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Abstract. Studies on seaport operations emphasize the fact that the numbers of resources utilized at seaport 
terminals add a multitude of complexities to dynamic optimization problems. In such dynamic environments, there 
has been a need for solving each complex operational problem to increase service efficiency and to improve seaport 
competitiveness. This paper states the key problems of seaport logistics and proposes an innovative cross-entropy (CE) 
algorithm for solving the complex problems of combinatorial seaport logistics. Computational results exhibit that the 
CE algorithm is an efficient, convenient and applicable stochastic method for solving the optimization problems of 
seaport logistics operations.
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1. Introduction 
Logistics is a set of full activities that properly arrange 
all aspects of the manufacturing and distribution proc-
ess to ensure the delivery of the right products to the 
right markets at the right time. Key logistics strategies 
for improved competitiveness range from the operation-
al level of an effectively managing mutually connected 
group of processes to the strategic level of designing a 
flexible transfer and transportation system that allows 
for quick optimal routing, mode choice changes and 
decision-making processes. In terms of logistics activi-
ties and strategies with respect to the improved competi-
tiveness, seaport logistics operations possess comparable 
characteristics. However, seaport logistics operations are 
constrained by close-fitting space layouts and some ex-
ceptional handling equipment with supplies of the size-
able numbers of containers and/or bulk cargo traffic 
with demands for superior logistics service. Therefore, 
achieving optimum and quick solutions to the problems 
of seaport logistics operations are crucial for the im-
proved logistics service output.

Seaport logistics operations are divided mainly into 
three sections and embrace seaside, yard and landside 
operations each of which engages multiple joined proc-
esses. Within these processes, in order to have efficient 
logistics service output, strategic and operational bodies 
exist and vigorously necessitate optimal resource man-
agement solutions based on the changing parameters of 
operating conditions. 

General optimization needs at seaport terminals 
are arranged mainly as berth allocation, crane assign-
ment, crane scheduling, yard management, yard traffic 
management, workforce planning, sheltering/warehous-
ing, hinterland operations and infrastructure connec-
tions, i.e. intermodal connections. In addition, one of 
the most important challenges to system optimization is 
the trustworthiness and performance of the algorithm. 
In dynamically managed terminal operations (e.g. Au-
tomated Guided Vehicles (AGVs), Automated Straddle 
Carriers (ASCs), Automated Lifting Vehicles (ALVs)), 
instant decisions play crucial roles in the entire terminal 
operations (Lokuge and Alahakoon 2004, 2007; Van Hee 
and Wijbrands 1998; Liu et al. 2002; Rashidi 2006). On 
the other side, in dynamically changing operating envi-
ronments such as additional amounts of vessels waiting 
for service at the queue and intensified container traffic 
in the yard area, computing time required for specific de-
cisions should not go beyond feasible time range set by 
as a default. Dynamically routing yard trailers (and/or 
ASCs, ALVs, AGVs, etc.) for particular locations require 
highly organized terminal systems. The optimization of 
these operations involve sophisticated planning of input 
and output parameters and stating optimization prob-
lems, thus leading a way to more complicated and long 
definitions of the optimization problem having more 
constraints and variables. In such situations, algorithm 
performance and its global search within the overall con-
ditions for optimal values is highly important.
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Many combinatorial optimization problems are 
NP-hard (Garey and Johnson 1979). To tackle with these 
problems, the researches devoted many efforts. Meta-
heuristics (i.e. the CE) is a systematic approach to obtain 
knowledge when searching for an algorithm. Therefore, 
the algorithm provides a better knowledge of the future 
search for a better solution. 

This paper proposes a cross-entropy (CE) approach 
to solving seaport terminal problems. CE is a modern 
and innovative metaheuristic method introduced by 
R. Y. Rubinstein in 1997 (Rubinstein 1997). The method 
transforms the deterministic problem into the stochastic 
one and then uses rare event simulation techniques to 
solve the problem. The method involves an iterative pro-
cedure of two stages. Based on a specified mechanism, it 
first generates a random data sample and then updates 
the parameters of the random mechanism based on data 
to produce a better sample for the next iteration (Rubin-
stein 1999). Recently, the cross-entropy method has been 
receiving a great deal of attention from researchers as 
this method has an ability to deal effectively with com-
binatorial optimization problems. This method has also 
been successfully applied to complicated combinatorial 
optimization problems.

The paper includes a few sections. In the following 
section (section 2), general background information re-
garding optimization problems is given indicating the 
details of the cross-entropy method and algorithm. In 
section 3, fundamental seaport operation problems are 
exhibited imposing designated constraints. In section 4, 
the scenario based shortest tour problem, including data 
on randomly assigned nodes is solved applying the CE 
method. In section 5, the fundamental reason for choos-
ing the CE method of solving seaport problems is briefly 
given. The paper is summarized in section 6.

2. Combinatorial Optimization (CO) and the CE 
algorithm

2.1. A Background: Combinatorial Optimization and 
Heuristic Algorithms
A combinatorial optimization problem can be expressed as:

min ( )
x D X

x f x∗
∈ ⊆

= , (1)

where: the objective is to find x D X∗ ∈ ⊆ . X is bounded 
by finite space and D X⊆  is the subspace of feasible 
solutions. 1:f X R→  is the objective function. 

To obtain solutions for the types of problems as 
shown in (1), several approaches exist (Aarts and Korst 
1989; Colorni et al. 1996; Dorigo et al. 1999; Goldberg 
1989; Kim et al. 2004; Kim 2005; Kozan and Preston 
1999; Lee and Chen 2009; Lee et al. 2005; Legato and 
Mazza 2001). Depending on the type of the solution, 
three main types of algorithms such as exact, heuristic 
and approximate can be represented in a characteristic 
manner (Sergienko et al. 2009):

 – The return of the optimal solution in finite space 
is assured of exact algorithms. If the algorithm 

cannot solve the problem, an optimal solution 
will not present. On the other hand, exact algo-
rithms cannot constantly be used to solve some 
variations of CO problems (e.g. dynamic prob-
lems and problems facing a lack of clarity). 

 – Heuristic algorithms in many cases can provide 
one of the ways of obtaining an optimal solution 
in a reasonable period and are usually the algo-
rithms suggesting absent or unknown accuracy 
estimates. 

 – Approximate algorithms (evolutionary algo-
rithms, swarm algorithms, stochastic local 
search, etc.) are often based on some heuristics 
and if existing, return a substitute solution to fi-
nite time and the preciseness of these solutions 
can be estimated. 

Briefly, evolutionary algorithms originate from bio-
logical evolution such as the Genetic Algorithm (GA), 
the Memetic Algorithm (MA), etc. Swarm intelligence 
algorithms take advantage of a special technique used 
for identifying the local interaction of scent or swarms 
like Ant Colony Optimization (ACO), Particle Swarm 
Optimization (PSO), etc. A stochastic approach to local 
search algorithms, including Simulated Annealing (SA), 
exploits the development of a local search and then em-
ploys the best solution from the neighbourhood along 
with the worst value of the objective function.

2.2. The Cross-Entropy (CE) Method
The CE method was developed in 1997 by Rubinstein 
and has been adapted for combinatorial optimization 
solutions (Rubinstein 1997, 1999, 2001; Rubinstein and 
Kroese 2010; Rubinstein and Melamed 1998; Rubinstein 
and Shapiro 1993). The idea behind the CE method is 
to model an effective learning technique throughout the 
search process of the algorithm to solve combinatorial 
optimization problems. The method first produces a 
random sample from a pre-specified probability distri-
bution function and then treats the sample to adjust the 
parameters of probability distribution in order to gener-
ate a better sample in the next iteration. The stochastic 
optimization problem is solved by identifying optimal 
importance sampling (IS) density that minimizes Kull-
back-Leibler (KL) distance regarding the original den-
sity function. KL distance is cross entropy between the 
original density function and the importance sampling 
density function. Distance ( , )D g h  is determined as a 
particular suitable criterion between densities g and h. 
KL distance (cross-entropy) is calculated as:

. (2)

Alternatively, for discrete variables, the Kullback-
Leibler (KL) divergence of Q from P can be depicted as: 

( )( , ) ( )log( )
( )KL

x

P xD P Q P x
Q x

= ∑ ; (3)
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where: DKL (P,Q) = H(P,Q) – H(P), ( , )H P Q  is cross-en-
tropy between P and Q. ( )H P is the entropy of P. The 
minimization of KL distance (cross-entropy) provides 
a definition for the parameters of density functions and 
generations of the enhanced feasible vectors. The meth-
od aborts when comes together into a solution to the fea-
sible region. 

General 0–1 integer maximization problem (P) can 
be defined as:

( ) : max ( )
x X

P z f x∗
∈

= , (5)

where: nX B⊆  represents the feasible region. The CE 
method associates a stochastic estimation problem with 
(P). Random vector 1( ,..., ) ~ ( )nX X X Ber u=  and the pa-
rameterized vector of v is u. Density function φ on X  
is parameterized by vector [0,1]nu ∈ . Consequently, the 
Bernoulli density function under the following probabil-
ity density function (PDF) is:

1

1
( , ) ( ) (1 )i i

n
x x

i i
i

x u u u -

=
φ = -∏  (6)

and the stochastic estimation problem (EP) is:

{ ( ) }( ) : ( ( ) ) ( , )u f x z
x X

EP P f x z I x u≥
∈

≥ = φ∑ , (7)

where: uP  is the probability measure value based on the 
given threshold z value where X values are drawn from 
distribution ( , )uφ  . The stochastic problem (SP) of inter-
est where ( )f x is greater or equal to some real number z 
in the probability of ( , )x uφ  is:

{ ( ) }( ) : ( ( ) ) ( , )u f x z
x X

SP l P f x z I x u≥
∈

= ≥ = φ∑ . (8)

Low probability (e.g. : 510- ) of ( ( ) )ul P f x z= ≥  is 
called a rare event. { ( ) }f x zI ≤  is the indicator function tak-
ing two values 1 or 0 based on the threshold value of z:

 (9)

The unbiased estimator of l obtained by drawing 
random sample 1, , NX X  from probability distribution 
function (pdf) ( , )uφ  using crude Monte-Carlo (cMC) 
simulation is:

{ ( ) }
1

1 N

f x z
i

l I
N ≥

=
= ∑ , (10)

where: a plain definition of cMC is drawing from the 
distribution of s having m samples as such 1 2, ,..., ms s s ; 
thus, the estimate of ( )E f  is:



1 2 3
1( ) ( ( ) ( ) ( ) ,..., ( ))m mE f f s f s f s f s
m

= + + + + .

Therefore, with the probability of 1,  ( )mE f equals 
to ( )mE f  as such,

¯¯¯ m mm
E f E f

→∞
= .

Error componentε is calculated as:

 ( ) ( )m mE f E fε = - .

The expected value of ( )E fφ over distribution φ is 
defined as:

( ) ( )E f f s s dsφ
Θ

= φ( )∫ ,

when the value of f is non-zero with minor probability 
to generate a satisfactory result in terms of relative error 
ε . The cMC method necessitates large numbers of sam-
ples. To continue with (10), in case of a rare event (e. g. 
: 510- ), situations for ( ( ) )f x z≥  cMC can raise some 
acute problems. Thus, as an alternative, random sample

1, , NX X  from importance sampling (IS) can be taken 
along with density θ on X:

{ ( ) }
1

( , )1 N
i

f x z
ii

X u
l I

N X≥
=

φ
=

q( )∑ . (11)

Thus, the expected value of new estimate ( )E fφ is:

In (11), l is the likelihood ratio (LR) or importance 
sampling (IS) estimator.

Reference vector (p) is estimated by:

{ ( ) }
1

1ˆ arg max ln ( , )
i

N

f X z i
p i

p I X p
N ≥

=
= φ∑  (12)

and the solution of reference vector p̂  is obtained taking 
partial differentiation with respect to jp :

{ ( ) }
1

1 ln ( , ) 0
i

N

f X z i
j i

I X p
p N ≥

=

∂
φ =

∂ ∑ , (13)

which gives the optimal updating rule:

{ ( ) }1

{ ( ) }1

ˆ , 1,.....,i

i

N
f X z iji

j N
f X zi

I X
p j n

I

≥=

≥=

= =
∑
∑

. (14)

The objective of the algorithm is to increase z 
threshold values in each iteration ( 0 1, ,...z z ) and then 
converge z into a value near global optimum or global 
optimum value z∗ . With the initial 0p vector at each it-
eration t , a new value of zt involves the creation of new

1pt+ vector used to draw sample population to generate
1zt+ . At each iteration, better p vectors ( 0 1, ,...p p ) are 

created and each of those are used to generate better z 
( 0 1, ,...z z ) values. The algorithm will stop when z con-
verges to global optimum value z∗ .
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3. About Some Pure Base Optimization Problems

Human beings constantly make decisions by adopting 
an optimizing behaviour as a desire for performing the 
given task in the best possible way with respect to some 
unique criterion to minimize costs or maximize benefits 
(Ehrgott and Gandibleux 2002) as this is the case for 
any seaport operations, including organizational and 
process level activities. Seaport logistics operations have 
numbers of problems and mainly embrace the categories 
of scheduling, assignment, routing, allocation, shortest 
tour etc. Particular problems are ranging from sched-
uling problems of quay cranes, yard cranes, workforce 
and trailer and vehicle routing problems to the layout 
problems of sheltering, storage, warehousing operation 
etc. The fundamental problems of optimization applica-
ble to the seaport terminal are briefly described and re-
modelled (Sarker and Newton 2007) to address seaport 
logistics operations:

 – Quay crane/yard crane scheduling is the sched-
uling problem with an assumption that there are 
n jobs and m machines. Each job must be proc-
essed on all machines (i.e. cranes) in the given 
order. A machine (i.e. crane) can only process 
one job at a time and once the job is started on 
any of the machines (i.e. crane), it must be proc-
essed to completion. The objective is to mini-
mize the sum of completion times of all jobs.
Objective function:

Minimize Z = ( ),
1

n

j m j
j

t
=
∑ ,

subject to:

where parameters are: n  – the number of jobs; 
m – the number of machines; Pij – the process-
ing time of job j on machine i; j(r) – the order of 
machines/operations for job j (for example, job 
j must be processed on machine 2 first (r = 1, 
i = 2), then machine 4 (r = 2, i = 4), etc.), for any 
job j, r = m means the last operation of the job,
and variables: tij – the start time of job j on ma-
chine i; xijk = 1 if job j precedes job k on machine 
i, 0 otherwise (i.e., if job k precedes job j on ma-
chine i). More detailed studies and fundamen-
tal features of the applied framework on crane 
scheduling are published by Bierwirth and Meisel 
(2009); Chen et al. (2007); Goodchild and Dagan-
zo (2007); Kim and Park (2004); Lee et al. (2008a, 
2008b); Liang et al. (2008); Lim et al. (2002, 2004, 
2007); Liu et al. (2006); Peterkofsky and Daganzo 

(1990); Tavakkoli-Moghaddam et al. (2009); Zhu 
and Lim (2006).

 – Scheduling (employees, stevedore, etc.) is the 
problem that determines the number of employ-
ees required to meet different daily work force 
necessities of a seaport terminal thus minimizing 
the general scheduling cost.

Objective function:

Minimize Z = 
1

N

i i
i

C x
=
∑ ,

subject to:

where parameters are: N  – the total number of 
roster type; Mj – the set of roster types that will 
allow working on day j; Rj – the number of em-
ployees required on each day j; Ci – weekly cost 
per an employee assigned to roster type i, and 
variables: xi – the number of employees assigned 
to roster type i.
For more detailed studies and fundamental fea-
tures of the applied framework on scheduling re-
fer to Li et al. (1998); Pinedo (2008).

 – Routing problem at seaport terminals is the 
problem of ascertaining the operation plan sat-
isfying demand for various zones at minimum 
cost.
Objective function is: 

Minimize
1 1 1

G Z F

obj ijk ijk
i j k

f C x
= = =

= ∑∑∑ ,

subject to:

1 1

G F

k ijk j
i k

L x D j
= =

≥             ∀∑∑

1 1

Z F

k ijk j
j k

L x S i
= =

≤             ∀∑∑

1
,

Z

k ijk ki
j

L x U k i
=

≤             ∀∑

where parameters are: G – the number of source 
locations (index i); Z – the number of receiving 
nodes for containers (index j); F – the number of 
the trailers available (index k); Lk – load capac-
ity of trailer k; Si – the quantity of the available 
containers for transportation from location i; 
Dj – the quantity of containers required by zone 
j; Cijk – the unit cost of transporting from loca-
tion i to zone j by trailer k; Uik – maximum al-
lowable containers that can be transported from 
location i by trailer k in a given period, and vari-
ables: xijk – the number of trips required by trailer 
k from location i to zone j.
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For other detailed studies and fundamental features 
of the applied framework refer to Bish et al. (2001); 
Kim and Bae (1998); Vis and De Koster (2003).

 – Hinterland operations and landside operations 
(Vehicle Routing Problem): a generic model that 
practitioners encounter in many planning and 
decision processes, for instance, the delivery and 
collection of containers/cargos etc.

Objective function is:

Minimize Z = 
1( , )

K

ij kij
k i j A

C x
= ∈

∑ ∑ ,

subject to:

1

1

1
1

1
1

1, 2,3,...,

1, 2,3,...,

n

ij
i
n

ij
j
n

j
j
n

i
j

y j n

y i n

y K

y K

=

=

=

=

= =

= =

=

=

∑

∑

∑

∑

{ }

1 2

1

( , )

, 1,2,...,

,

1, 2,3,...,

n n

j kij
i j
K

kij ij
k

ij
i j SxS

D x U k K

x y i j

y S for all subsets S of n

= =

=

∈

≤ =

= ∀

≤ -

∑∑

∑

∑

A fleet of M capacitated vehicles located in a de-
pot (i = 1).
A set of target zones (of size N–1), each having 
demand Dj (j = 2,…,N).
The cost Cij of travelling from location i to loca-
tion j.
The problem is to find a set of routes for deliver-
ing/picking up goods to/from the target zones at 
minimum possible cost.
The vehicle fleet is homogeneous and each vehi-
cle has a capacity of U units and variables: xkij = 
1 if vehicle k travels on arc i to j, 0 otherwise; yij 
= 1 if any vehicle travels on arc (i, j), 0 otherwise.
For further studies and fundamental features of 
the applied framework refer to Bish et al. (2001); 
Kim and Bae (1998); Vis and De Koster (2003).

 – Sheltering, storage, warehousing operations  – 
layout design: In a warehouse, the operating 
staff must decide where to locate different items 
of goods they receive and later deliver the items 
of goods. The layout problem is to determine the 
zones for storing each of n items that will mini-
mize the total transportation cost between the 
items and the dock. For the convenience of mod-

elling, the warehouse/storage/sheltering floor area 
is divided into m square grids of equal size num-
bered from 1 to m. Each grid-square can accom-
modate only one pallet (Sarker and Newton 2007).

Objective function is:

Minimize Z = 
1 1

n m

ij ij
i j

C x
= =
∑∑ ,

subject to:

{ }

1

1
1

0,1 ,

m

ij i
j
n

ij
i

ij

x G i

x j

x i j

=

=

= ∀

= ∀

∈ ∀

∑

∑

where parameters are: Gi – the total number of 
grid-squares required to store item i (as an item 
may require more than one grid-square); Fi – the 
average number of pallet loads for item i re-
ceived and delivered in a year; Dj – the distance 
between the dock and the centre of grid-square j; 
Pi – the cost per pallet per unit distance incurred 
in transporting item i between the dock and its 
storage region, and decision variables: xij = 1 if 
item i is stored in grid-square j, 0 otherwise.
For more detailed studies and fundamental features 
of the applied framework see Kim and Kim (1998); 
Taleb-Ibrahimi et al. (1993), Zhang et al. (2003).

 – Intermodal connections and scheduling is the 
general problem of timetabling and scheduling 
operation planning of the intermodal area where 
changes in the frequent mode occur.

Objective function is: 

Maximize Z = ij ij
i j

C x∑∑ ,

subject to:

{ }

,

1 ,

0,1

l

m

ij i
j J

ij l
i R

ij
i T

ij

x S i I

x A j J l L

x j J m M

x i I j J

∈

∈

∈

= ∀ ∈

≤ ∀ ∈ ∀ ∈

≤ ∀ ∈ ∀ ∈

∈ ∀ ∈ ∈

∑

∑

∑

where parameters are: I – a set of all intermodal 
groups (index i); J – a set of time groups (index 
j); L – a set of station groups (index l); M – a set 
of intermodal groups in conflict (index m); Rl – a 
subset of intermodal groups that can be allocated 
to station group l; Tm  – a subset of intermodal 
groups in conflict; the m-th row of the conflict 
matrix; Al – the number of stations of type l; Si – 
the number of materials/cargoes/container in in-
termodal group i; Cij – the desirability coefficient 
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of assigning intermodal groups i to time groups 
j, and with decision variables: xij = 1 if intermodal 
group i is assigned to time group j, 0 otherwise.

For more dedicated studies and fundamental fea-
tures of the applied framework see Gambardella et al. 
(2001); Stahlbock and Voß (2008); Steenken et al. (2004). 

4. Solving an Optimization Problem Applying the 
CE Method: Methodology and Findings

Among operational problems, for testing the purposes 
of the algorithm, the shortest tour problem at one short 
time fraction with intense terminal traffic conditions 
and dynamically assigned tour node scenario has been 
considered. Multiple vessels are serviced at the terminal. 
Quay cranes charge and/or discharge containers in the 
berthing and marshalling areas. A typical loading and 
unloading operation of containers at seaport terminals 
involve quay cranes in charging or discharging operation, 
multiple-trailers (ASCs, AGVs, ALVs, etc.) with loaded/

unloaded containers and stacking/gantry cranes at the 
yard area for delivering containers to/from the stacking 
area (see Figs 1 and 2).

The dynamically managed seaport seaside and yard 
side operations involve multiple-trailers picking up con-
tainers from quay cranes (QCs) during discharging op-
erations. Then, trailers (ASCs, AGVs, ALVs, etc.) deliver 
containers to the yard area and the assigned stack area 
for discharged containers. After delivery operations, the 
trailers can visit another discharging quay crane and/or 
trailers can visit the assigned stack area in the yard for 
export containers. As such, dynamic routes increase the 
productivity of terminal services.  

The problem of the shortest tour at one short time 
fraction with intense terminal traffic conditions and 
thus dynamically assigned tour nodes for dynamic yard 
operations (nodes network) can be modelled by graph 
G = (V, E) comprising a set of vertices or nodes V and a 
set of E of edges or lines. A tour to the yard area within 
dynamically assigned tour nodes can be represented via 

Loading
Containers 

Unloading 
Containers 

Fig. 1. Seaport terminal operations: the seaside and yard area

Fig. 2. Seaport terminal operations: the yard and land area
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permutation 1 2( , ,..., )nt = t t t . The shortest tour to the 
yard area is formulated as:

Objective function is:

Minimize Z = 
( , )

ij ij
i j A

C x
∈

∑ ,

subject to:

where: N – a set of the number of nodes at a seaport ter-
minal (seaside nodes and yard area/stacking area nodes); 
A – a set of the existing arcs (i, j); Cij – arc length (or arc 
cost) united with each arc (i, j); i – s for source node or 
i = d for destination node; xij – is the flow from node i 
to node j.

The objective function is to minimize the total dis-
tance dynamically defined on the seaside and yard area 
(Fig. 3).

For example, to solve the optimization problem, 
22 nodes (x, y pairs) are chosen randomly applying to 
the Cartesian coordinate system (xy plane) (see Fig. 4) 
where (x,y pairs) two dimensionally represents the sea-
side and yard area charging/discharging locations of the 
seaport terminal. Y axis in Fig. 4 represents the berthing 
area and nodes on y-axis are the location of cranes with 
charging/discharging containers.

.

In Euclidean system, if two points are 1 2( , )p p p=  
and 1 2( , )q q q= , then the distance ( , )d p q between p and 
q is:

2 2
1 1 2 2( , ) ( ) ( )d p q p q p q= - + - .

For each node (x, y pairs), distance (cost) matrix L 
is generated. Fig. 5 shows the distance matrix displayed 
as a rectangular array of gray-toned cells. Apart from 
the dark cross sectional line indicating zero distances 
between identical nodes, darker cells depict longer dis-

Fig. 3. The seaside and yard area and dynamically assigned sample nodes at a fraction of time under intense traffic conditions in 
the yard area for charge/discharge and transfer operations

(x = 0; y = 10)

(x = 2; y = 9)

(x = 7.1; y = 9.9)
(x = 7; y = 9)

(x = 6.5; y = 8)
(x = 4; y = 7.7)

(x = 6; y = 7) (x = 9.2; y = 6.7)
(x = 7; y = 6)

(x = 4; y = 5)
(x = 5; y = 5)

(x = 3.3; y = 4.3)
(x = 4; y = 4)(x = 0; y = 4)

(x = 1; y = 3)
(x = 3; y = 3)

(x = 5; y = 3)
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Fig. 4. The location of sample nodes (x, y pairs) on the 
seaside and yard area (xy plane)
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tances between two nodes and lighter cells depict nearby 
distances between two nodes.

First, generating the initial transition matrix 0p  for 
22 sample nodes in the form is shown below:

,

where: 0p  has zeros in the diagonal and all remaining 
elements are equal as calculated by 1/ ( 1)N - which is 
1/ (22 1) 0.0476- = . The rows and columns of the matrix 
(22 × 22 matrix) add up to 1. Thus, any route at first has 
equal likelihood (see Fig. 7) to be generated:

.

As in the dynamics of the CE algorithm, at each it-
eration, better p vectors ( 0 1, ,...p p ) are created and each 
of these vectors are used to generate better z ( 0 1, ,...z z ) 
values. Table shows iterations from 1 to 33. The algo-
rithm stops when z converges to the global optimum 
value z∗ . 

Thus, the total distance reduces gradually. An op-
timal solution was found in the last (i.e. 33rd) iteration 
(see Fig. 8 and Table) and an optimal tour was obtained 
at the end of the last iteration. 

Fig. 6. The initial parameters used for testing the CE method solving the problem of the shortest tour (at MatLab®)
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Fig. 7. The initial probability transition matrix 0p  generated for 22 chosen sample nodes (22 × 22)
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Fig. 9 depicts the dynamics of the CE algorithm at 
each of the iterations as the sequence of matrixes for the 
problem of the shortest tour along with the generated 
matrixes of   0 1 2, , ,...P P P  where, during the last iteration, 
an optimal tour (minimum distance) has been reached.

5. About the CE Method
A comparison of algorithms from different theoretical 
and empirical categories is a complicated task owing to 
the fact that it is not a specific empirical baseline that 
enables an unbiased comparison among algorithms. 
For instance, the CE method and the genetic algorithm 
(GA) method are the same population-based heuristic 
methods. The CE uses an effective learning method 
throughout the search, whereas the GA method en-
hances the created samples from generation to gen-
eration. The GA method uses genetic encoding which 
is suited to a particular use of some problems and its 
processing time is much longer while solving small-
scale problems. 

Other metaheuristic algorithms (Aarts and Korst 
1989; Goldberg 1989; Dorigo et al. 1999; Ehrgott and 
Gandibleux 2002) such as simulated annealing (SA), 
tabu search (TS), ant colony optimization (ACO), par-
ticle swarm optimization (PSO), memetic algorithms 
(MA) etc. are quite common to solving numerous kinds 
of problems. On the other hand, they reflect important 
differences that originate from theoretical and empiri-
cal grounds of algorithms. For instance, the main dis-
tinction between the CE method and SA is that the lat-
ter can be considered as a local search algorithm while 
on the contrary, CE is a global search one. This means 
that the CE method continuously seeks the global op-
timal solution across the big picture; on the other side, 
the SA method may fail to provide the global optimal 
and be unable to progress with the task by trapping to 
the state or condition of a local optimal solution. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
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X= 33
Y= 39.0376 
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Total Distance Best Solution History obtained by CE method

distance history
shape–preserving
y min

y max

0

Fig. 8. The best solution history obtained applying the CE method

Table. The best solution history obtained applying the CE method 
Iteration Number Total Distance

1 72.51
2 63.94
3 60.39
4 57.43
5 55.77
6 54.66
7 52.51
8 52.51
9 52.51

10 51.23
11 51.23
12 46.24
13 46.24
14 45.03
15 45.03
16 44.88
17 43.26
18 40.26
19 40.26
20 40.26
21 39.87
22 39.87
23 39.87
24 39.53
25 39.11
26 39.04
27 39.04
28 39.04
29 39.04
30 39.04
31 39.04
32 39.04
33 39.04
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Fig. 9. The matrix of transition probabilities (n × n)

6. Conclusions

A wide variety of technical terminal equipment, lay-
outs, facilities, resources and proficient workers exist 
at seaport terminals. The numbers of resources utilized 
at seaport terminals add a multitude of complexities to 
dynamic optimization problems since in such dynamic 
environments, there has been a need for solving complex 
operational problems within a short computing time 
in order to increase terminal service efficiency and to 
achieve improved competitiveness. 

Based on the number and complexity of seaport 
processes, obtaining optimal solutions employing heu-
ristic methods is a non-deterministic polynomial-time 
(NP) hard problem and computational time exponen-
tially increases depending on the number of resources 
involved in dealing with the problem. It can be particu-
larly clearly stated that the CE algorithm approach pro-
vides stable solutions to discovering optimal values. By 
utilizing and running the proposed high performing CE 
algorithm for the problems of seaport terminals, it seems 
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to be apparent there will be significant improvements in 
seaport terminal services.
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