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Abstract. Vehicle gearbox dynamics is characterized by time varying mesh stiffness. The paper presents a survey 
of methods used for determining mesh stiffness and the analysis of the centre distance influence on it. The refined 
mathematical transmission model presenting the centre distance as a variable is presented. The centre distance error 
as well as backlash and bearing flexibility is defined and the influence of these factors on mesh stiffness and spur gear 
dynamics is investigated. The results obtained from this paper may be used in gear-box diagnostics. 
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1. Introduction

Gear trains are widely used in various means of trans-
port, including air, rail and road transport. One can 
hardly imagine a modern car, truck or building equip-
ment without switch-gears and gearboxes (Fig. 1), 
which are used for transmitting torque, speed and di-
rection of rotation. The operating conditions of gears 
are very complicated because they are subject to torque 
and dynamic loads due to the anti-torque moment. 
In the course of operation, some damages are done to 

gears, which cause vibrations. The analysis of the vibra-
tion processes yields the information about the state of 
gears. There are quite a few methods of data process-
ing obtained from diagnostics. They include the analysis 
of spectrum, cepstrum, etc. Their survey is beyond the 
aims of the present paper, therefore, the works of Balickij 
et al. (Балицкий и др. 1984), Staszewski and Worden 
(1997), Mažeika (2008) may be recommended for get-
ting into more details. The methods stated above are 
used as a tool of data processing. Effective diagnostics 
require precise data about particular defects and their 
influence on the considered mechanism. In addition, the 
frequency at which a certain defect can be observed and 
the dependence of its development on the amplitude of 
the signal should be known. To obtain these data, a lot 
of expensive and time-consuming experiments should 
be made. Therefore, mathematical modelling may be ef-
fectively used for this purpose. 

Gear trains are deliberated to be the investigation 
object of many research works. Thus, the work of Utagawa 
(1958) is aimed at determining the dynamic loads. Time-
varying stiffness is considered as well. The equations for 
calculating the dynamic loads are given and all theoretical 
calculations are checked by practical experiments. The re-
search of Augustaitis (Аугустайтис 1994) is worth paying 
attention because the Bulgakov’s system of normal coordi-
nate is used and mathematical models of gear trains, bear-
ings and shafts are presented. Ragulskis et al. (Рагульскис 
и др. 1974) investigated friction in bearings as well as 
their stiffness and lateral vibration and performed the ex-Fig. 1. Gearbox 
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perimental research into bearings. Mariūnas (Марюнас 
1993) analyzed kinematic gear trains with force closure 
of links. Mathematical models are being constantly im-
proved and new models are being constructed. Multistage 
gear systems are being investigated now. Thus, Fakhfakh 
et al. (2006) uses a mathematical model to describe a two-
stage gear system and step function to describe stiffness. 
Litak and Friswell (2005) consider gear defects, i. e. tooth 
breaks, pitch errors, etc., applying the chaos theory. Gill-
Jeong (2007) presented a mathematical model of two-
stage gear systems and Fourier series which are used for 
describing stiffness. In addition, backlash is determined 
and damping coefficient is calculated. The formulas for 
determining the combined torsional mesh stiffness of one 
and two spur gear pairs in mesh are offered by Kiekbusch 
and Howard (2007). It is assumed that the total stiffness 
consists of gear stiffness, tooth stiffness and contact stiff-
ness of gears. Walha et al. (2009), discusses bearing flex-
ibility and backlash of both gears. Stiffness variation is 
described by step function. Frolov and Kosarev (2003) 
analyse the factors, influencing the vibration processes, 
e.g. mesh stiffness, forces, pitch errors, profile errors, etc. 
Zouari et al. (2007) studies the effect of cracking on mesh 
stiffness. They varied in crack size and direction of crack-
ing and were used Finite Element Method (FEM) for cal-
culation. Maliha et al. (2004) presented the model of gear-
shaft-disk-bearing systems and evaluated the backlash. He 
et al. (2008) presented five models of describing friction. 
Barzdaitis et al. (2006) described a rotating system with 
gear-wheel coupling and determined the effect of friction 
on fretting corrosion. The problem was solved by FEM. 
Mažeika et al. (2008) investigated gear train with antifric-
tion bearings. FEM was also used for calculation. The aim 
of the paper was to suggest some methods for protecting 
the systems with gear power transmission, running on an-
tifriction bearings, from unexpected failures. Barzdaitis et 
al. (2009) analysed the problem connected with the in-
creased loading of bearings, when the mechanism was be-
ing turned off. Displacements and kinematic orbits were 
used as a diagnostic tool.

2. Methods of Determining Mesh Stiffness  
in a Pair of Teeth

In this section, a survey of methods for determining 
mesh stiffness, which may be used in constructing a 
mathematical model, is presented.

2.1. Model 1
Using a method suggested by Dimentberg and Koles-
nikov (Диментберг и Колесников 1980) and changing 
it so that stiffness dimension is [N/m], we get the follow-
ing expression (Fig. 2):

( )211 2 7 5 1 25

E bk
. . h .

⋅
=

+ ⋅ −
, (1)

where: E is reduced Young’s modulus; b is width of the 
teeth, while the numerical values are available in Table; 
h is a relative distance from the point of load application 
to the tooth base, ranging from 0.25 to 2.25.

Table. A mathematical model data

Parameter Value
Young’s modulus, E 210.0 GPa
Module, m 2.500∙10–3 m
Number of teeth, pinion, z1 30
Number of teeth, gear, z2 30
Tooth width, b 1.000∙10–2 m
Motor parameter, cv 147.4
Motor  parameter, dv 34.48
Angular velocity of idle running, ω0 157.1 rad/s
Moment of inertia, engine, I1 5.400∙10–3 kg∙m2

Reduced moment of inertia, pinion, I2 9.620∙10–3 kg∙m2

Reduced moment of inertia, gear, I3 9.620∙10–3 kg∙m2

Moment of inertia, load, I4 5.400∙10–3 kg∙m2

Reduced mass of pinion, m1 1.660 kg
Reduced mass of gear, m2 1.660 kg
Torsional stiffness coefficient of rotor, kr 30.66∙103 Nm/rad
Torsional damping coefficient of rotor, cr 100.0 N∙m/s
Reduced bearing stiffness coefficient, kb 1.000∙108 N/m
Reduced bearing damping coefficient, cb 1000 N∙s/m
Mesh damping coefficient, c 100.0 N∙s/m
Density, ρ 7800 kg/m3

Speed recovery factor, en 0.7000
Coefficient, ab 1.500
Profile angle, α0 0.3490 rad
Pressure angle, αw 0.3490 rad
Orientation angle, ψ 0 rad
Reduced Young’s modulus, Eb 115.4 GPa

To go over from the parameter h to contact ratio, 
the following expression should be used:

221 0.4 1
11.2
E b Xk

 ⋅ ⋅  = ⋅ − ⋅ −  ε  
, (2)

where: ε  is the contact ratio; X  is a variable and  
[0; ]X∈ ε .

2.2. Model 2
It was suggested by Dimentberg and Kolesnikov 
(Диментберг и Колесников 1980). When this method 
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Fig. 2. Model 1: Stiffness dependence on the parameter h
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is used for calculation, the character of the curve re-
mains the same as in the previous case, but stiffness is 
different and formula is changed so that the stiffness di-
mension is [N/m]. The total stiffness of a teeth pair may 
be found as follows (Fig. 3):

( )( )21 0.27 1.25
13

E bk h⋅
= ⋅ − ⋅ − , (3)

2.3. Model 3
Model 3 allows us to determine the variation of the cen-
tre distance (Диментберг и Колесников 1980):

( )333.65 3.65 d

E bk
h k h

⋅
=

+ + + −
, (4)

where:

2.5d
Ak

m
∆

= + , (5)

where: 0.1A∆ =  mm is the centre distance error; m is 
the module.

The main disadvantage of this method is that only 
stiffness is changed, while the meshing area has not 
changed (Fig. 4).

2.4. Model 4

Kuang and Yang offered a method for determining stiff-
ness of one tooth, Kuang and Yang (1992), Kuang and 
Lin (2001). Using this method, we obtain the stiffness 
of one tooth:

( ) ( ) ( ) ( )0 1 2 3 1
wi

i i i
i

r r
K r A A X A A X

X m
−

= + ⋅ + + ⋅
+ ⋅

; (6)

2
0 3.867 1.612 0.02916i iA z z= + ⋅ − ⋅ +

30.0001553 iz⋅ ; (7)

2
1 17.060 0.7289 0.01728i iA z z= + ⋅ − ⋅ +

30.0000999 iz⋅ ; (8)

2
2 2.637 1.222 0.02217i iA z z= − ⋅ + ⋅ −

30.0001179 iz⋅ ; (9)

2
3 6.330 1.033 0.02068i iA z z= − − ⋅ + ⋅ −

30.0001130 iz⋅ , (10)

where: i = 1.2; r  is the radius at loading point; iz is the 
number of teeth; iX  is addendum modification; 0iX = ; wir  is pitch radius. When stiffness dimension is [N/m]:

( ) 910i ik K r b= ⋅ ⋅ , (11)

when the stiffness of both gears is determined, the total 
mesh stiffness is found as follows:

1 2

1 2

k k
K

k k
⋅

=
+

. (12)

Using this method, centre distance variation may be 
determined. Given the stiffness at any point of the tooth, 
the matching points of two teeth are determined by cen-
tre distance.

As one can see, unlike the situation in Model 3, the 
area of load application also changed (Fig. 5).

2.5. Model 5
Stiffness can be calculated by using FEM.

The beam element with four degrees of freedom is 
used, and only a bending force is evaluated. Given lon-
gitudinal stiffness distribution, we may get stiffness de-
pendence on the rotation angle of the gear (Fig. 6).

2.6. Model 6
This is an analytical method. If only bending is calcu-
lated, while compression is not considered, the displace-
ment is determined as follows:
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Fig. 3. Model 2: Stiffness dependence on the parameter h
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  ∂∂ ∂  = = = ⋅
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 
∫ ∫ , (13)

where: U is the potential energy; F  is a force; 
ixM  is 

a gear torque; 
ixI  is the inertia moment of tooth cross 

section.
Rearranging the expression (13), we get:

( )
3

0 3

i

i i

x
i i i

i i
x x

Fx dx Fx
q x

EI EI
−

= ⋅ − =∫ . (14)

The stiffness of the gear tooth is obtained this way:

3

3
ix

i
i i

EIFk
q x

= = , (15)

where: ix  is a distance from the tooth base to the area 
of force application. Mesh stiffness in a pair of gears is 
determined by the formula (12) (Fig. 7).

The compression strength of the tooth may also be 
determined. Taking into account bending, the calcula-
tions, compression and contact stiffness were made by 
Atanasiu and Doroftei (2008).

We have analysed six models of gear meshing in 
order to determinate the mesh stiffness. Models 3, 4, 
5 and 6 allow us to evaluate the variation of the cen-
tre distance. However, when model 3 is used, the point, 
where interaction between the teeth begins, does not 
change. In further calculations, the method of de-
termining mesh stiffness offered by Kuang and Yang 
(1992) is used.

3. A Mathematical Transmission Model with an 
Asynchronous Electric Motor

A mathematical model of transmission is considered 
(Fig. 8). In Fig. 8, 1 is an asynchronous electric motor. Its 
main parameters are the moment of inertia 1I  and the 
rotation angle 1ϕ . The numbers 2, 3, 4, 5 denote bear-
ings with the reduced stiffness coefficient bk  and the re-
duced damping coefficient bc . 6, 7 denote the pinion and 
gear, having the reduced moments of inertia 2I , 3I , the 
reduced masses m1, m2 and the rotation angles 2ϕ , 3ϕ . 
8 means the load with the moment of inertia 4I , the 
rotation angle  and the load moment 4M .

3.1. A Mathematical Model of an Asynchronous 
Electric Motor
To evaluate the non-uniformity rotation of the trans-
mission elements, a mathematical model suggested by 
Bogdevičius (2008) may be used:

( )1 1 0 1v vM d M c+ ⋅ = ⋅ ω −ϕ

 , (16)

where: 1M  is the rotation moment of the electric mo-
tor; ,v vd c  are the parameters of the electric motor; 0ω  
is an angular velocity of idle running; 1ϕ  is an angular 
velocity of electric motor.

3.2. A Mathematical Model of Rotary Motion 
Transmission
The dynamic of gearing is described by equations:

( ) ( )1 1 1 1 2 1 2r rI M k c⋅ϕ = − ⋅ ϕ −ϕ − ⋅ ϕ −ϕ   ; (17)

( ) ( )2 2 1 2 1 2 2r rI k c M⋅ϕ = ⋅ ϕ −ϕ + ⋅ ϕ −ϕ −   ; (18)

; (19)

( ) ( )3 3 3 3 4 3 4r rI M k c⋅ϕ = − ⋅ ϕ −ϕ − ⋅ ϕ −ϕ   ; (20)

; (21)

( ) ( )4 4 3 4 3 4 4r rI k c M⋅ϕ = ⋅ ϕ −ϕ + ⋅ ϕ −ϕ −   , (22)

where: rk , rc  are torsional rotor stiffness and damping 
coefficients; 2M , 3M  are moments; F  is meshing force,   

 are variable pitch radii.
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3.3. A Model of Meshing of a Pair of Gears
Force F  and variable radii  were described 
above. However, nothing was said about their calcula-
tion. In this section, geometrical calculation of centre 
distance, varying in time is presented, and the forces 
found in bearings and meshes are determined. All cal-
culations are made using the model presented in Fig. 9. 
Bearing flexibility is characterized by a backlash: bδ , 0δ  
denote a backlash; 1ψ  is an orientation angle used to 
determine gear train location  on the plane; 1wα  is a 
pressure angle. 

The centres of gears are moving because they are 
subject to rotation moments ( 2M , 3M ). To determi-
nate their location at any moment of time the displace-
ment vectors 1q , 2q , 3q , 4q  are used.

Errors may occur in manufacturing gear parts. 
When parts are being assembled into units, the number 
of errors increases. With the increase of the service life 
of the mechanism, the number of faults is increasing, 
while backlashes are getting wider and flexibility of 
units is growing. Developing a mathematical model of 
gear train, the variation of the centre distance should be 
evaluated. 

The centre distance depends on the accuracy of 
manufacturing. However, a certain deviation from the 
nominal size is inevitable. When a gear train is loaded, 
gears are displaced with respect to each other, causing 
further variation of centre distance. In the operating 
mode of the mechanism, bearing flexibility is growing, 
causing further changing of the centre distance. For ex-
ample, if the initial centre distance is a , in an operating 
gear train, it is equal to 1a .

Centre distance consists of the nominal (design) 
centre distance 0a  and the geometric error A∆ :

0a a A= + ∆ . (23)

Under the action of the force F , gear wheels are 
displaced with respect to each other, and centre distance 

1a  is obtained. Centre distance 1a  is calculated as fol-
lows (Fig. 10):

1 1 3y ya a q q= − + ; (24)

1 2 4z za a q q= − + , (25)

where:

cosya a= ⋅ ψ ; (26)

sinza a= ⋅ ψ ; (27)

ψ  is an initial orientation angle;

2 2
1 1 1y za a a= + . (28)

Calculation of an angle 1ψ  (Fig. 10): 

1
1

1
arccos ya

a
ψ = . (29) 

When the centre distance is changed, the origi-
nal pitch diameter and a pressure angle wα  are also 
changed. The pressure angle is calculated by the follow-
ing formula, taking into account the variation of the cen-
tre distance:

1 2
1

1
arccos

2
b b

w
D D

a
+

α = , (30)

where: biD  is the main gear circle (i = 1, 2). The radii of 
the changed pitch circles are obtained as follows:

. (31)

Since iq  is changing in time, the parameters 1a , 
1wα , 1ψ ,  are also varying in time.

The displacements of points 1 and 2 along a straight 
line which is a tangent line to the circles of both gears 
(Fig. 9) are calculated as follows:
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( )2 1 1cos wq ⋅ ψ −α ; (32)

( )4 1 1cos wq+ ⋅ ψ −α ; (33)

2 1u uδ = − . (34)

The displacement rates of points 1, 2 (Fig. 9) are as 
follows:

( )2 1 1cos wq ⋅ ψ −α ; (35)

( )4 1 1cos wq+ ⋅ ψ −α
; (36)

2 1u uδ = −

  . (37)

The force acting on the mesh is obtained from the 
expression:

' 'F k c= − ⋅δ − ⋅δ ,  (38)

where: c  is damping coefficient (Fig. 9); k is mesh stiff-
ness determined by the method offered by Kuang and 
Yang. It should be noted that the parameter rwi = const 
is used in formula (6).

The influence on the backlash is determined this 
way:

0 0

0 0

0 0

,  if ;
' 0,  if ;

,  if .

δ − δ δ > δ
δ = δ ≤ δ ≤ δ
δ + δ δ < −δ

 (39)

The bearing force is found to be as the following 
equation:

( )1,5 21 1 i
bi b i b n

q
F k q a e

 
= − ⋅ + ⋅ − ⋅ ∆ 





, (40)

where: 1, 2, 3, 4i = .
The rate of penetration is determined by the for-

mula:

510 bE−∆ =
ρ

 , (41)

where: bE  is reduced Young’s modulus; ρ  is the material 
density; ba  is a coefficient; ne  is the coefficient of speed 
recovery.

Axial displacements of gears are determined as fol-
lows:

; (42)

( )1 2 1 1 2 1cos w bm q F F m g⋅ = − ⋅ ψ −α + − ⋅ ; (43)

( )2 3 1 1 3sin w bm q F F⋅ = − ⋅ ψ −α + ; (44)

( )2 4 1 1 4 2cos w bm q F F m g⋅ = ⋅ ψ −α + − ⋅ , (45)

where: g  is gravity acceleration.

4. Numerical results and discussion

The initial data presented in Table are used for calcula-
tions. 

The calculations of mesh stiffness, taking into ac-
count the faults of the system, were made. 

The graph in Fig. 11 shows the variation of 
mesh stiffness in time, when centre distance error is 

0;  50;  100 A m∆ = µ . 
When the error is getting bigger, mesh stiffness and 

contact ratio are decreasing. 
When the backlash is δ0 = 25 μm and centre distance 

errors – 0;  50;  100 A m∆ = µ  – mesh stiffness does not 
change (Fig. 12). Therefore, it may be stated that, when 
the motion is steady and the load moment is constant, 
the backlash does not considerably affect mesh stiffness. 

In Fig. 13, the calculation of mesh stiffness with 
bearing flexibility δb = 25 μm is presented, also the errors 
of centre distance being 0;  50;  100 A m∆ = µ , respective-
ly. As shown in Fig. 13, mesh stiffness and contact ratio 
have decreased considerably.
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The damages which influence both the mesh stiff-
ness and the contact ratio are depicted in Figs 11 and 
13. Theoretically, the contact ratio of the considered 
gear train is 1.655ε = , though when lateral displace-
ments are taken into account, its value changes, when 
the motion is steady (t = 2 s), 1.559ε = , the centre dis-
tance error (∆A = 50 μm) and the contact ratio is equal 
to ε = 1.539.

When bearing flexibility δb = 50 μm is evaluated, 
the contact ratio is 1.519ε = . When the centre distance 
error is combined with bearing flexibility, then, the con-
tact ratio is 1.500ε = .

In Fig. 14, the pinion rate spectrum in z direction 
(Fig. 9) is given for the situation, when no faults are 
found in the considered gear and the load moment is 
constant. Six harmonics can be found in the spectrum, 
matching the gear tooth frequency:

n rot if n f z= ⋅ ⋅ , (46)

where: frot = 24.46 Hz is frequency of rotation; n is the 
number of harmonic 1, .., 6n = .

When centre distance error ∆A = 50 μm is regard-
ed, the numerical values of the considered amplitudes 
change (Fig. 15). The pinion rate spectrum in z direc-
tion, with bearing flexibility is accounted for and given 
in Fig. 16. The pinion rate spectrum in z direction, with 
the error of centre distance ∆A = 50 μm and bearing 
flexibility δb = 50 μm are shown in Fig. 17. As shown 
in Figs 14 and 17, there is the following dependence: 
when odd harmonics are growing, even harmonics are 
decreasing.

Though the first harmonic is growing, the in-
crease is very small. It follows from Figs 14 and 17 that 
the 2-nd harmonic has decreased more than others 
(76.15%, frequency f2 = 1468 Hz), while the 5-th har-
monic has increased more than others (72.81%, fre-
quency f5 = 3670 Hz).

The spectrum of the pinion rate in z direction is 
shown in Figs 18–21 for variable load moment of the 
considered gear.

Fig. 18 presents the pinion rate spectrum in z di-
rection for the gear having no faults. When centre dis-
tance ∆A = 50 μm error was taken into account, the 
numerical values of the considered amplitudes changed 
(Fig. 19). 

The pinion rate spectrum in z direction with bear-
ing flexibility is shown in Fig. 20. 

In Fig. 21, the pinion rate spectrum in z direction 
is given, with the centre distance error ∆A = 50 μm and 
bearing flexibility δb = 50 μm is taken into account.

The comparison of the results, obtained for con-
stant and variable load moments, shows the same trend 
of harmonics variation: odd harmonics are increasing, 
while even harmonics are decreasing.

As shown in Figs 18 and 21, the highest decrease 
can be observed in the 2-nd harmonic (78.35%, fre-
quency f2 = 1468 Hz) and in the 5-th harmonic (71.44%, 
frequency f5 = 3670 Hz).

0.5

1

1.5

2

0

Am
pli

tu
de

, m
/s

0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

x 10-3

X: 733.9
Y: 0.001008

X: 1468
Y: 0.0004755

X: 2202
Y: 0.00127

X: 3670
Y: 0.0006753

X: 4404
Y: 0.0007202

Frequency, Hz

X: 2936
Y: 0.001754

Fig. 14. Spectrum of 2q , gear without defects, 
moment 4M M=

0.4

0.8

1.2

1.6

0

Am
pli

tu
de

, m
/s

0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

x 10-3

X: 733.9
Y: 0.00102

X: 1468
Y: 0.0003274

X: 2202
Y: 0.001485

X: 2936
Y: 0.001564

X: 3670
Y: 0.0008696

Frequency, Hz

0.6

1

1.4

0.2

X: 4404
Y: 0.0006055

Fig. 15. Spectrum of 2q , gear with centre distance error 
∆A = 50 μm, moment 4M M=

0.5

1

1.5

2

0

Am
pli

tu
de

, m
/s

0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

x 10-3

X: 733.9
Y: 0.001029

X: 1468
Y: 0.0001826

X: 2202
Y: 0.001659

X: 2936
Y: 0.001284

X: 3670
Y: 0.00105

Frequency, Hz

X: 4404
Y: 0.0004453

Fig. 16. Spectrum of 2q , gear with bearing flexibility 
δb = 50 μm, moment 4M M=

0.5

1

1.5

2

0

Am
pli

tu
de

, m
/s

0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

x 10-3

X: 733.9
Y: 0.001033

X: 1468
Y: 0.0001134

X: 2202
Y: 0.001784

X: 2936
Y: 0.009336

X: 3670
Y: 0.001167

Frequency, Hz

X: 4404
Y: 0.0003144

Fig. 17. Spectrum of 2q , gear with defects ∆A = 50 μm, 
δb = 50 μm, moment 4M M=



Transport,  2010,  25(3): 278–286 285

5. Conclusions

1. A refined mathematical transmission model with a 
variable centre distance is developed. The backlash 
and bearing flexibility are evaluated.

2. It is determined that, when the motion is steady, 
the effect of backlash on mesh stiffness is negligible. 
The analysis of gear rate spectrum shows that, when 
defects are introduced into gear mesh model, the 
harmonic amplitudes change. In particular, odd har-
monics are increasing, while even harmonics are de-
creasing. It should be noted that the 1-st harmonic 
is slightly increasing. The comparison of gear rate 
spectra given in Fig. 14 and Fig. 17, when the load 
moment is constant and gear train has (∆A = 50 μm,
δb = 50 μm) or does not have defects, shows the high-
est decrease of the 2-nd harmonic (76.15%, frequency 
f2 = 1468 Hz) and the highest decrease of the 5-th 
harmonic (72.81%, frequency f5 = 3670 Hz).

3. It is found that centre distance error and bearing flex-
ibility affect mesh stiffness. The larger the amount of 
errors, the lower mesh stiffness effect is on the vari-
ation of contact ratio. Lateral gear displacements af-
fect the variation of contact ratio mostly. Taking into 
account the effect of displacements, the contact ra-
tio ranges from 1.655ε = to 1.559ε =  when (t=2 s). 
When centre distance error ∆A = 50 μm and lateral 
displacements are considered, contact ratio is equal 
to 1.539ε = . When bearing flexibility δb = 50 μm is 
also taken into account, contact ratio is reduced to 

1.500ε = .
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