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1. Introduction 

Forecasting results of dynamic logistics demand is essen-
tial to managers’ decision-making. Firms that offer rapid 
delivery to their customers will tend to force all competi-
tors in the market to keep finished goods inventories in 
order to provide fast order cycle times. As a result, ev-
ery organization tends to manufacture according to the 
forecasting of future demand. The ability to accurately 
forecast logistics demand in agile manner also affords 
the firm opportunities to control costs through coordi-
nating its manufacture, rationalizing its transportation, 
and optimizing its replenishment. 

The improvement of supply chain efficiency is also 
closely connected with matching supply and demand. 
Matching supply and demand requires the reduction of 
uncertainty within supply chains, so as to facilitate a more 
predictable logistics demand, that was investigated by 
Rudnicki (2001). However, in many markets, it is becom-
ing impossible to remove or ignore sources of turbulence 
and volatility. Hence, supply chain managers must accept 
uncertainty, but still need to develop a strategy that en-
ables them to match supply and demand at an acceptable 
cost. The ability to achieve this has been termed supply 
chain agility, that is presented by White et al. (2005). 
Agility is needed in today’s supply chains to counter the 
uncertainty and complexity in the decision process, that 
is investigated by Agarwal et al. (2006). Rapid response 
manufacturing is a new manufacturing pattern that can 
be used to implement the concept of agile design and 

manufacturing. Generally,. agility of a company is under-
stood as the ability to operate in uncertainty whilst main-
taining stable level of productivity and appropriate exter-
nal product availability, see researches by Kidd (1994), 
Goldman et al. (1995) and Gunasekaran (1998). 

In general practice, accurate demand forecasts 
lead to efficient operations and high levels of customer 
service, while inaccurate forecasts will inevitably lead 
to inefficient, high cost operations and/or poor levels of 
customer service. In many supply chains, the most im-
portant action to improve the efficiency and effective-
ness of the logistics process is to improve the quality of 
the logistics demand forecasts. Modern logistics is char-
acterized as agility, just in time and exactness; therefore, 
accurate logistics demand forecasting is necessary for the 
sake of the agile-oriented requirements.

The usual quantitative forecasting models for lo-
gistics demand are exponential smoothed method, gray 
system method, ANN method and so on. But a single 
forecasting model always has its limitations in assump-
tions and application range. Chu et al. (2004) analyzed 
the influencing factors of logistics demand, and utilized 
regression analyses, gray forecasting and neural network 
respectively to construct a single forecasting model to 
demonstrate their limitations; and then, the combina-
tion forecasting model brought forward in their paper 
shows considerably improvements in precision. Tang 
and Fu (2003) brought forward a forecasting model for 
logistics demand with periodical tendency and the fore-
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casting was realized by the assistance of Matlab software. 
Laboratoire (2005) presents a short-term forecasting 
model based on a neuro-fuzzy method, but the time unit 
of the short-term in his paper is defined as day, that is 
to say his model is not suitable for the forecast of logis-
tics demand variation in shorter time and is not good 
at taking dynamic or uncertain factors into modeling. 
Generally speaking, it is hard for ordinary approaches 
to forecast logistics demand agilely and hard for them to 
characterize so many dynamic influencing factors. While 
the hybrid algorithm applied in this paper can forecast 
logistics demand agilely and can also depict the relation-
ship between logistics demand and some dynamic influ-
encing factors.

2. The characteristics of dynamic logistics demand 

Dynamic logistics demand varies according to different 
dates while a similar variation law is present in the whole 
day; the variation law is still different according to work-
ing days and general holidays; the demand further varies 
with season and weather.

Although there is a certain law, the precise forecast-
ing is uneasy. First, the forecasting should be based on 
historical data analysis; therefore, the stochastic factors 
and disturbance cannot be precisely predetermined. Sec-
ond, some complex factors, such as temperature varia-
tions in different seasons, even if their influences have 
been known, are hard to be quantitatively depicted.

To sum up, dynamic logistics demand has not only 
a certain law but also strong uncertainty. The demand in 
certain future time is usually related to the past demand 
level, the current demand situation, the weather and the 
date type of the day. Therefore, the forecasting model 
should reflect the following basic aspects:

the periodical variation of logistics demand with 
season, date type and timetable;
the inherent laws of logistics demand variation;
the external influence such as temperature, sun-
light, weather and so on;
the demand variation in near time should have 
greater influence on the forecasting result than 
the previous data;
different forecasting models should be applied 
according to different date types.

3. Relevant theory of the hybrid forecast algorithm

3.1. Merits and drawbacks of ANN forecasting
ANN (Artificial Neural Network) has the merits of ap-
proaching discretionary nonlinear function and simulat-
ing multi-variable problem soundly without pre-know-
ing the function relation between each independent 
variable and dependent variable. 

The forecasting of dynamic logistics demand is a 
large-scale multi-mapping problem and the forecasting 
model is difficult to be determined. Through the training 
of data input and output, the mapping relation between 
input and output can be obtained, and the ANN model 

•

•
•

•

•

can conveniently express the factors such as tempera-
ture, sunlight and date type.

The classical method for training a multi-layer feed-
forward artificial neural network is the BP algorithm. 
Although it is successfully used in many cases and has 
been improved continuously, the BP algorithm suffers 
from a number of shortcomings. One of the shortcom-
ings is the slow convergent rate, and the other is that the 
convergence may be local. These shortcomings have not 
been got over radically. While the EKF (Extended Kal-
man Filter) by Ngan and Fung (2001) training algorithm 
estimates the weights according to the rule of minimum 
root mean squared covariance, it needs less iteration 
than BP algorithm. Further more, not involving con-
vergent parameters made it easier to apply methods by 
Wu and O’Grady (2004), and Wang and Papageorgiou 
(2005). Therefore, the EKF-ANN learning algorithm is 
applied for agile forecasting of dynamic logistics demand 
in this paper.

3.2. Theory of Ekf-ANN algorithm
Through the BP algorithm, we know the learning process 
of the feed-forward ANN is the network power regulat-
ing process under the determined input and output sam-
ples. Therefore, the training of feed-forward ANN can be 
seen as nonlinear state estimate process. The basic idea of 
EKF learning algorithm is to regard the learning process 
of link power, which exists between every pair of neural 
units, as the state vector of EKF, so as to carry through 
optimal estimation. As the EKF-ANN algorithm pres-
ents approximately the least variance estimation of link 
power, the iterative convergence rate is faster than steep-
est-descend method. Furthermore, the method, by Park 
et al. (1991), doesn’t involve adjusting parameters that 
determine convergent ability, which makes its applica-
tion quite convenient.

3.3. Deduction of systematic recursive filter for ANN
Suppose there is a N layer feed-forward ANN, and the 
number of neural units in each layer is Lk, k = 1, 2, ..., N. 
Let the input layer be as the first layer and the output as 
the N layer. The connection weights between layers Lk 
and Lk+1 is kL

ijw  (i = 1, 2, ..., Lk,   j = 1, 2, ..., Lk+1). In order 
to convert the calculation of the connection weight kL

ijw  
to the filter recursion estimation form, all the connection 
weights constitute state vector:

1 2 2 3 1
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The state vector X is composed of all the weights 
with linear arrangement, and its dimension can be cal-
culated by formula:

1

1
1

N

x i i
i

N L L
−

+
=

= ∑ . (1)

The system state equation and observation equation 
can be denoted as follows:

( 1) ( )W k W k+ = , (2)
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( ) ( ( ) ( ) ) ( )
( ) ( ).

e

r
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= + + + =
+  (3)

Here, X(k) is the input vector, while Yr(k) is the cor-
responding factual output, and Ye(k) is the correspond-
ing expected output; V(k) is the stochastic white noise.

Its statistical character is: 

E[V(k)] = 0, E[V(k)VT(k)] = R(k). (4)

For any given ANN, suppose there are M samples, 
which are (xk, yk)  (k = 1, 2, ..., M); then for the j unit in the 
l layer, the output of l – 1 layer is 1l

iO − . When the number 
of input samples is k, the output of j unit in the l layer is: 

1 1l l l
jk ij ik

i
O w O- -=å . (5)

Let the nonlinear function h(  ) denote the nonlinear 
mapping relation between inputs, outputs and weights.

Based on formula (11), suppose the output of j unit 
in the l layer for the k iterative calculation is: 

1( ) [ ( ), ( )]l l l l
j j jO k f w k O k−= . (6)

Then:
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Expand expected output by Taylor series and leave 
out quadratic upward items:
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Let:

ˆ( ) ( | 1)

ˆ( ) ( | 1)

ˆ( ) [ ( | 1) ( )]

ˆ ( | 1) ( ).

W k W k k

W k W k k

h
H k h W k k X k

W

h
W k k C k

W

= −

= −

∂
− + +

∂

∂
− =

∂
 (9)

Then the observation equation is: 

Ye(k) = H(k)W(k) + C(k) + V(k). (10)

Formulas (2) and (6) constitute the simplified EKF 
model, and its filter recursion formulas are shown as fol-
lows:

{ }
ˆ ˆ( 1| 1) ( 1| )

ˆ( 1) ( 1) [ ( | 1), ( )] ,

W k k W k k

K k Y k h W k k X k
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P(k + 1) = [I – K(k + 1)h(k + 1)]P(k). (14)

Carry through singular value decomposition on 
variance P and obtain the systematic recursive filter  for-
mulas (Ngan, Fu 2003):
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Here, the U(k + 1 | k + 1) and D(k + 1 | k + 1) are sin-
gular value decomposition matrix of error covariance P.

4. The forecasting model

It is important to choose appropriate sample sets for 
the dynamic forecasting and thus to enhance the train-
ing speed and forecast precision. If the sample filter is 
carried out before each forecasting, selecting samples 
that have similar weather with the forecasting date, then 
much training time can be economized and interference 
from unrelated samples can be avoided. In this way, 
according to different forecasting dates, different 
forecasting training sample sets can be determined, and 
different weights and thresholds can be trained. However, 
mapping relation and sample sets vary with time, and the 
training sample should be re-determined for each time, 
which is hard to realize for the slow training, difficult 
converging ANN algorithm. The EKF-ANN algorithm 
is faster in calculation and feasible in choosing dynamic 
samples and forecast models.

Logistics demands in the continuous dates have 
certain relation and are affected by temperature, humid-
ity, weather type and date intervals, therefore, the similar 
degree between the forecasting date and the date K can 
be defined as follows:

( ) ( ) ( )

( ) ( )

( )
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é ù
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é ù
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- +  (18)

The Tmax, Tmin, RHmax, RHmin and W respectively 
denote the highest temperature, the lowest temperature, 
the maximum relative humidity, the minimum relative 
humidity and the weather type in the forecasting date; 
the max

KT , min
KT , max

KRH , min
KRH  and WK respectively denote 

the above corresponding index in the date K; ∆Dk de-
note the date interval between forecasting date and date 
K; α, β, γ, δ are the coefficients that reflect the influence 
of temperature, humidity, weather type and date interval 
on logistics demand. The meteorological factors W and 
WK can be quantitatively disposed as in Table.

If the S(k) is smaller, the similarity will be higher. 
Based on the meteorological data of the forecast date, 
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calculate in turn the similar degree between the previous 
date and the forecast date. The samples that correspond to 
smaller S(k) are chosen as dynamic training sample set.

The most important aspect of ANN forecasting mod-
el is how to choose the input variable. There is no general 
law and it should be determined according to concrete 
situations. Here logistics demands in the continuous dates 
are considered as having certain relation. 

Arrange the resultant sample in time series and 
denote as follows:

X = [X1   X2   X3   ...   XM].

X is the total sample set, Xi  (1 ≤ i ≤ M)  is a vector in 
the sample, the elements in it are the historical demand 
data, weather condition data and date type data. M is the 
total number of resultant samples.

According to experience, the number of hidden lay-
ers is generally chosen as (IN × ON)1/2. IN and ONare 
the number of units in the input layer and output layer 
respectively.

The historical demand data in the resultant sample, 
the weather information in the forecast date and the date 
type are taken as network input, the output is the fore-
casted demand of 24 hours in the forecast date.

5. Example analysis by Swarm simulation

The Swarm platform developed by the Santa Fe Institute 
supports a kind of tools that can validate the above mod-
el. It is a collection of software libraries that can provide 
support for ANN simulation programming. It is imple-
mented through the Object-Oriented Programming lan-
guage, Objective-C, that was presented by Johnson and 
Lancaster (2004).

Information inadequacy often puzzles the operation 
of a complex huge system. The theory of Swarm is that 
through the transmission of signals entities determine its 
income by receiving the signals and further adjust their 
strategies. This process is carried out by simulation of evolu-
tion algorithm other than simultaneous equations. Besides, 
the systematic environment variables will obtain reasonable 
revision through the self adaptive process of microcosmic 
entity, which makes Swarm require less of the external ini-
tial variables. It can be seen that Swarm simulation suits for 
handling agile forecasting of dynamic variation.

The implementation of Swarm program is based on 
the Model Swarm and the Observer Swarm. The former, 
as a core, initiates, groups and schedules the simulation 
objects. The latter observe and analyze the behavior dur-
ing the simulation, and drive data collection to read those 
numbers out of the model and draw them on a graph. 

Fig. 1 is the operational menu of Model Swarm for 
Swarm simulation on dynamic forecasting of beverage 

demand on a summer day. The meanings of parameters 
and variables in the Model Swarm are listed as follows:

Database: historical demand data, the data.txt is the 
training samples set.

W: weather, the number 1 denotes sunshine.
Tmax: the highest temperature on the forecasting 
day.
Tmin: the lowest temperature on the forecasting 
day.
RHmax: the maximum relative humidity of the 
forecasting day.
RHmin: the minimum relative humidity of the 
forecasting day.
D: date type, the number 3 denotes Wednesday

Fig. 2 shows the difference between forecasting 
values and real values. Fig. 3 presents a vivid error 

•
•

•

•

•

•

fig. 2. Comparison of real value to forecasted value

fig. 3. Error contrast between EKF-ANN and BP-ANN 

Quantitative disposal factor

Weather condition Sunshine Cloudlet Cloudy Rain
Quantitative value 1 2 3 4

Weather condition Median 
rain

Thunder 
storm

Light 
snow

Heavy 
snow

Quantitative value 5 6 7 8

fig. 1. Operational menu of Swarm simulation
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contrast between EKF-ANN forecasting algorithm and 
BP-ANN forecasting algorithm.

From the above comparison analysis, we believe 
that the forecast result is relatively better and the EKF-
ANN forecasting algorithm is, to some extent, superior to 
traditional BP-ANN forecasting algorithm. In a sense, 
the EKF-ANN forecasting algorithm may be relatively ac-
curate for agile forecasting while taking some dynamic 
influencing factors into consideration.

6. Conclusions

1. Modern logistics call for lean production, just in 
time distribution and agile supply chain management. 
Operations in logistics system will be characterized as 
flexibility, exactness and agility. 

2. Agility-oriented forecasting method of dynamic 
logistics demand is a crucial approach to satisfy high 
level operational requirements of logistics in uncertain 
supply chain environment. 

3. The hybrid algorithm for agile forecasting may 
take many dynamic factors into consideration and thus 
make the dynamic forecasting accurate and practical. 
Although the dynamic influencing factors considered 
in this paper are not comprehensive, this approach 
gives some insights into quantificational expression of 
dynamic factors in agile forecasting and can be seen 
as an example for managing the uncertainty in supply 
chains based on the agility paradigm. 

4. The theoretical foundation of Swarm is non-equi-
librium, random and dynamic. Its simulation model is 
non-linear that makes the system itself have self adapt-
ability and simulation results approaching reality. Swarm 
simulation platform can be seen as a good tool for agile 
forecasting researches.
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