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Abstract. The rise in freight passenger transportation is responsible for air pollution, green house gas emissions 
(especially CO2) and high fuel demand. New engine technology and fuels are discovered and tested throughout the 
world. Biodiesel, an alternative for diesel, has been seen as a solution. However, the amount of emissions generated by a 
biodiesel fueled vehicle has not been understood well since most research studies of this kind reported in the literature 
were conducted in the laboratory. In the present study, emissions (NOx, HC, CO, CO2 and PM) were measured from 
biodiesel fueled transit buses using an on-road emissions measuring device known as the Portable Emissions Measure-
ment System (PEMS). On-road study is important in terms of understanding the amount of emissions generated under 
the real traffic and environmental conditions. Emissions were measured on buses fueled with regular diesel (B0), B10 
blend (10% biodiesel + 90% diesel) and B20 blend (20% biodiesel + 80% diesel). This paper demonstrates the use of 
hybrid soft-computing techniques such as the neuro-fuzzy technique for developing emissions prediction models from 
real-world data. Hybrid soft-computing techniques have been shown to work well in handling data prone to noise and 
uncertainty, which is characteristic of real-world scenario. Two neuro-fuzzy methodologies were considered in this 
study: the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Dynamic Evolving Neuro-Fuzzy Inference System 
(DENFIS). A brief review of model development, recommended parametric settings, and statistical evaluation of pre-
diction performance of both techniques are discussed. In general, the ANFIS showed better prediction accuracy for the 
individual emissions compared to DENFIS although the prediction accuracies are comparable.
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1. List of Abbreviations

ACC – acceleration (mph/s) of the bus every  
   second;

ANFIS – adaptive neuro-fuzzy inference system;
ANNs – artificial neural networks;

BP – backpropagation;
BPER – percentage of biodiesel in fuel;

CO – carbon monoxide;
CO2 – carbon dioxide;

DENFIS – dynamic evolving neuro-fuzzy inference  
   system;

FIS – fuzzy inference system;
FLA – fuzzy logic approach;
HC – hydrocarbons;
LSE – least squares error;

MAP – manifold absolute pressure;
MLP – multi-layered perceptron;
NOx – oxides of nitrogen;

PC – passenger count;
PEMS – portable emissions measurement system;

PM – particulate matter;
R – coefficient of correlation;

R2 – coefficient of determination;
RMSE – root mean squared error;

RPM – engine speed (revolution per second);
SP – speed (mph) of the transit buses;
T – intake air temperature;

VSP – vehicle specific power (Watt/kg).

2. Introduction

Vehicular emission is the most prominent contributor of 
air pollution. Oxides of Nitrogen (NOx), Hydrocarbons 
(HC), Carbon monoxide (CO), Carbon dioxide (CO2) 
and Particulate Matter (PM) emissions are identified 
as criteria pollutants. CO2 is the major green house gas 
from automobiles that is responsible for global warming 



and climate change. NOx and HC assist in generation 
of ozone and smog and CO forms a stable compound 
carboxyhemoglobin when combined with inhibiting the 
oxygen carrying capacity of blood. PM is the contributor 
of respiratory problems such as bronchitis.

Biodiesel is seen as a solution to air pollution and 
fuel supply problems. Research on biodiesel has shown 
that it is a biodegradable, non-toxic (in small quantity), 
non-hazardous fuel with high indicates the ignition 
quality of fuel oil), high lubricity and high flash point 
(combustible but not flammable). Some research find-
ings confirmed that using biodiesel in place of diesel de-
creases HC, CO, CO2 and PM, but increases NOx emis-
sions (A Comprehensive Analysis… 2002).

One of the major reasons why biodiesel is becom-
ing popular is that it increases the lubricity of the fuel 
(NBB, 2000). However, certain compounds in biodiesel 
can crystallize in cold weather leading to plugging of 
fuel filters and inhibiting the smooth flow of the fuel. 
The physical-chemical properties of biodiesel blends 
strongly influence the combustion process and pollutant 
formation (Raslavičius, Bazaras 2010a, 2010b).

In the present work, emissions (NOx, HC, CO, CO2 
and PM) from biodiesel run transit buses (Ames Transit 
Agency) were measured using a portable emissions mea-
surement system (PEMS). With the availability of good 
statistical models, emissions can be predicted without 
conducting emission tests which are expensive and time 
consuming. However, the emissions data collected in 
this study could not be studied using traditional statisti-
cal models (Mudgal 2009). Further, the emissions pro-
cess involves a stochastic chemical reaction and there-
fore it is not possible to have deterministic models.

The use of soft-computing techniques has emerged 
as a feasible alternative in many situations when the 
problem is highly complex, non-linear and stochastic in 
nature and cannot be handled by traditional methods 
(Gopalakrishnan et al. 2009). This is attributed mainly to 
ability of these techniques to admit approximate reason-
ing, imprecision, uncertainty and partial truth. The term 
‘soft computing’ applies to variants of and combinations 
under the four broad categories of evolutionary comput-
ing, Artificial Neural Networks (ANNs), fuzzy logic, and 
Bayesian statistics. Although each one has its separate 
strengths, the complementary nature of these techniques 
when used in combination (hybrid) makes them a pow-
erful alternative for solving complex problems where 
conventional mathematical methods fail. Therefore, in 
this study, a hybrid neuro-fuzzy approach was employed 
primarily to demonstrate the ability of such techniques 
in modeling on-road emissions data.

In the recent past, quite a few studies have been 
conducted to model diesel exhaust engine emissions 
data mainly using ANNs (De Lucas et  al. 2001; Clark 
et al. 2001; Canacki et al. 2006; Hashemi, Clark 2007; 
Ghobadian et  al. 2009). However, not many of them 
focused on on-road real-time emissions data which is 
necessary for evaluating the impact of real-time driving 
conditions/modes. Also, such studies have not consid-
ered important engine parameters such as rpm, temper-
ature and manifold absolute pressure which play a vital 

role in engine kinetics. In the present research, real time 
emissions from transit bus powered by various blends of 
biodiesel were measured and used in developing hybrid 
neuro-fuzzy emissions prediction models.

Two neuro-fuzzy methodologies, the Adaptive 
Neuro-Fuzzy Inference System (ANFIS) (Jang 1993; Jang 
et al. 1997) and the Dynamic Evolving Neuro-Fuzzy Sys-
tem (DENFIS) (Kasabov 1998) were employed. A brief 
review of both methodologies is presented first and then 
followed by a description of collected emissions data, 
model development, evaluation, and finally the study 
conclusions.

3. Neuro-Fuzzy Methodology
3.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)
One of the most important and promising research fields 
in recent years has been Nature-Inspired Heuristics, an 
area utilizing some analogies with natural or social sys-
tems for deriving non-deterministic heuristic methods 
to obtain better results in combinatorial optimization 
problems (Colorni et  al. 1996). Fuzzy logic approach 
(FLA) is one such heuristic method (Zadeh 1965).

In contrast to classical set theory, where member-
ship of the elements are assessed in binary terms (an 
element either belongs to or does not belong to the 
set), fuzzy sets are sets whose elements have degrees of 
membership. The fuzzy set theory permits the gradual 
assessment of the membership of elements in a set with 
the aid of a membership function valued in the real unit 
interval [0, 1].

Fuzzy inference systems (FIS) are powerful tools 
for the simulation of nonlinear behaviors utilizing fuzzy 
logic and linguistic fuzzy rules. In the literature, there are 
several inference techniques developed for fuzzy rule-
based systems, such as Mamdani and Sugeno (Mamdani, 
Assilian 1975; Takagi, Sugeno 1985). In the Mamdani 
fuzzy inference methodology, inputs and outputs are 
represented by fuzzy relational equations in canonical 
rule-based form. In Sugeno FIS, output of the fuzzy rule 
is characterized by a crisp function and it was devel-
oped to generate fuzzy rules from a given input-output 
data set. Neuro-fuzzy systems are multi-layer feed for-
ward adaptive networks that realize the basic elements 
and functions of traditional fuzzy logic systems (Jang 
et  al. 1997). Since it has been shown that fuzzy logic 
systems are universal approximators, neuro-fuzzy con-
trol systems, which are isomorphic to traditional fuzzy 
logic control systems in terms of their functions, are also 
universal approximators. ANFIS is an extension of the 
Sugeno fuzzy model.

‘Learning’ process in ANFIS methodology, name-
ly adaptation of membership functions to emulate the 
training data, is commonly performed by two tech-
niques: backpropagation and hybrid learning algorithms. 
The hybrid optimization method is a combination of 
Least Squares Error (LSE) and backpropagation descent 
method. In hybrid learning algorithm, consequent pa-
rameters are identified in forward computation by LSE 
algorithm, and premise parameters are adjusted in back-
ward computation using backpropagation algorithm.
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3.2. Dynamic Evolving Neuro-Fuzzy  
Inference System (DENFIS)
DENFIS is a type of Evolving Connectionist System 
(ECOS) developed by Kasabov (1998). ECOS can be 
considered as open architecture Artificial Neural Net-
works (ANN) in which the neurons are added to their 
structures and the connection weights are modified as 
the system evolves based on a continuous input data 
stream in an adaptive, life-long, modular way (Watts 
2004, 2009; Kasabov, Song 2002). ECOS networks are 
resistant to catastrophic forgetting, having the ability 
to adapt to and learn new data as soon as they become 
available, do not have a limit to the amount of knowl-
edge they can store and learn the examples very quick-
ly compared to traditional Multi-Layered Perceptron 
BackPropagation Neural Networks (MLP-BP NN). The 
overall ECOS learning algorithm is based on accommo-
dating new training examples within the evolving layer, 
either through modification of evolving neuron connec-
tion weights, or by adding new neuron to that layer.

DENFIS is a Takagi–Sugeno type of Fuzzy Infer-
ence System (FIS) with a Backpropagation (BP) algo-
rithm (Kasabov, Song 2002) developed for both on-line 
and off-line learning. The DENFIS model forms a FIS 
dynamically for calculating the output depending on the 
input vector position in the input space. The dynami-
cally formed FIS is based on fuzzy rules created dur-
ing the past learning process. The DENFIS model for 
offline learning in batch mode was used in this paper. 
Two DENFIS models for offline learning were developed 
by (Kasabov, Song 2002):

1. a linear model, model I,
2. a Multi-Layer Perceptron (MLP) based model, 

model II.
A first-order Takagi–Sugeno type fuzzy inference 

engine is employed in model I while model II employs 
an extended high-order Takagi–Sugeno fuzzy inference 

engine. In model II, several small-size, two-layer (the 
hidden layer consists of two or three neurons) MLPs are 
used to realize the function in the consequent part of 
each fuzzy rule instead of using a predefined function. 
The implementation of DENFIS offline learning process 
is described by Kasabov and Song (2002).

4. Description of Data

In this study, engine exhaust emissions data were col-
lected from transit buses fueled with biodiesel at three 
blends – B0 (regular diesel), B10 (10% biodiesel + 90% 
regular diesel) and B20 (20% biodiesel + 80% regular 
diesel). Data were collected from April 2008 through July 
2008 in Ames, Iowa between 7:30 AM and 5:00 PM on 
weekdays. The bus route consisted of corridors with fre-
quent-stops, arterial sections with high operating speeds, 
curved sections, and signalized corridors. This helped in 
collecting data under various traffic conditions.

At a frequency of 1 Hz, emissions (NOx, HC, CO, 
CO2 and PM), speed, intake air temperature (T), engine 
rpm, and manifold absolute pressure (MAP) at the air 
intake were measured. In addition, the passengers in the 
bus between consecutive bus stops were also counted. A 
more detailed description of the data collection process 
is provided by Mudgal (2009). Frey et al. (2001, 2002) 
found that in general 2.5÷15% of the on-road emis-
sions data would be invalid. This pertains to equipment 
failure, wrongly placed sample and reference lines and 
improper calibration. After removing erroneous data, 
finally about 120000 rows (33 or hours) of data were 
left for modeling. Out of this, some 11950 datasets were 
randomly sampled for using in developing the emis-
sions prediction models. A new variable, vehicle specific 
power (VSP), derived from vehicle dynamics (Frey 1997; 
Frey et al. 2007) was used as another independent vari-
able. Table 1 summarizes the variables used as inputs for 
emissions predictive modeling.

Table 1. Summary of input variables used in emissions predictive modeling

Input Variable Description

Bpercent (BPER) % of biodiesel in fuel

Speed (SP) The speed (mph) of the transit buses

Acceleration (ACC)

The acceleration (mph/s) of the bus every second. In general, emissions are found to have the 
following trend:
Emissions (idling) < Emissions (deceleration) < Emissions (cruise) < Emissions (acceleration)
(Frey et al. 2001)

RPM (RPM) Engine speed (revolution per second)

VSP (VSP) Vehicle Specific Power (Watt/kg) represents the power demand of the vehicle.
VSP =speed(1.04·acceleration + 9.8·road grade + 0.132) + 0.0003·speed3

Passenger count (PC) This represents the number of passengers in the bus. This imparts weight to the whole 
moving system which is responsible for higher power demand (Frey et al. 2007)

Intake air temperature (T) This is the temperature of the air entering the engine chamber. The temperature
has influence on emissions (Vijayan et al. 2008)

Manifold Absolute pressure 
(MAP)

This is the pressure in the incoming air. This controls the emissions reactions and has 
significant effect on emissions (Frey et al. 2007)
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Histograms and quantile box plots for both the 
input and output variables are presented in Figs 1 and 
2 which highlight the variability in the measured. The 
spacing between the different parts of the box (markers) 
in the box plots help indicate the degree of dispersion 
(spread) and skewness in the data, and identify outliers.

Fig. 3 displays the correlation plots between in-
puts and outputs in a matrix arrangement. The diam-
eter and intensity of the circles in each of the cell of the 
matrix is an indication of the magnitude of correlation 
between the corresponding pair of variables. The corre-

lation strength of the linear relationships between each 
pair of the response variables were calculated using the 
Restricted (or Residual) Maximum Likelihood (REML) 
method. It is observed that both NOx and HC are more 
correlated to RPM and MAP than any other variables. 
In fact, RPM and MAP are among the highly correlated 
variables to all five emissions followed by VSP. The rela-
tionship between RPM, MAP, and NOx and RPM, MAP, 
and HC are captured in the form of contour plots dis-
played in Fig. 4.

Fig. 1. Histograms and quantile box plots for input variables used in predictive modeling

Fig. 2. Histograms and quantile box plots for output variables (emissions)

BPER
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5. Neuro-Fuzzy Emissions Predictive Modeling

5.1. ANFIS-Based Emission Prediction Models
The development and testing of the ANFIS models were 
carried out using the ANFIS toolbox in the MATLAB® 
(Version 7.10.0 R2010a) environment. Since ANFIS al-
lows only one output, separate ANFIS models were devel-
oped for each of the 5 emission outputs (NOx, HC, CO, 

CO2 and PM). The inputs to all 5 ANFIS-based emission 
prediction models consisted of Percentage biodiesel (0, 10 
or 20), Speed, Acceleration, RPM, VSP, Passenger count, 
T and MAP. From the randomly measured sampled data, 
10 000 datasets were used for training the ANFIS models 
and 1950 independent datasets were used for testing.

The input parameters were partitioned using the 
subtractive clustering technique. Based on parametric 
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sensitivity analysis, the optimal values of range of influ-
ence and the squash factor for this problem were 0.1 and 
1.25. Gaussian input membership functions were used. 
First order Sugeno FIS with linear output function was 
selected as the inference system. ANFIS structure was 
completed by the selection of hybrid learning algorithm 
and a batch learning scheme was used. In this learning 
algorithm, the BP algorithm is applied to the learning of 
premise parameters, while LSE algorithm is applied to the 
learning of consequent parameters. In the rule base, fuzzy 
variables were connected with T-norm (fuzzy AND) op-
erators and rules were associated using max-min decom-
position technique. The output part of each rule uses a 
linear defuzzifier formula; the total output of ANFIS is 
the weighting average of the output of each rule.

Fig. 5 displays the final FIS structures of ANFIS 
prediction models along with the number of inputs, 
outputs, and the number of fuzzy rules. Table 2 sum-
marizes the training and testing results of ANFIS pre-
diction models. The results include the number of fuzzy 
rules, Root Mean Square Error (RMSE) values between 
the actual and predicted values for testing datasets, the 
standard error of predicted values divided by the stan-
dard deviation of measured values (Se/Sy), the coefficient 
of correlation (R), and the coefficient of determination 
(R2) with reference to line equality. The formula for 
these model performance indicators are shown below:

1
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iy and p
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values, respectively; t
iy and 

p
iy are the mean of the tar-

get and predicted modulus values corresponding to n 
patterns.

The R and R2 are a measure of correlation between 
the predicted and the measured values and therefore, 
determines accuracy of the prediction model (higher R 
and R2 equates to higher accuracy). The RMSE and Se/Sy 
indicate the relative improvement in accuracy and thus a 
smaller value is indicative of better accuracy.

Fig. 5. Final FIS structures of ANFIS-based emissions prediction models

Table 2. ANFIS-based emissions prediction models  
summary statistics

Output Fuzzy 
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NOx 36 0.0121 0.52 0.87 0.73
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Based on the prediction performance results for 
ANFIS-based prediction models, it can be concluded 
that the prediction accuracies for both NOx and CO2 
are good and for all other emissions, the prediction ac-
curacy is fair based on the R2 values. It is expected that 
higher predictive accuracy can be achieved by trans-
formation of input variables and developing separate 
sub-prediction models for different ranges of emission 
predictions.

5.2. DENFIS-based Emission Prediction Models
The DENFIS-based emissions prediction models were 
developed in the NeuCom© v0.919 software environ-
ment. The NeuCom© v0.919 software was developed at 
the Knowledge Engineering and Discovery Research 
Institute (KEDRI), Auckland University of Technology, 
New Zealand. It is a self-programmable, learning and 
reasoning computer environment based on connection-
ist modules.

Several runs were conducted to optimize the pa-
rameter settings for DENFIS-based prediction models. 
First, the parameters to be optimized in the DENFIS 
model include:

1.  Dthr  – Distance Threshold which determines 
the maximum radius of the rule nodes in this 
network;

2.  M-of-N – this determines the number of nodes 
which are referenced to estimate the output of 
the current sample;

3.  Epochs – the number of epochs used to train or 
retrain the network originally.

What is more, in order to estimate the accuracy of 
predictions, the DENFIS model outputs three result pa-
rameters:

1.  NumRn  – number of Rule Nodes (RNs) in the 
network;

2.  NDEI – Non-Dimensional Error Index;
3.  RMSE – Root Mean Squared Error.
In addition, the system also outputs the CPU time 

(seconds) taken for training the network. Based on para-
metric sensitivity analysis, it was found that the optimal 
DENFIS parametric values for this problem are: Dthr = 
0.1; M-of-N = 3; and Epochs = 2.

Table 3 summarizes the DENFIS-based emission 
prediction models’ statistics. Fig. 6 displays a sample 
rule which could be easily extracted from the DENFIS 
model in the form of if-then rules where X1÷X8 corre-
spond to the eight inputs and Y represents the predicted 
emission output in the form of a simple linear equation. 
Similar to the performance results achieved for ANFIS 
prediction models, the prediction accuracies of DENFIS 
models in forecasting NOx and CO2 are good while the 
prediction accuracies for HC and CO are fair based on 
R2 values. The DENFIS model’s prediction accuracy for 
PM is poor.

Table 3. DENFIS-based emissions prediction models 
summary statistics

Output Fuzzy 
Rules RMSE Se/Sy R R2

NOx 191 0.0125 0.54 0.87 0.71

HC 191 0.0010 0.76 0.71 0.42

CO 191 0.0017 0.74 0.72 0.45

CO2 191 1.2460 0.39 0.94 0.85

PM 191 0.0137 0.85 0.34 0.28

In Fig. 7, the prediction performance of both the 
ANFIS and DENFIS models are compared for all five 
emissions for a small sampling of data. Both the neu-
ro-fuzzy models tend to capture the trend in measured 
emissions although the similarity of magnitudes between 
the predicted and measured trends varies depending on 
the individual model’s prediction accuracy. In general, 
the ANFIS predictions are more consistent and relative-
ly more accurate compared to DENFIS predictions. In 
Fig. 8, the ANFIS predicted NOx and DENFIS predicted 
CO2 are displayed in the form of response surface plots.

6. Summary and Conclusions

In this study, diesel engine exhaust emissions (NOx, 
HC, CO, CO2 and PM) from biodiesel powered tran-
sit measured using a Portable Emissions Measurement 
System (PEMS) were modeled using the neuro-fuzzy 
approach. Although, quite a few studies have been con-
ducted to model diesel exhaust engine emissions data 
using ANNs recently, not many of them focused on 
on-road real-time emissions data. Also, such studies 
have not considered important engine parameters such 
as rpm, temperature and manifold absolute pressure 
which play a vital role in engine kinetics which were 
considered in the present study. It was demonstrated 
that the on-road emissions data could be modeled us-
ing the neuro-fuzzy methodology which has the ability 
to admit approximate reasoning, imprecision, uncertain-
ty and partial truth. The highest prediction accuracies 
were achieved for NOx and CO2 using both ANFIS and 
DENFIS models. In general, both the ANFIS and DEN-
FIS modeling methodologies showed similar prediction  
accuracies.Fig. 6. Sample rule extracted from DENFIS prediction model
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