is employed to 
estimate by calibrating the delay parameter k to fit the 
random simulated delay.     

The coefficient Cp, known as Pollaczek-Khintchine 
expression, given in Equation 7, is used to represent the 
queuing characteristics at an intersection, and it also re-
fers to the delay parameter k in overflow delay term of 
time-dependent delay models.

( )21 1
2p sC v= + , (7)

where vs
2 – coefficient of variation of service time dis-

tributions.
Kimber et al. (1986) modified the Pollaczek-

Khintchine expression utilizing computer simulation 
techniques to account for the effects of non-randomness 
in arrival pattern. For their study, they simulated a sin-
gle service first come-first serve queuing process. Arrival 
and service times were drawn from a lognormal distribu-

fig. 1. Coordinate transformation technique (Kimber, Hollis 1979)
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tion. In addition, equivalent analytical calculations were 
performed for Erlang 2 and hyper-exponential arrivals. 
They found that the average delay parameter could be 
approximated closely by the Pollaczek-Khintchine ex-
pression. Their modified expression is given by:

( )2 21
2 a sk v v= + , (8)

where va
2 – coefficient of variation of arrival time distri-

butions.
Kimber and Daly (1986) reported that vs varies be-

tween 0.75 and 1.25 for road traffic. For random arriv-
als and departures, such as at unsignalized intersections, 
va = vs = 1, so k = 1. On the other hand, for random arriv-
als and uniform departures, such as at fixed time signal-
ized intersections, va = 1, vs = 0 resulting in k = 0.5.

1.4. Previous studies relating delay parameter k to 
other factors 

Akcelik and Rouphail (1993, 1994) used a cycle by 
cycle simulation model to develop an expression for the 
delay parameter k as a function of capacity per cycle.  The 
parameters k and x0 were derived from the simulation 
for random and platooned arrivals using the steady state 
delay model. Then, these two parameters were applied 
to the time-dependent delay model using a coordinate 
transformation technique. The expression k developed 
by Akcelik and Rouphail (1993) is given by: 

0.221.22( )k s g −= , (9)

where s is saturation flow (veh/sec) and g is green time 
(sec).

The above expression is only applied when the de-
gree of saturation x is greater than 0.5, and the k values in 
Equation 9 range from 1 to 0.5 while sg values vary from 
3 to 60 vehicles per cycle.

Akcelik and Rouphail (1994) also developed a de-
lay parameter k given in Equations 10 and 11 for pla-
tooned arrivals. In their model, k is not only a function 
of capacity per cycle but also a function of the magnitude 
of the platooning (PIP) and the cycle to cycle variation 
in the arriving stream.  The magnitude of platooning is 
equivalent to the proportion of vehicles stopped at the 
upstream intersection.

( )( )-0.221.22 0.527k PIP sg= −    for x0 = 0.5, (10) 

( ) 0.220.302
1

k sg
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−

   for x0 > 0.5. (11)

Tarko et al. (1994) developed a model using the 
difference between the upstream and downstream in-
tersection capacities to describe the delay parameter k.  
While they were developing a model related to the delay 
parameter k for platooned arrivals, accepting the basic 
theory that is random, overflow delay approaches to zero 
when the capacity at upstream intersection  is less than 
or equal to the capacity at the downstream intersection.  
The model is then expressed as follows:

0k k f= , (12)

where k0  is  model parameter for an isolated intersection, 
and  f is the adjustment factor for upstream conditions as 
a function of the difference between the upstream and 
downstream capacities. The f term in the model is ex-
pressed as follows:

f = 1   when (sg)u >> (sg)d,     (13)

0 < f < 1   when (sg)u > (sg)d,     (14)

f = 0   when (sg)u < (sg)d, (15)

where (sg)u is the upstream capacity in vehicles per cy-
cle and (sg)d is the downstream capacity in vehicles per 
cycle.

After calibration, the final expression of the delay 
parameter k in the stochastic steady state form is given 
in Equation 16.
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. (16)

The calibrated delay parameter k is true for (sg)u > 
(sg)d and x > (sg)d / 100. When these conditions are not 
met, it becomes zero. 

Daniel et al. (1996) presented a model given in 
Equation 17 using an empirical approach for the three 
signal controller types (pre-timed, semi- actuated and 
fully- actuated) to express the delay parameter k at sig-
nalized intersections. Daniel et al. (1996) calibrated the 
delay parameter k by substituting the measured overflow 
delay in the time-dependent model and solving for k. As 
seen in Equation 17, the model was expressed as a func-
tion of degree of saturation and it is only valid for the 
values of degree of saturation from 0.5 to 1.0. 

0 1k e xβ β=       (17)

in which β0 and β1 are regression coefficients, and x is 
degree of saturation.

Akgungor and Bullen (2007) performed another 
study utilizing empirical approach and simulation tech-
nique for pre-timed signalized intersections. The follow-
ing model in Equation 18 provides an alternative form 
for the delay parameter k which is applicable to all de-
grees of saturation and for variable demand conditions.

20.8 1.4 1.1k x x= − + .  (18)

Kimber and Daly (1986) proved that the ratio be-
tween standard deviation and the mean of the arrival 
headway is not always 1.0, and it changes between 0.75 
and 1.25 according to different traffic and time condi-
tions. Therefore, it is not suitable to use a fixed value for 
k in the delay estimation models while traffic and time 
conditions vary during course of the day. Whereas, for 
pre-timed signalized intersections, Australian, Canadian 
and HCM 2000 delay models use a fixed value for the de-
lay parameter k. The last two models take a fixed value of 
0.5 for k based on a queuing model with random arrivals 
and uniform departures. The Australian model also uses 
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a constant value of 1.5 instead of 0.5 for k. However, large 
k value in this model is compensated by an additional 
parameter x0 called the degree of saturation below which 
the overflow delay is zero. 

2. Research approach and methodology

The previous studies have analyzed the relationship be-
tween the delay parameter k and some factors affecting 
delay such as, capacity and degree of saturation. Besides 
these factors, arrival and service characteristics and 
amount of delay at a signalized intersection vary de-
pending on analysis time period T. Therefore, this study 
is performed to investigate the relation between the de-
lay parameter k and analysis time period T.

If there is no information about queuing character-
istics of a signalized intersection, empirical approach is 
used to estimate the delay parameter k. In this approach, 
random delay is drawn from total delay which is ob-
tained from simulation or observed in the field. Later, 
k values are calculated by using random delays and the 
delay model is developed by means of obtained results. 
The main principle of the method used in this study is 
to analyze different compounds of total delay (uniform, 
random overflow and continuous overflow delays). For 
unsaturated traffic flow conditions, Equation 2 is used 
to determine uniform delay and Equation 5 is utilized 
to determine overflow delay. While continuous overflow 
delay only takes place where flow is greater than capacity, 
random overflow delay can occur in all types of satura-
tion conditions. Therefore, random overflow delay is a 
key term for the modeling of k parameter. Equations 1 
and 4, along with Fig. 2, show mathematical and graphi-
cal meanings of delay terms.

In undersaturated traffic conditions, where flow is 
less than capacity, continuous overflow delay is zero. In 
this case, delay obtained from simulations is the sum of 
uniform and random overflow delays. In order to obtain 

the random overflow delay, the simulated delay should 
always be greater than the uniform delay. If uniform de-
lay is less than the simulated delay, the random overflow 
delay is considered to be zero.

In oversaturated traffic conditions, the random over-
flow delay is estimated by taking the difference between the 
simulated delay and the sum of uniform and continuous 
overflow delays. For both traffic flow conditions, k values 
can be calculated through substitution of simulated ran-
dom overflow values into time-dependent delay model. 

3. Experimental design and model development

As mentioned earlier, a number of studies on the esti-
mation of delay parameter k were presented in the lit-
erature. The relationship between k values and other 
parameters affecting delay, such as capacity and degree 
of saturation, was investigated. The analysis period T is 
an essential parameter to determine the level of delay at 
signalized intersections, especially during oversaturated 
traffic conditions. Therefore, in this study, k was modeled 
as a function of T to better describe variable traffic con-
ditions in delay estimations. 

The simulated intersection in this study consisted of 
one lane for every approach. The link length of the in-
tersection was set to 3 000 ft (914 m) for each approach. 
The intersection operated under two phases with a cycle 
length of 90 seconds. Green time on the major and minor 
approaches was 45 and 35 seconds, respectively. Yellow 
and all red intervals for all approaches at the intersection 
were 3 and 2 seconds, respectively. Saturation flow rate 
was 1800 vphpl with mean discharge headway of 2 sec-
onds per vehicle. A start-up lost time of 2 seconds and a 
free flow speed of 30 mph (~48 km/h) were used in the 
simulation runs. The entry link volumes were 630 vph for 
major approaches and 490 vph for minor approaches.  

In the experiments, the analysis time period varied 
from 15 minutes to 1 hour and 15 runs were performed 
for each analysis time period. In each simulation run, 
a different random seed number was used to account 
for the variability in driver and vehicle characteristics. 
However, they were kept constant between runs to have 
identical traffic movements while different analysis time 
periods were being compared. By utilizing the method-
ology explained above, k values were computed for each 
analysis period and following that the delay parameter 
k is modeled using the best-fitted curve. The developed 
model is expressed in Equation 19. As shown in Table 1, 
the delay parameter k varied from 0.6159 to 0.6923 while 
analysis period ranged between 0.25 and 1 hour.

0 08440 6923 .k . T= .             (19)

4. Comparison of existing models with the proposed 
model

The data obtained from simulations for k values were 
analyzed statistically to evaluate the reliability of the de-
veloped model. The summary of the statistical analysis 
belonged to k values of proposed model is given in Ta-
ble 2. The performance of the delay model proposed in 

 

fig. 2.  A general delay function for delay components 
(Akcelik 1980)
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this research was also evaluated by comparing with the 
Australian, Canadian, HCM 2000 delay models as well 
as the deterministic delay model defined by Equation 6. 
Here, only the overflow delays were considered since the 
above delay models have a similar expression for the uni-
form delay. The performance study was accomplished for 
traffic conditions with a cycle length of 90 seconds, an ef-
fective green time of 30 seconds and a saturation rate of 
1500 vph giving a capacity of 500 vph. 

In the performance and validation studies of the 
proposed model to existing delay models, the progress 
adjustment factor (PF), the incremental delay calibration 
factor (k) and the upstream filtering adjustment factor (I) 
in the HCM 2000 delay model were taken as 1.0, 0.5 and 
1.0, respectively. In addition, d3 term, initial queue delay, 
in HCM 2000 delay model was assumed as zero. Thus, it 
was presumed that there was no queue at the beginning 
of analysis period. The degrees of saturation were select-
ed from 0.1 to 2.0, so that arrival flows changed from 
50 to 1000 vph. Four periods starting from 15 minutes 
to 1 hour by 15-minute increments were considered for 
analyses.  A comparison of overflow delay estimates for a 
15-minute analysis period is shown in Table 3.

From Table 3, as compared with other models, the 
proposed model slightly overestimates overflow delays 
for undersaturated conditions. The Australian delay 
model gives lower values and predicts zero overflow de-
lay at x values below 0.7 because of x0.  When the degree 
of saturation x is at around 1.0, all the model estimations 
of overflow delay are around 40 seconds. On the other 
hand, for oversaturated traffic conditions, the overflow 
delay estimated by the proposed model is less than that 
of the Australian Model but over than that of the Cana-

Table 1. Analysis periods T (in hours) and developed delay 
parameter k values

Analysis period T (in hours) k values
0.25 0.6159
0.30 0.6254
0.35 0.6336
0.40 0.6408
0.45 0.6472
0.50 0.6530
0.55 0.6582
0.60 0.6631
0.65 0.6676
0.70 0.6718
0.75 0.6757
0.80 0.6794
0.85 0.6829
0.90 0.6862
0.95 0.6893
1.00 0.6923

Table 2. Summary statistics for k values
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0.25 0.609 1.524 0.037 0.292 0.535–0.683 12.1
0.50 0.667 0.962 0.029 0.225 0.609–0.723 8.5
0.75 0.676 0.852 0.026 0.204 0.624–0.728 7.7
1.00 0.685 0.773 0.024 0.189 0.636–0.732 7.0

Table 3. Comparison of estimated overflow delays produced by proposed and existing delay models (analysis time period T = 0.25h)

Degree  of  
saturation

Proposed 
delay model 

estimates

Australian delay 
model estimates

Relative 
errors 

(%)

Canadian and HCM 
2000 delay model 

estimates

Relative 
errors 

(%)

Deterministic 
delay model 

estimates

Relative  
errors  

(%)  
0.1 0.49 – – 0.40 18.37 – –
0.2 1.11 – – 0.90 18.92 – –
0.3 1.89 – – 1.54 18.52 – –
0.4 2.92 – – 2.38 18.49 – –
0.5 4.35 – – 3.54 18.62 – –
0.6 6.42 – – 5.25 18.22 – –
0.7 9.66 0.32 96.69 7.93 17.91 – –
0.8 15.18 5.54 63.50 12.63 16.80 – –
0.9 25.48 16.51 35.20 21.82 14.36 – –
1.0 44.67 38.75 13.25 40.25 9.89 – –
1.1 74.47 72.44 2.73 70.34 5.55 45.00 39.57
1.2 111.48 112.07 –0.53 108.00 3.12 90.00 19.27
1.3 152.06 154.19 –1.40 149.12 1.93 135.00 11.22
1.4 194.37 197.45 –1.58 191.82 1.31 180.00 7.39
1.5 237.60 241.29 –1.55 235.33 0.96 225.00 5.30
1.6 281.35 285.48 –1.47 279.28 0.74 270.00 4.03
1.7 325.42 329.87 –1.37 323.51 0.59 315.00 3.20
1.8 369.91 374.40 –1.21 367.93 0.54 360.00 2.68
1.9 414.15 419.02 –1.18 412.46 0.41 405.00 2.21
2.0 458.70 463.72 –1.09 457.09 0.35 450.00 1.90
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dian and HCM 2000 delay models. Similar comparison 
analyses were carried out for 30, 45 and 60 minutes of 
analysis periods to better describe the performance of 
the proposed delay model. For these analysis periods all 
of the delay models have almost the same trend similar 
to the one for the 15-minute analysis period. 

As the previous studies related to the delay param-
eter k have shown that k has varied depending on traffic 
conditions, this study has presented that the delay pa-
rameter k changes depending on time conditions. There-
fore, instead of using a constant value for delay param-
eter k in delay studies, the use of varying k values in these 
studies seems to be more reasonable. 

5. Conclusion

Although delay estimation at signalized intersections is 
dependent on many parameters, analysis period (T) is 
one of the most effective ones. In this paper, the effect of 
the delay parameter k, on delay when it is time-depend-
ent rather than a constant value has been investigated. 
The studies in the literature have shown that the delay 
per vehicle changes with respect to time periods in ad-
dition to the traffic conditions. Especially, in overflow 
conditions when the flow is greater than the capacity, 
the delay time increases in proportion to time periods 
and the delay parameter k dominates. In the developed 
model, at signalized intersections, especially, for oversat-
urated traffic conditions, the delay estimations appear to 
be more meaningful and realistic when the time variable 
k values are used.
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