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Abstract. During the service life of a pavement, it is o"en required to conduct Non-destructive tests (NDTs) to 
evaluate its structural condition and bearing capacity and to detect damage resulting from the repeated tra#c and envi-
ronmental loading. Among several currently used NDT methods, the Falling Weight De$ectometer (FWD) is the most 
commonly used pavement NDT method applied by many transportation agencies all over the world. Non-destructive 
testing of pavements using FWD is typically accompanied by the prediction of the Young’s modulus of each layer of 
the pavement structure through an inverse analysis of the acquired FWD de$ection data. %e predicted pavement 
layer modulus is both an indicator of the structural condition of the layer as well as a required input for conducting 
mechanistic-based pavement structural analysis and design. Numerous methodologies have been proposed for back-
calculating the mechanical properties of pavement structures from NDT data. %is paper discusses the development of 
an Adaptive-Network-based Fuzzy Inference System (ANFIS) combined with Finite Element Modeling (FEM) for the 
inverse analysis of the multi-layered $exible pavement structures subjected to dynamic loading.

Keywords: transportation structures, non-destructive testing, pavement, neural networks, fuzzy inference, &nite 
element.

1. Introduction

Since pavement structures wear down and deteriorate 
under heavy axle loadings and environmental in$u-
ences, they need to be maintained and rehabilitated on 
a regular basis. %is requires a very signi&cant commit-
ment of resources on the part of nation’s highway agen-
cies at the State, Federal and local levels. For instance, 
total highway expenditure by all units of the Govern-
ment was $126.7 billion in 2000 which is a 203 percent 
increase compared to 1980 (average annual increase in 
10 percent) (Guide for Mechanistic-Empirical … 2004). 
%e sheer magnitude of annual expenditures on highway 
maintenance justi&es the application of the best available 
test procedures and technologies to optimize the use of 
highway funds.

Various NDT methods have been developed to 
routinely assess the existing pavement structural condi-
tion and subsequently identify the necessary corrective 
actions. Among them, the Falling Weight De$ectom-
eter (FWD) is the most commonly used NDT device 
for evaluating the structural state of pavements. FWD 
can either be mounted in a vehicle or on a trailer and is 
equipped with a weight and several velocity transducer 

sensors. To perform a test, the vehicle is stopped and 
the loading plate (weight) is positioned over the desired 
location. %e sensors are then lowered to the pavement 
surface and the weight is dropped.

%e advantage of an impact load response meas-
uring device over a steady state de$ection measuring 
device is that it is quicker, the impact load can be eas-
ily varied and it more accurately simulates the transient 
loading of moving tra#c. Sensors located at speci&c 
radial distances monitor de$ection history. %e de$ec-
tions measured at radial distances away from the load 
form the de$ection basin. In order to accurately cal-
culate the pavement structural capacity, the de$ection 
basins should also be precisely measured and analyzed. 
Although there are numerous methods for evaluating 
the structural capacity of pavements from de$ection 
basin data, there is no standard or universally accepted 
procedure that presently exists (Layer Moduli Backcal-
culation … 1993).

Inverse or back analysis is used to determine the 
Young’s modulus of pavement layers based on the meas-
ured de$ection data. In this process, more commonly 
referred to as backcalculation, a numerical optimization 



method is employed so that the measured de$ection 
basin agrees with the de$ections given by a numerical 
model. %e optimization process is an iterative method 
modifying the elastic modulus of the pavement layers 
until a better adjustment is produced. Moreover, the 
optimization process can be carried out by employing 
an algorithm of parameter identi&cation like non-linear 
least-squares algorithm, research in a database or so" 
computing methods such as Arti&cial Neural Networks 
(ANNs), Genetic Algorithms (GAs) etc. Especially, in 
recent years, ANNs have been shown to be capable of 
predicting the pavement layer moduli using the FWD 
&eld de$ection measurements (Meier and Rix 1995; 
Ceylan et al. 2007).

%e objective of this paper is to investigate the fea-
sibility of using Adaptive-Network-based Fuzzy Infer-
ence System (ANFIS) for the inverse analysis of the mul-
ti-layered $exible pavement structures based on FWD 
data. In this approach, a Finite Element (FE) model is 
employed to envisage the response of the pavement to 
FWD load with the known characteristics of pavement 
materials. %e FE model captures the non-linear, stress-
dependent behavior of geo-materials used in the un-
derlying unbound pavement layers resulting in realistic 
materials characterization and modeling responses.

2. Non-Destructive Testing of Pavements Using FWD 
and Interpretation of FWD Data

FWD equipment measures pavement surface de$ections 
from the applied dynamic load that simulates a mov-
ing wheel (Use of Nondestructive … 2004). %ere are 
many advantages to using FWD tests in lieu of or to 
supplement and traditional destructive tests on struc-
tural pavement evaluation. Without FWD testing, 
structural data must be obtained from numerous cores, 
borings and excavation pits on the existing highway/
airport pavements. %is process can be very disruptive 
to highway/airport operations. FWD tests are economi-
cal to perform and data can be collected at up to 250 
locations per day. FWD devices have earned the major 
role in pavement management. %e Strategic Highway 
Research Program (SHRP) adopted the FWD device as 
a key piece of equipment for assessing a structural ca-
pacity of long-term pavement performance (LTPP) test 
sections. Under the LTPP program, FWD testing is used 
at all general pavement studies (GPS) and test sites of 
speci&c pavement studies (SPS).

During FWD testing, typically a 9,000-lb load is 
applied to the pavement surface by the intermediary 
of a circular plate (with a diameter of 12 in.) and the 
generated duration of the half-sine pulse is typically 30 
ms. It corresponds to loading time produced by a truck 
moving at 40 to 50 mph. %e resulting pavement surface 
de$ections are measured using six geophones at the o:-
sets of 0 (D0), 12 in. (D12), 24 in. (D24), 36 in. (D36), 48 
in. (D48), and 60 in. (D60) are intervals from the center 
of the load. %e pavement properties are then back-
calculated from the observed dynamic response of the 
pavement surface to an impulse load (the falling weight) 

through inverse analysis. %e backcalculation of pave-
ment layer properties is a very useful pavement design 
tool to evaluate structural condition for in-service pave-
ments and to characterize the layer properties as inputs 
into available numerical or analytical programs.

For $exible pavements considered in this study, 
several pavement layer moduli backcalculation pro-
grams have been proposed in literature such as the 
AREA method (Ho:man and %ompson 1982), EL-
MOD, MODULUS, WESDEF (Van Cauwelaert et  al. 
1989), MODCOMP (Irwin and Szenbenyi 1991; Irwin 
1994), etc. Researchers have also developed an ANN-
based approach to backcalculation a"er pioneering the 
application by Meier and Rix (1995).

Flexible pavements are multi-layered structures 
consisting of visco-elastic bituminous materials (asphalt 
concrete) that are relatively rigid and unbound geo-
materials the non-linear behavior of which is sensitive 
to the applied pressures. Fig. 1 displays the details of 
a typical cross-section of $exible pavement structure 
revealed a"er trenching (Garg 2002). %e use of a sub-
base layer is optional and is typically combined with the 
base layer in $exible pavement analysis and design. To 
overcome limitations associated with using the multi-
layered elastic theory (MLET) for the analysis of $ex-
ible pavements that assumes the pavement layers to be 
homogenous, isotropic and linear elastic, the Finite Ele-
ment (FE) modeling approach has been developed and 
enables the consideration of heterogeneity, non-linearity 
and orthotropism of the pavement structure.

In this paper, an Adaptive-Network-based Fuzzy 
Inference System (ANFIS) based approach is presented 
for the backcalculation of the non-linear sti:ness prop-
erties of the multi-layered $exible pavement structures 
modeled as 2-D axisymmetric FE structures. Since Jang 
(1993) proposed ANFIS, its applications are numerous 
in various &elds, including engineering, management, 
health, biology and even social sciences. Jang et  al. 
(1997) pointed out the following major areas for AN-
FIS applications: automatic control, pattern recognition, 
robotics, nonlinear regression, nonlinear system identi-
&cation and adaptive signal processing. %is paper pro-
poses the application of ANFIS for the adaptive backcal-
culation of pavement layer properties through nonlinear 
input-output mapping.

Fig. 1. Typical $exible pavement cross-section 
a"er trenching (Garg 2002)
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3. Neuro-Fuzzy Inference Systems Approach

One of the most important and promising research &elds 
in recent years has been Nature-Inspired Heuristics, an 
area utilizing some analogies with natural or social sys-
tems for deriving non-deterministic heuristic methods 
to obtain better results in combinatorial optimization 
problems (Colorni et al. 1996). %e fuzzy logic approach 
(FLA) is one such heuristic method (Zadeh 1965).

In contrast to the classical set theory where the 
membership of elements is assessed in binary terms (an 
element either belongs to or does not belong to the set), 
fuzzy sets are ones the elements of which have member-
ship degrees. %e fuzzy set theory permits the gradual 
assessment of the membership of the elements in a set 
with the aid of a membership function valued in the real 
unit interval [0, 1].

Fuzzy inference systems (FIS) are powerful tools 
for the simulation of nonlinear behaviors utilizing fuzzy 
logic and linguistic fuzzy rules. In literature, there are 
several inference techniques developed for fuzzy rule-
based systems such as Mamdani (Mamdani and Assil-
ian 1975) and Sugeno (Takagi and Sugeno 1985). In the 
Mamdani fuzzy inference methodology, inputs and out-
puts are represented by fuzzy relational equations in a 
canonical rule-based form. In Sugeno FIS, the output of 
the fuzzy rule is characterized by a crisp function and 
it was developed to generate fuzzy rules from the given 
input-output data set. Neuro-fuzzy systems are multi-
layer feed forward adaptive networks that realize the 
basic elements and functions of traditional fuzzy logic 
systems (Oh et al. 2002). Since it has been shown that 
fuzzy logic systems are universal approximators, neuro-
fuzzy control systems, that are isomorphic to traditional 
fuzzy logic control systems in terms of their functions, 
are also universal approximators. ANFIS is an extension 
of the Sugeno fuzzy model.

%e Sugeno model allows fuzzy systems to learn the 
parameters using the adaptive backpropagation learning 
algorithm. In general, ANFIS is much more complicated 
than FIS that can be considered to be a parameterized 
non-linear map or a crisp function in a consequence 
called f, namely:
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where: yl is a part of output if Mamdani reasoning is ap-
plied or a constant if Sugeno reasoning is applied (Jang 
et al. 1997). Membership function ! "l
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to input x = [x1, …, xn] of rule l and m is the number 
of fuzzy rules. For the i-th input predictor variable, xi is 
real data (for example, the measured FWD de$ection) 
in one point from the set of the observed values. %e 
output values f(x) are the estimated values (for example, 
back-calculated pavement layer modulus) of the simula-
tion function within the range of an input set (Abolpour 
et al. 2007). %e center of the gravity method is used for 

defuzzi&cation. %is can be further written as:
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If FS is a set of continuous estimated value func-
tions on domain D, then f can approximate FS to any 
desired accuracy. Let FS be a bounded function on [a, b] 
and D = {x1, ..., xh} – a set of points in [a, b]. %en there 
exists the least squares polynomial of degree (r between 
FS and Qh which minimizes the following expression:
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An overall degree of the polynomial is equal to or 
less than r. Qh is the real data of output values over h-th 
point of the input set (for each input predictor variable 
i = 1, 2,…, n and for each point of real world data j = 
1, 2, …, h).

In Mamdani type of the fuzzy system, real data on 
the output values can be classi&ed into classes such that 
the length of each class is equal to [a, b]. However, in 
Sugeno type, the length of [a, b] is only determined over 
input data set (D) and f can be approximately equal to 
FS; hence, FS is the output values of the simulation mod-
el. In the interest of space, the derivation of equations 
for the development and evaluation of the rule base are 
not presented in this paper but can be found in Jang 
et al. (1997). ‘Learning’ process in ANFIS methodology, 
namely the adaptation of membership functions to emu-
late training data, is commonly performed applying two 
techniques – backpropagation and hybrid learning algo-
rithms. %e hybrid optimization method is a combina-
tion of Least Squares Error (LSE) and backpropagation 
descent method. In a hybrid learning algorithm, conse-
quent parameters are identi&ed in forward computation 
by LSE algorithm and premise parameters are adjusted 
in backward computation using the backpropagation 
algorithm.

4. Parameter Identi#cation of Pavement Systems 
Using a Neuro-Fuzzy Approach

Recently, researchers have attempted to employ FIS and 
ANFIS methodologies to model pavement de$ection be-
havior under dynamic loading (Saltan et al. 2007) and 
backcalculate the mechanical properties of $exible pave-
ments (Göktepe et al. 2004), respectively. %ese research 
studies have shown FLA to be a promising approach for 
rapid pavement structural evaluation, especially in han-
dling uncertainty and noise associated with &eld data. 
In this study, the feasibility of ANFIS methodology for 
backcalculating non-linear pavement layer moduli from 
NDT data is further explored.

As the &rst step towards employing ANFIS meth-
odology in learning the inverse mapping between the 
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known input (pavement layer thickness, moduli and 
Poisson’s ratio) and output patterns in a supervised 
manner, synthetic training and testing databases were 
generated using a 2-D axisymmetric pavement &nite-el-
ement so"ware (Raad and Figueroa 1980). %e Asphalt 
Concrete (AC) surface layer was characterized as a linear 
elastic material. Stress-dependent elastic models along 
with Mohr-Coulomb failure criteria were applied for 
the base and subgrade layers. %e stress-hardening K-* 
model was used for the base layer:

D n
R

R

E K
+

# # '*
,

, (5)

where: ER is resilient modulus (psi); * is bulk stress (psi); 
K and n are statistical parameters.

%e &ne-grained low-strength subgrade was mod-
eled using the bi-linear model for characterizing the re-
silient modulus:

 (6)

where: ER is resilient modulus (psi), +d is applied devia-
tor stress (psi) and K1 and K2 are statistically determined 
coe#cients from laboratory tests. %e bi-linear model is 
a commonly used resilient modulus model for subgrade 
soils. %e value of the resilient modulus at the break-
point in the bi-linear model ERi, can be used to clas-
sify &ne-grained soils as being so", medium or sti:. %e 
e:ect of 9,000 lb FWD impact loading on the $exible 
pavement structure was simulated in the FE so"ware 
over typical ranges of AC surface and base layer thick-
nesses and moduli ranges (see Table).

In developing the ANFIS-based backcalculation ap-
proach, input parameters were partitioned using a grid 
partitioning technique and Gaussian membership func-
tions were used. First order Sugeno FIS with a linear 
output function was selected as the inference system. 
ANFIS structure was completed by the selection of a 
hybrid learning algorithm and a batch learning scheme 
was used. In this learning algorithm, the backpropaga-
tion (BP) algorithm is applied to learning premise pa-
rameters while the least square algorithm is applied to 
learning consequent parameters. In the ANFIS hybrid 
learning algorithm, the selection of step-size has a great 
e:ect on the convergence of the system. %e conver-
gence of BP algorithm based on gradient descent will be 
very slow if the step size is too small. On the other hand, 
the use of large step size will result in the oscillation of 
parameter estimation. To overcome this problem, Jang 
et al. (1997) proposed an intuitive variable-step method 
used in this study:

1. If the control performance index decreases mo-
notonously in continuous 4 epochs, the step is increased 
by 10% to quicken the convergence process.

2. If the control performance index goes through 
the ascent-descent oscillation in continuous 2 epochs (4 
epochs in total), the step is decreased by 10% to make 
the convergence process to be more stable.

In the rule base, fuzzy variables were connected 
with T-norm (fuzzy AND) operators and rules were as-
sociated using a max-min decomposition technique. %e 
output part of each rule uses a linear defuzzi&er formula; 
the total output of ANFIS is the weighting average of the 
output of each rule. %e FE-based neuro-fuzzy backcal-
culation approach was implemented in MATLAB® using 
the in-built toolbox.

Göktepe et  al. (2004) used 9 input variables and 
1250 training patterns which resulted in an extremely 
large rule-base and long computing hours. %erefore, 
they concluded that ANFIS methodology and fuzzy par-
titioning were not appropriate for a multivariate non-
linear approximation problem comprising 9 input vari-
ables. In the same study, Göktepe et al. (2004) employed 
ANFIS in a scenario involving a considerable amount 
of uncertainty or having incomplete de$ection data and 
found the ANFIS approach to be successful.

5. Discussion of Results

In this research, several case studies were conducted 
to evaluate the robustness of the &nite element based 
neuro-fuzzy approach developed for pavement layer 
moduli backcalculation. In the &rst case study, &rst four 
FWD de$ections (D0, D12, D24, and D36) along with 
AC layer thickness (Tac) and base course thickness (Tbc) 
were used as inputs (a scenario involving incomplete da-
tasets) and two separate ANFIS models were employed 
to predict AC modulus (EAC) and non-linear subgrade 
modulus (ERi) (see Fig. 2).

In the &rst case study, input variables were fuzzi&ed 
by dividing them into 3 partitions. %is paper did not 
currently focus on backcalculating the base layer moduli 
due to the associated challenges identi&ed in the previ-
ous studies (Meier and Rix 1995). One hundred train-
ing patterns from the FE-generated synthetic database 
were randomly selected as inputs for training in ANFIS 
and 40 testing vectors were independently selected from 
the synthetic database to check the prediction ability of 
the developed ANFIS-based backcalculation model. %e 
range of surface de$ections used in the test data set is 
depicted in Fig. 3. ANFIS methodology predictions for 
EAC and ERi are shown in Fig. 4 with just 10 epochs.

Table. Ranges of pavement layer properties for generating &nite element solutions

Material Layer thickness Material resilient modulus model Layer modulus range Poisson’s ratio (-)

Asphalt concrete 3–28 in. linear elastic 100–6000 ksi 0.35

Unbound aggregate base 4–22 in. non-linear K-* model K = 3–12 ksi
0.35 for K ≥ 5 ksi
0.40 for K < 5 ksi

Fine-grained subgrade ~. non-linear bi-linear model ERi = 1–15 ksi 0.45
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Fig. 2. Case study 1: a – ANFIS model for predicting AC moduli (EAC); 
b – ANFIS model for predicting subgrade moduli (ERi)

Fig. 3. Case study 1. Test data surface de$ection ranges
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%e Average Absolute Errors (AAEs) were calculat-
ed as a sum of individual absolute relative errors divided 
by the number of independent testing patterns (where i 
is the ith testing pattern among n testing patterns).

1

( ),%

100.
n

actual predicted

actuali i

Average Absolute Error AAE

y y

y#

#

)
'%

  (7)

%e AAEs were reported to be 19% and 29% for 
EAC and ERi respectively which is not acceptable. How-
ever, considering the reduced number of de$ections 
used and the smaller training set with fewer epochs, the 
results demonstrate the neuro-fuzzy backcalculation ap-
proach to be promising, especially when uncertainties 
are involved in the inputs. %e surface plots for EAC and 
ERi with respect to AC surface layer thicknesses and sur-

face de$ections are shown in Fig. 5. De$ection D36 is 
especially associated with having in$uence on subgrade 
modulus.

In the second case study, ANFIS backcalculation 
models were developed with all six FWD de$ections 
(D0, D12, D24, D36, D48 and D60) and layer thickness-
es as inputs (see Fig. 6). In this case, input variables were 
fuzzi&ed by dividing them into 2 partitions resulting 
in two membership functions for each input variable. 
Five hundred synthetic datasets covering a wide range 
of pavement layer thicknesses and moduli values were 
used to train the ANFIS models for predicting EAC and 
ERi and 100 independent datasets were used for testing 
the ANFIS models. %e surface de$ections for the test 
dataset are shown in Fig. 7. In this case study, three dif-
ferent maximum epochs (1, 5, and 15) were considered 
in training the ANFIS backcalculation models.

Fig. 5. Case study 1. Surface plots: a – AC moduli (EAC); b – subgrade moduli (ERi)

Fig. 6. Case study 2: a – ANFIS model for predicting AC moduli (EAC); b – ANFIS model for predicting subgrade moduli (ERi)
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%e ANFIS methodology predictions for EAC and 
ERi are compared with actual moduli in Figs 8 and 9 
respectively. %ese results demonstrate the feasibility 
of using the ANFIS based backcalculation approach 
for the non-linear parameter estimation of the multi-
layered pavement systems. %e AAE values for EAC at 1, 
5, and 15 epochs were 6.8%, 4.7% and 3.9% respectively. 
Similarly, the AAE values for ERi at 1, 5, and 15 epochs 
were 7.2%, 1.5% and 3.7% respectively. Considering a 
relatively fewer number of datasets used for training the 

neuro-fuzzy system and a fewer number of epochs used 
in achieving very high R2 values, it can be concluded 
that the ANFIS based backcalculation approach is es-
pecially suitable where uncertainties are involved in the 
inputs and it has the adaptive ability to dynamic changes 
in the environment.

6. Conclusion

Various Non-Destructive Test (NDT) methods have 
been developed to routinely assess the existing pave-
ment structural condition and subsequently identify the 
necessary corrective actions. Among them, the Falling 
Weight De$ectometer (FWD) is the most commonly 
used NDT device for evaluating the structural state of 
pavements. Non-destructive testing of pavements us-
ing FWD is typically accompanied by predicting the 
Young’s modulus of each layer of the pavement struc-
ture through backcalculation or the inverse analysis of 
the acquired FWD de$ection data. %is paper demon-
strated the feasibility of using Adaptive-Network-based 
Fuzzy Inference System (ANFIS) for the inverse analysis 
of the multi-layered $exible pavement structures based 
on FWD data. It was shown that the ANFIS based back-
calculation approach inherits the fundamental capabil-
ity of a fuzzy model to especially deal with nonrandom 
uncertainties associated with vagueness and imprecision 
associated with the inverse analysis of transient pave-
ment surface de$ection measurements.
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Fig. 8. Case study 2. Comparison of AC moduli: a – 1 epoch; b – 5 epochs; c – 15 epochs

Fig. 9. Case study 2. Comparison of subgrade moduli: a –1 epoch; b – 5 epochs; c – 15 epochs
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