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Abstract. Prominent influence of transportation costs on supply chain overall profit indicates the importance and emer-
gence of transportation optimization models. Regarding this issue and in view of realistic situation consisting of non-de-
terministic information, in this research optimizing inbound and outbound transportation costs of a multi echelon supply 
chain has been considered. To deal with uncertain time deliveries and pricing strategies adopted by different members 
of supply chain, in conjunction with unpredictable demand rate, fuzzy logic and specifically Trapezoidal Fuzzy Numbers 
(TrFNs) are included. After designing a fuzzy binary multi objective model based upon structural assumptions, the solving 
approach is proposed and the model is employed on Iranian steel supply network to illustrate the potential and advantages 
of our scheduled model. The bi-objective mixed integer fuzzy programming model presents and encompasses many realis-
tic circumstances making the model applicable in network transportation cases. 

Keywords: fuzzy sets, transportation problem, binary bi objective models, supply network, optimization.

Introduction

Transportation Problems (TPs) are used since the organi-
zation of human beings in to society, and today they have 
wide ranging applications such as scheduling, production, 
investment, plant location, inventory control, employment 
scheduling and many others (Ebrahimnejad 2014). Vari-
ous models of TP are lucidly explained for the benefit of 
common readers (Alam, Rastogi 2011). During recent 
years, logistics network design has deservedly received a 
great deal of attention as one of the most important fields 
in Supply Chain Management (SCM) (Jin et  al. 2011). 
Due to global economy downturn and competitive busi-
ness environment, logistic and SCM play an important 
role for any firms to reduce their operations cost and en-
hance their competitive advantage; however, logistic cost 
structure is still high as a result of ineffective planning. 
Actually, transportation cost, the largest logistic cost com-
ponent, is continuously increasing annually (Rianthong, 
Dumrongsiri 2012).

The solution to TP was originally developed by Hitch-
cock and was later advanced by Koopmans (Alam, Rastogi 

2011). Their contributions motivated scholars to develop 
various transportation methods involving a number of 
shipping sources and a number of destinations (Sharma 
et al. 2012). 

Suppose a company has m warehouses and n retail 
outlets. A single product is to be shipped from the ware-
houses to the outlets. Remark that each warehouse has 
a given level of supply, and each outlet has a given level 
of demand. Moreover, the transportation costs between 
every pair of warehouse and outlet is achievable, and these 
costs are assumed to be linear. The problem of interest 
is to determine an optimal transportation sketch between 
the warehouses and the outlets, subject to the specified 
supply and demand constraints or any other structural or 
organizational limitations. Generally, we presuppose that 
transportation costs, values of demand and supplies are 
crisp; as a matter of fact, decision makers need to consider 
common errors and inaccuracy of data and evidences for 
cost parameters, demand or supply rates (Samuel, Venka-
tachalapathy 2014). Fuzzy sets, stochastic programming 
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or grey numbers are widely implemented by researchers 
to discuss uncertainty circumstances of TP. Zimmermann 
(1978) uncovered that fuzzy linear programming method 
is usually efficient and accurate in uncertain circumstances.

In this paper we have considered an unlimited 
two echelon supply chain including suppliers from 

{ }= 1, 2, 3, ...,i m  and retailers from { }= 1, 2, 3, ...,j n  sup-
porting the transportation system of single product supply 
chain on the basis of three possible transportation mode. 
Moreover, the demand function in our proposed system 
is on fuzzy numbers due to market uncertainty in order to 
consider the possible market changes. Furthermore, this 
model enables optimization for a more advanced multi 
dominance TP to improve the price, transportation costs 
and time simultaneously. The main purpose of our re-
search is modelling SC transportation system upon fuzzy 
demands, fuzzy time deliveries and fuzzy transportation 
costs; besides, using a new 0–1 binary method to optimize 
transportation procedure and to minimize total transpor-
tation cost of proposed supply chain. We have developed 
a fuzzy mixed integer programming model based on fuzzy 
parameters for this purpose. Remain of the paper is organ-
ized as follows. First of all, Fuzzy Transportation Problem 
(FTP) considering related researches in introduced. Af-
ter, preliminaries of fuzzy sets and theory is illustrated; 
subsequently, our fuzzy binary bi objective TP regarding 
structure, assumptions, model and solving approach is il-
lustrated. Finally a case study related to Iranian steel in-
dustry and related supply network is presented and the 
proposed model is applied. 

1. Fuzzy transportation problem

Since the identification of the TP in 1941 and its efficient 
solution by the simplex method in 1947, several research-
ers have developed models and algorithms in different 
situations having different variables; being similar in 
structure to the models and algorithms of the standard TP 
(Alam, Rastogi 2011). TP is one of the fundamental prob-
lems of network flow usually used to minimize the trans-
portation cost for industries with numerous resources and 
destinations while satisfying the supply limit and demand 
requirement (Sharma et  al. 2012). Classical TP aims to 
minimize the total cost for shipping various capacities of 
commodities on the requirement of destinations from the 
available sources. TP model often can be built as a linear 
programming model or an NP-hard problem. 

Generally the transportation cost of one unit of a com-
modity is depending on the source and the destination 
(Purusotham, Murthy 2012). Many practical logistics 
problems may be more complex than the general model 
(Stević et  al. 2017; Petraška et  al. 2017, etc.). As an ex-
tended model, multi-product TP selects the best route 
considering several kinds of products (Jin et al. 2011). 

The general TP can be solved by the simplex method; 
nevertheless, simpler method for generating optimal solu-
tions for bi-criteria TP from which the best transportation 

plan can be selected by the decision maker is previously 
figured (Alam, Rastogi 2011).

Considering uncertainty in TPs modeling is a fact 
that scholars need to consider in their researches. Dealing 
with uncertain circumstances are categorized in 3 clus-
ters: (1)  Statistic and probability; (2) Fuzzy sets theory; 
(3) Grey system (Liu, Lin 2006; Amoozad Mahdiraji et al. 
2016). Deng (1989) introduced Grey theory and there’s 
been a massive amount of researches on this theory. i.e. 
Amoozad Mahdiraji et al. (2011, 2016), Razavi Hajiagha 
et al. (2014). Although the advantage of this theory is that 
it presupposes the probability distribution or membership 
function form of information (Li et  al. 2014; Amoozad 
Mahdiraji et al. 2016) and scholars used this method to 
solve TP (Bai et al. 2004); nonetheless, we propose a new 
fuzzy binary approach to optimize supply chain consid-
ering time and cost as two treasure resources that every 
manager needs to minimize. Fuzzy logic and fuzzy num-
bers are the main tools performing for this purpose.

Chanas et al. (1984) worked on TP considering sup-
plies and demands being fuzzy and solved them via para-
metric programming method, TP has also been investi-
gated conditions that cost coefficients were assumed to be 
fuzzy. Chanas and Kuchta (1996) solved this case upon 
crisp objective function after its conversion to a bi criterial 
function. Supplies, demands and conveyance capacities 
were presupposed in Trapezoidal Fuzzy Number (TrFN) 
sets and TP got solved in a parametric approach (Jimé-
nez, Verdegay 1998, 1999). Optimal solution of TP with 
fuzzy demand and fuzzy product was identified by Chiang 
(2005). Furthermore, some new approaches for solving 
FTPs were proposed (Basirzadeh 2011; Kumar et al. 2010; 
Güzel 2010). Lin (2009) employed a genetic algorithm to 
solve TP with fuzzy demand and supply coefficients and 
ranking fuzzy numbers with signed-distance measurement 
were applied for the evaluation and selection of the algo-
rithm. Pandian and Natarajan (2010) denoted a new algo-
rithm namely, fuzzy zero point method for finding fuzzy 
optimal solution for such FTP in which the transportation 
cost, supply and demand are represented by TrFNs.

In 2012 mathematical models for optimal production, 
inventory and transportation planning with direct ship-
ment was proposed (Poonam et  al. 2012; Mohanaselvi, 
Ganesan 2012; Ritha, Vinotha 2009). Similarly, some re-
vised simplex methods on fuzzy logic and fuzzy numbers 
were proposed for solving TP (Kumar, Murugesan 2012; 
Gani et al. 2011). Jin et al. (2011) presented a multi-prod-
uct two-stage TP model with multi-time period and in-
ventory using priority-based genetic algorithm. Scholars 
have also used type-2 fuzzy parameters in the resent years 
(Kundu et al. 2015; Liu et al. 2014; Pramanik et al. 2015). 
Kocken and Sivri (2016) set fuzzy cost coefficients, fuzzy 
supplies, fuzzy demands and fuzzy conveyances to develop 
a parametric method to generate all optimal solutions of 
fuzzy solid TP.

Considering the purpose of our research, which targets 
modelling unlimited two echelon supply chain TP with 
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multi products, Purusotham and Murthy (2012) proposed 
a model with NP-Hard nature problem, where several 
commodities are produced in several plant sites with ca-
pacity constraints, and distributed to several destination 
sites according to demands and transportation constraints. 
Predominantly, in the vast majority of cases previous re-
searches were focused on a single object problem, deter-
ministic demand rate, and deterministic parameters in 
transportation besides limited uncertain information for 
time, price or demand. However, in the proposed model, 
multi objective problem, fuzzy demand rate, fuzzy time 
and prices besides vessel transport selection possibility are 
considered; eventually, the complex fuzzy binary bi objec-
tive model is solved by a novel procedure. Next section of 
this paper is a brief review of some preliminaries of fuzzy 
set theory.

2. Preliminaries of fuzzy set theory

The concept of fuzzy sets was introduced by Zadeh (1965) 
and it has been used ever since to solve many practical 
problems. An assumed fuzzy number like A is delineated 
as an interval   ,l ua a . It is conspicuous that al is the low-
er boundary of A and au, the upper. Respectively α La  and 
α Ua  are defined as (Wang 2015):

( ) ( )α µ ≥α
= inf

a

L
za z ;  (1)

( ) ( )α µ ≥α
= sup

a

U
za z ;  (2)

( )F  is the set of fuzzy numbers for any (α∈ 0,1  
and ( ) ( )α α  =  0 0 ,  0L Ua a a .

We define expected interval ( )EI a  and expected value 
( )EV a  for a fuzzy number like a  as follow (Heilpern 

1992; Dubois, Prade 1987):

( ) ( ) ( ) = = 
*

* ,EI a E a E a ( ) ( )α α

 
 β β β β
  
∫ ∫
1 1

0 0

 ,  L Ua d a d ; 

(3)

( ) ( ) ( )( )= + *
*

1
2

EV a E a E a .  (4)

Suppose a  as a fuzzy number (Chanas 2001; Delgado 
et al. 1998; Grzegorzewski 1998, 2008) have discussed am-
biguity ( )Amb a , value ( )Val a , width ( )w a , left-hand 
ambiguity ( )LAmb a , right-hand ambiguity ( )UAmb a  
as below:

( ) ( ) ( )( )α α= β⋅ β − β β∫
1

0

 L UAmb a a a d ;  (5)

( ) ( ) ( )( )α α= β⋅ β + β β∫
1

0

 L Uval a a a d ;  (6)

( ) ( ) ( )( )α α= β − β β∫
1

0

 L Uw a a a d ;  (7)

( ) ( ) ( )( )α= β⋅ − β β∫
1

0

 L
LAmb a EV a a d ;  (8)

( ) ( ) ( )( )α= β⋅ β − β∫
1

0

U
UAmb a a EV a d .  (9)

Euclidean distance is one of the most illustrious met-
rics defined by Grzegorzewski (1998):

( ) ( ) ( )( )α α= β − β β+∫
1 22

0

,  L Ld a b a b d

( ) ( )( )α αβ − β β∫
1 2

0

 U Ua b d .  (10)

Scholars usually discuss fuzzy numbers as triangular 
and trapezoidal, a schematic view of triangular and trape-
zoidal numbers is given in Figure 1. We illustrate the main 
operations and basic concepts of trapezoidal numbers in 
the rest of this section. 

Trapezoidal numbers are more accurate and com-
prises the triangular numbers, therefore scholars use 
this method more widely (Ban, Coroianu 2014). A TrFN 

( ) ( )β  = β β ,  ,L Ua a a a , β∈  0.1 , is given by:

( ) ( )β = + − ⋅βL l h la a a a   (11)

and
( ) ( )β = + − ⋅βU u u ma a a a .  (12)

Note that if ≤ ≤ ≤l h m ua a a a , a  would be: 
( )= , , ,l h m ua a a a a . The above form is sometimes rep-

resented as Yeh (2008) ( )  β = + β− ⋅
 

1
2L l ma a a , 

( )  ⋅ 


β = − β−


1
2hU a ua a a , where ∈, , ,l h m ua a a a . The 

membership function ( )µA  of a TrFN like A, which 
can be denoted as a quartet ( ), , ,l h m ua a a a  is as below 
(Chen, S.-J., Chen, S.-M. 2007; Kumar, Gupta 2011): 

( )

−
≤ ≤

−
≤ ≤

µ

 
 
 
  = 

−


 
 
 
 

−



≤ ≤

;

;
.

,

1,

,

0, otherwise.

;

l
l h

h l

h m
A

u
m u

u m

x a
a x a

a a
a x a

x
a x

a x a
a a

  (13)

Considering ( )= , , ,l h m ua a a a a   and  ( )= , , ,l h m ub b b b b  
as two TrFN, the arithmetic operations on these two num-
bers is designated as below (Chen, S.-J., Chen, S.-M. 2007; 
Kumar, Gupta 2011): 

λ ≥ 0 , ( )λ ⋅ = λ ⋅ λ ⋅ λ ⋅ λ ⋅, , ,l h m ua a a a a ;  (14)

λ ≤ 0 , ( )λ ⋅ = λ ⋅ λ ⋅ λ ⋅ λ ⋅, , ,u m h la a a a a ;  (15)

( )+ = + + + +, , ,l l h h m m u ua b a b a b a b a b ;  (16)

( )− = − − − −, , ,l u h m m h u la b a b a b a b a b .  (17)

Figure 1. Schematic view of triangular and trapezoidal
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Generally speaking, if we assume “°” as an operation 
on real numbers ( )+ − ∧ ∨ …, , , ,  between a and b, we can 
define an extended operation on fuzzy sets (suppose a , 
b  as *two fuzzy numbers) (Wang 2015): 

( ) ( ) ( ){ }µ = µ ∧µsup aa b bz x y


;  (18)

=, :x y z x y .

If  we assume ( )= , , ,l h m ua a a a a( )= , , ,l h m ub b b b b  and ( )= , , ,l h m ub b b b b
 
 ( )= , , ,l h m ub b b b b
  as two TrFN, then their Euclidean distance mentioned in 

Equation (10) would be:

( ) ( ) ( )= − + − +2 22 , l l u ud a b a b a b

( ) ( )⋅ − + ⋅ −2 21 1
12 12m m h ha b a b .  (19)

The extended trapezoidal approximation is used to 
minimize the distance of ( ),d P Q , where ( )α∈ eQ F  , although (Allahviranloo, Firozja 2007) believes that 
( ) ( ) ( ) ( ) ( ) =  , , ,e le he me uea P a P a P a P a P  as the extended 

trapezoidal approximation is not always a fuzzy number, 
it is determined it as below:

( ) ( )α= β β∫
1

0

 L
lea P a d ;  (20)

( ) ( )α= β β∫
1

0

 U
hea P a d ;  (21)

( ) ( )
1

0

1 1  
12 2

L
mea P a dα

 = ⋅ β − ⋅ β β 
 ∫ ;  (22)

( ) ( )
1

0

1 1  
12 2

U
uea P a dα

 = − ⋅ β − ⋅ β β 
 ∫ ,  (23)

where:
( ) ≥ 0mea P  and ( ) ≥ 0uea P .  (24)

If we define ( )F  as a set of fuzzy numbers on set 
of real numbers, then upon a ranking function pro-
posed by Kaur and Kumar (2012) the ranking func-
tion is ( )→ R : F  and in case of comparison be-
tween two fuzzy numbers like ( )= , , ,l h m ua a a a a  and 

( )= , , ,l h m ub b b b b  the aforementioned function maps 
them into the real line. i.e. (Ebrahimnejad 2014):

≤a b , if and only if

( ) ( )+ + +
= ≤ =R R

4
l h m ua a a a

a b

+ + +
4

l h m ub b b b
;  (24)

≥a b , if and only if 

( ) ( )+ + +
= ≤ =R R

4
l h m ua a a a

a b

+ + +
4

l h m ub b b b
;  (25)

=a b , if and only if

( ) ( )+ + +
= = =R R

4
l h m ua a a a

a b

+ + +
4

l h m ub b b b
.  (26)

3. Proposed binary multi objective  
fuzzy transportation model

3.1. Model structure and assumptions
Consider a two echelon supply chain encompassing un-
limited suppliers (sellers) and retailers (buyers) catering a 
single product. As previously mentioned the main target 
of this research is to minimize the total transportation 
costs of the informed supply chain besides identifying the 
transportation vessel; therefore, the overall profit increases 
and all members will be satisfied. Transportation vessels 
include rail (train), truck and sea transportation systems 
differing for each supplier upon routs capabilities and in-
frastructures. Two main objectives of our proposed mod-
el are to identify the transportation mode; furthermore, 
determine the quantity transported from any supplier to 
each retailer. The initial scheme of the elaborated SC is 
demonstrated in Figure 2. 

Moreover, other assumptions regarding the illustrated 
supply chain are considered as fellow: 

1) The above supply chain includes m suppliers in-
dexed by Si while { }= …1, 2, ,i m  and n retailers 
indexed by Rj while { }= …1, 2, ,j n . 

2) Demand function depends on the price offered by 
each retailer to final customer or market, being a 
nonlinear function equal to 

−α
= ⋅ j

jj j PD K C  where 
alpha indicates the inverse effect of price for each 
retailer, (Esmaeili et al. 2008; Jia et al. 2013, Amoo-
zad Mahdiraji et al. 2015), Kj stands for price fixed 
coefficient CPj illustrates the price offered by each 
retailer to the market or final customer and Dj pre-
sents the demand related to j-th retailer. One of the 
novelties of our research is considering uncertainty 
and nondeterministic situations for transportation 
in supply chain. With this fact in mind, the offered 
price of each retailer is considered as TrFNs and 
presented as 

jPC ; accordingly, the demand function 
transfers to 

−α
= ⋅ j

jj j PD K C . 
3) Each supplier on the basis of transportation infra-

structures and possible routes is capable to transfer 
the requested demand by rail, truck and sea trans-
portation system, identified by L while L = 1 pre-
sents sea, L = 2 presents truck and L = 3 presents 
rail transportation system. 

Figure 2. Considered supply network

S1

Sm

R1

Rn

S2 R2

Final 
customers/ 

markets
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4) By identifying the transportation mode, besides de-
termining the transportation quantity, two objective 
functions are considered. The first aims to select the 
transportation mode considering the lowest deliv-
ery time and the second object targets minimizing 
purchase and transportation costs (inbound and 
outbound transportations).

5) Transportation costs and delivery time may vary 
subjected to different circumstances; hence, their 
amounts are not deterministic and accurate. Fuel 
prices, political and economic issues, weather 
changes and many other determinant factors may 
engender changes in costs and time. With this fact 
in mind and to increase the novelty and complex-
ity of our research, transportation costs and deliv-
ery time are considered uncertain and presented as 
TrFNs in our proposed model. Remark that &t p  
present time and transportation costs upon TrFNs. 
Other decision variables and parameters related to 
the figured model are denoted in Table 1. 

Regarding the structure and models assumptions, the 
initial sketch of the network manner is indicated in Figure 3.

3.2. Modelling process

The proposed model upon the aforementioned structure 
and assumptions and similar to any mathematical multi 
objective model, consists of a bi objective function sub-
jected to structural limitations. As previously mentioned, 
two main objectives including identifying the transpor-
tation mode, besides determining the transportation 
quantity are studied, where the first (Z1) aims to select 

the transportation mode regarding the delivery time and 
the second object (Z2) targets minimizing purchase and 
transportation costs; therefore, Equation (27) eventuates. 

= = =
= ⋅∑∑∑1

1 1 1

m n e

ijl ijl
i j l

Min Z P X ;

= = =
= ⋅∑∑∑2

1 1 1

m n e

ijl ijl
i j l

Min Z T Y .  (27)

The constraint of our proposed model embraces two 
parts. First, the classical transportation limitations consist-
ing of demand fulfilment and supply utilization; moreover, 
some minimum requirements and maximum capacities 
are definable for any transportation mode. Demand fulfil-
ment for each retailer is figured as Equation (28), while 
supply utilization of each supplier capacity is illustrated 
in Equation (29):

= =
=∑∑

1 1

m e

ijl j
i l

X D , ∈∀ j n;  (28)

= =
≤∑∑

1 1

n e

ijl i
j l

X Ca .  (29)

Employing each transportation system depends on the 
order quantity; thus, least (mijl) and utmost (uijl) order 

Table 1. Model parameters and variables

Type Amount Symbol Definition Range

Parameter Crisp

Si The i-th supplier { }= …1, 2, ,i m

Rj The j-th retailer { }= …1, 2, ,j n

L The transportation mode { }= …1, 2, ,l e

Kj Demand coefficient for j-th retailer K > 0
αj Price demand coefficient for j-th retailer α > 1

Cai The possible capacity of i-th supplier –
mijl Minimum order for employing l-th vessel –
uijl Maximum capacity possible for l-th vessel –

Function

TrFNs

jD Market demand for j-th retailer –

Parameter

jPC Selling price for j-th retailer –

ijlp The price and transportation costs of goods from i-th supplier  
to j-th retailer by lth vessel

≥ 0ijlp

ijlt The transfer time of transported goods from i-th supplier  
to j-th retailer by l-th vessel

≥ 0ijlt

Decision 
variable Variable

xijl
The quantity of transported goods from i-th supplier  
to j-th retailer by l-th vessel

≥ 0ijlx

yijl
The l-th vessel used or not employed to transport goods  
from i-th supplier to j-th retailer





0
1ijly

−α
=

→ →
; ;

Final Customers/Marketsi j

j
j j Pijl ijl ijl j

D k Ct p x
S R

Figure 3. Initial manner of the supply network
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size are considered. Larger replenishment requires trans-
portation systems with higher capacity such as sea or rail; 
on the other hand, truck transportation system is more 
applicable for lower bath sizes. In addition, some orders 
may be transferred by multiple systems from supplier to 
retailer. The above considerations are formulated as below; 
where, Equation (30) indicates the minimum capacity for 
employing any vessel and Equation (31) presents the high-
est possible capacity for any transportation system: 

≥ ⋅ijl ijl ijlX m Y , ∈ ∈∀ ,i m l e ;  (30)

≤ ⋅ijl ijl ijlX u Y , ∈ ∈∀ ,i m l e .  (31)

Considering structure, assumptions, objective func-
tions, constraints, decision variables and parameters, our 
final proposed model is demonstrated as below:

= = =
= ⋅∑∑∑1

1 1 1

m n e

ijl ijl
i j l

Min Z P X ;

= = =
= ⋅∑∑∑2

1 1 1

m n e

ijl ijl
i j l

Min Z T Y

subject to

= =
=∑∑

1 1

m e

ijl j
i l

X D , ∈∀ j n ;

= =
≤∑∑

1 1

n e

ijl i
j l

X Ca , ∈∀i m ;

≥ ⋅ijl ijl ijlX m Y , ∈ ∈∀ ,i m l e ;

≤ ⋅ijl ijl ijlX u Y , ∈ ∈∀ ,i m l e ;
−α

= ⋅ j

jj j PD K C , ∈∀ j n ;

: 0 or 1ijly ;

≥ 0ijlx ;

{ }= …1, 2, ,i m ;

{ }= …1, 2, ,j n ;

{ }= …1, 2, ,l e .                                                    (32)

3.3. Model solving approach

The problem in Equation (31) is a bi-objective mixed in-
teger fuzzy programming problem. The extended form of 
this problem can be shown as:

Min
= = =

 = ⋅ 
 ∑∑∑1

1 1 1
Min , , , ;

ijl ijl ijl ijl

m n e
l h m u

ijl
i j l

Z P P P P X

Min
= = =

 = ⋅ 
 ∑∑∑2

1 1 1
Min , , ,

ijl ijl ijl ijl

m n e
l h m u

ijl
i j l

Z T T T T Y

subject to
α α

= =

   =       
∑∑

1 1
, ,

j j

j j

m e
l h

ijl j p p
i l

X k C C

α α             
, ,

j j

j j
m u
p pC C ∈∀ ;j n

= =
≤∑∑

1 1
,

n e

ijl i
j l

X Ca ∈∀ ;i m

≥ ⋅ ,ijl ijl ijlX m Y ∈ ∈∀ , ;i m l e

≤ ⋅ ,ijl ijl ijlX u Y
 ∈ ∈∀ , ;i m l e

−α
= ⋅ ,j

jj j PD K C ∈∀ ;j n

: 0 or 1ijly ;

≥ 0;ijlx

{ }= …1, 2, ,i m ;

{ }= …1, 2, ,j n ;

{ }= …1, 2, ,l e .                                                     (33)

To solve this problem, first consider the constraints set. 
Among the constraints, just the first one is a fuzzy equal-
ity. According to Jiménez and Verdegay (1998, 1999), the 
fuzzy equality constraint is handled using the concept of 
expected intervals. Jiménez and Verdegay (1998) defined 
the degree of among two fuzzy numbers a  and b  as fol-
lows:

( )
 ∈ −
  µ = ∈ − −  


∈ −

2 1

1 2 2 1

2 1

0, if 0 0;

, , if 0 , ,

1, if 0 0,

a b

a b a b
M

a b

E E

a b E E E E E

E E





  (34)

where:
−

=
− + −

2 1

2 1 2 1

a b

a a b b
E E

E
E E E E

.

If ( )µ ≥ α,M a b , then a  is greater than or equal to 
b  at least at the level of α. Considering a constraint of 
the type ⋅ ≤a x b , this constraint can be transformed into 

( )µ ⋅ ≤ α,M a x b . In a satisfaction degree of α, this ine-
quality is transformed into:

( ) ( ) ( )( )α ⋅ + + −α ⋅ + ⋅ ≤1l h m ua a a a x

( ) ( ) ( )α ⋅ + + −α ⋅ +1m u l ha a a a .  (35)

For equality type constraint, “=” sign is substituted 
with/by “≤” in Equation (40). Therefore, the fuzzy con-
straints of the problem in Equation (31) are substituted 
by the following relation:

α α

= =

    = α ⋅ + +    
     

∑∑
1 1

j j

j j

m e
m u

ijl j p p
i l

X k C C

( )
α α    −α ⋅ +    

     
1

j j

j j
l h

j p pk C C ; ∈∀ j n .  (36)

Substituting this relation in the constraints set, the 
fuzzy constraints are linearized. Suppose that for ease of 
notation, the set of constraints is shown as ∈x X . 

Considering objective functions, it is clear that an ideal 
transportation plan is a plan, which meets demands with 
lowest possible cost and time. Therefore, the ideal time T+ 
and cost C+ can be found by solving the below problems, 
respectively: 

( )1Min EV Z
subject to
∈x X                                                                   (37)
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and for time criterion:
( )2Min EV Z

subject to
∈x X ,                                                               (38)

where: 

( )
= = =

 = ⋅ + + + ⋅ 
 ∑∑∑1

1 1 1

1
4 ijl ijl ijl ijl

m n e
l h m u

ijl
i j l

EV Z P P P P X  (39)

and 

( )
= = =

 = ⋅ + + + ⋅ 
 ∑∑∑2

1 1 1

1
4 ijl ijl ijl ijl

m n e
l h m u

ijl
i j l

EV Z T T T T Y .  (40)

On the other hand, the nadir-ideal solutions for cost 
−C  and time −T  can be obtained by solving problems in 

Equations (37) and (38), by changing the optimization di-
rection from “min” to “max”. 

Now, to find the satisficing solution of the problem in 
Equation (33) can be found by solving the below problem 
in a satisfaction level of α:

Min 
( ) ( )− −

− + − +

− −
+

− −
1 2Max

C EV Z T EV Z
C C T T

subject to
∈x X ;

( )+ −≤ ≤1C EV Z C ;

( )+ −≤ ≤2T EV Z T .                                               (41)

The above procedure can be summarized as follows:
 – Step 0. Gather the data required to construct the 
model;

 – Step 1. Construct the problem according to Equa-
tion (33);

 – Step 2. Transform the fuzzy constraints into non-
fuzzy constraints using Equation (36);

 – Step 3. Determine the ideal and nadir-ideal solutions 
for cost and time by solving the problems in Equa-
tions (37) and (38) respectively;

 – Step 4. Set { }α = …0, 0.1, 0.2, , 1 ;
 – Step 5. Formulate and solve the problem in Equa-
tion (40) for different values of α;

 – Step 6. Illustrate the obtained solutions for different 
values of α to decision maker(s) and select the ap-
propriate one as the final solution. 

It is notable that the above binary problems can be 
solved easily using optimization packages like Lingo.

4. Iranian steel supply network

To shed more light on elaborated model and to prove and 
verify the applicability of our proposed model, the fuzzy 
binary bi objective transportation model is employed in 
Iranian steel industry network. The steel industry main 
buyers or retailers in Iran with nearly 80% market share 
are Z.A (R1) and F.M (R2) since 1980, using iron ore as 
their main input for manufacturing system. Iron ore is 
catered from domestic or foreign suppliers. The only do-
mestic mining system being capable to meet the buyers 
demand is G.G (S1); nonetheless, in the vast majority of 

cases the remained required iron ore is imported from 
mines in Russia (S2), China (S3) and Kazakhstan (S4). 
Figure 4 illustrates the supply network including possible 
transportation modes. Reducing transportation costs and 
the selection of transportation mode are retailers and steel 
supply network controversial issues. 

Accordingly, the steel industry supply network encom-
passes 4 suppliers and 2 retailers or buyers. It is noticeable 
that all three transportation modes are possible for the 
second; however, the first and second suppliers are han-
dling truck and train; furthermore, the third supplier is 
capable of truck and rail transportation systems. Deter-
ministic parameters related to aforementioned network 
are presented in Table 2. 

Moreover, uncertain quantities compromising selling 
price, transportation costs and transferring time are de-
lineated in Tables 3, 4 and 5 upon TrFNs emanated from 
managerial brain storming sessions and calculations, on 
the basis of different scenarios.

Table 2. Parameters of steel supply network

Definition Symbol Quantity

Demand coefficient for  
j-th retailer

K1 1.4 ⋅108

K2 1.2 ⋅108

Price demand coefficient for 
j-th retailer

α1 1.1
α2 1.3

The production capacity of  
i-th supplier

Ca1 5 million ton
Ca2 50 million ton
Ca3 50 million ton
Ca4 20 million ton

Minimum order for employing 
l-th vessel

mij1 15000 ton
mij2 1500 ton
mij3 5000 ton

Maximum capacity possible for 
l-th vessel

uij1 25 million ton
uij2 12 million ton
uij3 15 million ton

Table 3. Selling price for each retailer

Definition Symbol TrFN

Selling price for 
j-th retailer

1PC (55, 57, 59, 64) USD per ton

2PC (52, 56, 59, 62) USD per ton

Figure 4. Iranian steel industry network
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On the basis of the above data, the binary multi objec-
tive fuzzy transportation model, Equation (32), is formu-
lated as:

Min =1Min Z

( ) ⋅ +2111900,1940,1980, 2200 x

( ) ⋅ +3112000, 2100, 2200, 2300 x

( ) ⋅ +2211920,1940,1990, 2100 x

( ) ⋅ +3211900, 2000, 2100, 2200 x

( ) ⋅ +112230, 290, 320, 390 x

( ) ⋅ +122210, 295, 310, 400 x

( ) ⋅ +2121450,1600,1650,1800 x

( ) ⋅ +2221550,1650,1700,1800 x

( ) ⋅ +4121970,1990, 2020, 2100 x

( ) ⋅ +4221890,1990, 2020, 2200 x

( ) ⋅ +113300, 390, 420, 490 x

( ) ⋅ +123310, 395, 410, 500 x

( ) ⋅ +2131250,1400,1450,1600 x

( ) ⋅ +2231350,1450,1500,1600 x

( ) ⋅ +3132040, 2140, 2200, 2400 x

( ) ⋅ +3232080, 2180, 2250, 2490 x

( ) ⋅ +413950, 990,1020,1100 x

( ) ⋅ 423990, 990,1020,1200 ;x
Min =2Min Z

( ) ⋅ +2113.5, 4, 4.5, 5 y

( ) ⋅ +2213.5, 4, 4.5, 5 y

( ) ⋅ +3112.5, 2.5, 3, 4 y

( ) ⋅ +3212.5, 2.5, 3, 4 y

( ) ⋅ +1122, 3, 4, 5 y

( ) ⋅ +1222.5, 3.5, 4, 4.5 y

( ) ⋅ +2123, 3.5, 3.5, 4 y

( ) ⋅ +2223, 3.5, 3.5, 4 y

( ) ⋅ +4121.5, 2, 2.5, 2.5 y

( ) ⋅ +4221.5, 2, 2, 2.5 y

( ) ⋅ +1132, 3, 4, 5 y

( ) ⋅ +1232.5, 3.5, 4, 4.5 y

( ) ⋅ +2132.5, 3, 3.5, 3.5 y

( ) ⋅ +2232.5, 3, 3, 4 y

( ) ⋅ +3132.5, 2.5, 3, 4 y

( ) ⋅ +3232.5, 2.5, 3, 4 y

( ) ⋅ +4132, 2.5, 2.5, 3 y

( ) ⋅ 4232, 2.5, 3, 3.5 y

subject to
+ + + +211 311 112 212x x x x

+ + + + =412 113 213 313 413 1x x x x x D ;

+ + + +221 321 122 222x x x x

+ + + + =422 123 223 323 423 2x x x x Dx ;

+ + + ≤112 122 113 123 5000000x x x x ;

+ + +211 221 212x x x

+ + ≤222 213 223 50000000x x x ;

+ + + ≤311 321 313 323 50000000x x x x ;

+ + + ≤412 422 413 423 20000000x x x x ;

⋅ ≤≤ ⋅211 211 21115000 25000000y x y ;

⋅ ≤≤ ⋅221 221 22115000 25000000y x y ;

Table 4. TrFN Price and transportation costs from supplier to retailer (USD per ton)

Suppliers S1 S2 S3 S4

L = 1, 
sea

R1 – (1900, 1940, 1980, 2200) (2000, 2100, 2200, 2300) –
R2 – (1920, 1940, 1990, 2100) (1900, 2000, 2100, 2200) –

L = 2, 
truck

R1 (230, 290, 320, 390) (1450, 1600, 1650, 1800) – (1970, 1990, 2020, 2100)
R2 (210, 295, 310, 400) (1550, 1650, 1700, 1800) – (1890, 1990, 2020, 2200)

L = 3, 
rail

R1 (300, 390, 420, 490) (1250, 1400, 1450, 1600) (2040, 2140, 2200, 2400) (950, 990, 1020, 1100)
R2 (310, 395, 410, 500) (1350, 1450, 1500, 1600) (2080, 2180, 2250, 2490) (990, 990, 1020, 1200)

Table 5. TrFN Transfer time of transported goods from supplier to retailer (per week)

Suppliers S1 S2 S3 S4

L = 1, 
sea

R1 – (3.5, 4,4. 5, 5) (2.5, 2.5, 3, 4) –
R2 – (3.5, 4,4.5, 5) (2.5, 2.5, 3, 4) –

L = 2, 
truck

R1 (2, 3, 4, 5) (3, 3.5, 3.5, 4) – (1.5, 2, 2.5, 2.5)
R2 (2.5, 3.5, 4, 4.5) (3, 3, 4, 4.5) – (1.5, 2, 2, 2.5)

L = 3, 
rail

R1 (2, 3, 4, 5) (2.5, 3, 3.5, 3.5) (2.5, 2.5, 3, 4) (2, 2.5, 2.5, 3)
R2 (2.5, 3.5, 4, 4.5) (2.5, 3, 3, 4) (2.5, 2.5, 3, 4) (2, 2.5, 3, 3.5)
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⋅ ≤≤ ⋅311 311 31115000 25000000y x y ;
⋅ ≤≤ ⋅321 321 32115000 25000000y x y ;

≤≤⋅ ⋅112 112 1121500 12000000y x y ;
≤≤⋅ ⋅122 122 1221500 12000000y x y ;
≤≤⋅ ⋅212 212 2121500 12000000y x y ;
≤≤⋅ ⋅222 222 2221500 12000000y x y ;
≤≤⋅ ⋅412 412 4121500 12000000y x y ;
≤≤⋅ ⋅422 422 4221500 12000000y x y ;
≤≤⋅ ⋅113 113 1135000 15000000y x y ;
≤≤⋅ ⋅123 123 1235000 15000000y x y ;
≤≤⋅ ⋅213 213 2135000 15000000y x y ;
≤≤⋅ ⋅223 223 2235000 15000000y x y ;
≤≤⋅ ⋅313 313 3135000 15000000y x y ;
≤≤⋅ ⋅323 323 3235000 15000000y x y ;
≤≤⋅ ⋅413 413 4135000 15000000y x y ;
≤≤⋅ ⋅423 423 423 ;5000 15000000y x y

( )−= ⋅ ⋅
1.18

1 1.4 10 55, 57, 59, 64D ;

( ) −= ⋅ ⋅8 1.3
2 1.2 10 52, 56, 59, 62  D ;

: 0 or 1ijly ; =1, 2i ; =1, 2j ; =1, 2, 3l ;
≥211 0x ; =1, 2i ; =1, 2j ; =1, 2, 3l .

Two fuzzy constraint of this model are transformed 
into their non-fuzzy counterparts, using Equation (36): 

+ + + + +211 311 112 212 412x x x x x
+ + + =113 213 313 413x x x x

− −
 ⋅ α ⋅ +



⋅ +




8
1.1 1.1

1 11.4 10
55 57

( ) − −
 −α ⋅ + 






 1.1 1.1

1 11 ;
59 64

+ + + + +221 321 122 222 422x x x x x
+ + + =123 223 323 423x x x x

− −
 ⋅ α ⋅ +



⋅ +




8
1.3 1.3

1 11.2 10
52 56

( ) − −
 −α ⋅ + 






 1.3 1.3

1 11 .
59 62

Besides, the fuzzy objective functions are handled 
using their expected value, as shown in Equations (39) 
and (40). The ideal solutions can be found by letting α = 
0 and solving the problems in Equations (37) and (38). 
The nadir-ideal solutions also obtained by changing the 
optimization direction in the abovementioned prob-
lems from “min” to “max”. These values are obtained as 

− = 9241450000C , + =1281361000C , − = 57.375T  and 
+ = 4.125T . Now, the objective function of the problem 

in Equation (45) is formulated as:

Max 
( ) ( )− −

+
− −

1 29241450000 57.375
Max

9241450000 1281361000 57.375 4.125
EV Z EV Z

.

This problem is solved by letting α = + ⋅0 0.1 k , k = 
= …0,1, ,10k . The results are shown in the Table 6.

Table 6. The satisfaction degree of the objective function

α Objective function

0 1.943662
0.1 1.941704

0.2 1.939747

0.3 1.937789

0.4 1.935832

0.5 1.933874

0.6 1.931917

0.7 1.929959

0.8 1.928002

0.9 1.926044

1 1.924087

As it can be seen, increasing the value of α, the ob-
tained objective function (sum of satisfaction degree for 
both objectives) is decreased. This is because while in-
creasing α, the ambiguity of the problem decreases and 
the problem’s feasible space is down-sized. Thus, decision 
maker(s) must make a trade-off between increasing cer-
tainty on one hand, and losing objective functions satis-
faction degrees on the other hand. Considering this trade-
off, decision maker(s) in this case agreed on the satisfac-
tion level of 60%. On the level of α = 0.6, = =* *

112 122 1y y  , 
=*

112 3125214x  and =*
122 1271360x . This means that, all 

the demands of R1 and R2 are met by the domestic source. 
Also, the orders are transported using the second trans-
portation mode, i.e. by truck.

Conclusions

TPs are used since the organization of human beings in 
to society, and today they have wide ranging applications 
such as scheduling, production, investment, plant loca-
tion, inventory control, employment scheduling and many 
others. In this research optimizing inbound and outbound 
transportation costs of a multi echelon supply chain has 
been considered. To deal with uncertain time deliveries 
and pricing strategies adopted by different members of 
supply chain, fuzzy logic and specifically TrFNs are in-
cluded. After designing a fuzzy binary multi objective 
model based upon structural assumptions, the solving 
approach is proposed and the model is employed on Ira-
nian Steel Supply network to illustrate the potential and 
advantages of our scheduled model. 

Integrating fuzzy logic and TrFNs for uncertain time 
and price quantities; besides, applying binary variables in 
conjunction with continuous variables to define trans-
portation vessel type and order quantities; moreover, 
proposing a binary multi objective fuzzy transportation 
novel model and solving approach and finally, employing 
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the proposed model in Iranian Steel supply network are 
the significant advantages of our research. The proposed 
model can be used for unlimited multi- echelon supply 
chains as we have performed in a supply chain network 
framework. Moreover prior researches optimized a single 
objective one stage TP, although a more complex multi 
stage TP has been optimized using the novel binary multi 
objective model. For future possible studies, considering 
more integrated supply networks, using stochastic demand 
functions and considering shipping line companies’ poli-
cies as new constraint are notable. 
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