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Abstract.  e term ‘Context Sensitive Solutions’ was adopted by the Federal Highway Administration in 1997 
and is a synonym of #exibility that allows the designer to balance the safety, mobility and preservation of environmen-
tal resources. When the optimal use of design criteria produces an unacceptable solution, the correct application of 
design value outside the current guidelines with a particular attention to safety and legal risk is needed. In this case, a 
feasible alternative meets the purpose of design and is considered constructible and maintainable within social, eco-
nomic and environmental constraints. Unlike in many other countries, road standards in Italy do not permit to work 
out a simple solution to the problem of #exibility. Speci$cally, one of the most debated subjects, concerning the items 
of the Italian Ministerial Decree (MD) 5/11/2001 confer with a designer the possibility of deviating from prescriptive 
obligations on condition to suggest some appropriate safety analysis. However, it does not indicate any methodology to 
objectively quantify removal e%ect from the reference values established by the rule. At this purpose, the paper suggests 
an analytical instrument for controlling design values outside the current guidelines applying a methodology based on 
interval analysis, a technique generally used for managing uncertain variables.  e procedure applied to designing a 
planimetric curve has identi$ed the most signi$cant variables and produced some range in which they may be retained 
acceptable, though outside the limits of the geometric standard.
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1. Introduction

Generally, design concepts and values found in road 
standards in Italy and other countries are based on rec-
ognized practice and research (Brauers et al. 2008).  e 
acceptable design values of any geometrical feature are 
established to assure, to the best knowledge possible, 
that the feature itself will not increase the risk of a crash 
and will contribute to make better tra&c operations, ca-
pacity, constructability, maintenance, etc.
If an acceptable solution can be reached only with 

reference to design value marginally outside normal de-
sign criteria, it would be important that designers and a 
transportation agency had a right instrument to measure 
where, to what extent and under what conditions, even-
tually, to accept the proposed exception (Townsend et al. 
2005; Crossett, Oldham 2005).
For this reason, documents contained into excep-

tion demand should include crash analysis, bene$t cost 
analysis and rationale for deviation from the guidelines.
 e Italian Ministerial Decree (2001) introduced 

for the $rst time in Italy a normative reference to geo-
metric road design the structure of which receives some 

guidelines based on the AASHTO Green Book (A Policy 
on Geometric Design… 2004), British (Design Manual 
for Roads… 2002), Swiss and German standards (Lamm 
et al. 1999), especially as regards some consistency con-
cepts of alignment with the management of geometric 
elements, the characterization of speed and the intro-
duction of designing a speed diagram.
As regards the purely designing aspect, the applica-

tion of standard principles implies some more recently 
signaled di&culties (Bosurgi et al. 2005, 2007).  e re-
sults that emerged from the study have highlighted that 
some prescriptions, in particular for some road catego-
ries, are too much restrictive.
We refer to the methods for clothoid designing and, 

particularly to the observance of the minimum develop-
ment of the residual arc that could be brought from a 
formal point of view to unjusti$ed designing solutions 
incompatible with territorial pre-existences and costs.
Some road standards such as the Italian one do not 

help designers in managing the risk of accepting a de-
sign solution outside the typical ranges (Lambert, Turley 
2005; Sander et al. 2006).



 erefore, a road designer has to $nd further and 
reliable information about other variables useful for 
assessing risk, like operating speeds, site crash history, 
roadside conditions, available pavement friction, etc. 
(Design Exception… 2003; Performance Measures… 
2004; Flexibility in Highway Design 2004; Milton, Mar-
tin 2005; Paslawski 2008).
Concerning the above introduced information, the 

author proposes an analytical procedure for controlling 
the variables involved in road standards when one or 
more of these exceed the imposed limits.  is methodol-
ogy will be based on interval analysis and applied to de-
signing a planimetric curve to highlight real advantages 
over traditional procedures.

2. Methodology

Designing horizontal curves is generally common 
among road standards established in di%erent countries. 
 e features of a circular bend include radius R, super 
elevation e, design speed Vd and side friction factor f 
(A Policy on Geometric Design… 2004).  ese models 
assume the vehicle system operates as a point mass with 
the vehicle centred in the lane and operating into the 
curve at a constant speed equal to the designed speed. 
 is pattern would avoid the loss of control due to skid-
ding that would occur if side friction demand exceeded 
pavement friction provided by the tire-pavement inter-
face.  e design value of f includes a substantial margin 
of safety against the loss of control due to skidding un-
der the most available dry pavement conditions.
However, the design of a transition curve compli-

cates the procedure considerably compared to the case 
of a simple circular arc.

2.1. Brief Notes on Italian Standards

 e previous studies on a local rural road carried out 
by the author (Bosurgi et al. 2005, 2007) allowed reach-
ing some results and are the base for the methodologies 
proposed in the present study. Particularly, relations be-
tween the value of circumference arc R and de#ection 
angle ! between two straights have been analyzed when 
the parameter A of the clothoid varies.
In order to operate the observance of standards, 

even the following value A* has been evaluated, so that 
the development of the residual circumference allowed 
at least a distance of 2.5 seconds.
 erefore, if Ast is indicated as the highest value 

among the lowest ones required by standard criteria, the 
last value of A will have to respect inequality Ast " A " A*.
Obviously, in case of small angles of de#ection, it 

is necessary to use very large radius R, otherwise, the 
development of too long clothoid branches would not 
guarantee the other veri$cations of parameter A. In fact, 
if results A > A*, the clothoid would have a length that 
does not respect the lowest value of residual arc develop-
ment (tcir > 2.5 s).
A further condition of the new rule is about the 

calculation of parameter A, with the so called dynamic 
criterion.

In fact, the use of the highest design speed value is 
imposed to be deduced from the proper diagram, gener-
ally higher respect for Vd which characterizes the route 
on the circumference arc. In the numerical application, 
for the sake of simplicity, the maximum speed on the 
clothoid will be posed equal to Vdcir +10 km/h.
Condition A = R is purely theoretic, because there 

is no possibility of using the excessive lengths of the 
clothoid that would be incompatible with the mainte-
nance of an arc with circumference long enough to as-
sure a run of 2.5 s at least.
In order to have the utmost observance of crite-

ria for standards, a solution is obtained with very large 
radius and consequently, with very large Vd, unless the 
de#ection angle between straight stretches is modi$ed.
Di%erent examined applications have indicated that 

the admissible zone, including value R reduces consid-
erably at a decrease in the de#ection angle between 
straight stretches.
 e values lower than 40c determine a moderate 

admissible zone that makes di&cult the utmost obser-
vance of criteria for standards.

2.2. Short Notes on Interval Analysis

Interval Analysis (IA) was introduced at the beginning 
of the 20th century (Hayes 2003).
 e $rst famous publication was work by Young 

(1931); still, this methodology had a strong pulse only 
twenty years later in work by Dwyer (1951), Warmus 
(1956) and Sunaga (1958, 2009). However, Moore (1967) 
developed more than all theoretical aspects deepening 
his studies on computer industry for more than forty 
years.
In IA, uncertain variables are characterized only 

by knowledge of the extremes of their $eld of existence. 
Also, the result of numerical calculations, therefore, will 
produce a range. (Dennis et al. 1998; Miao et al. 2009).
 e paper deals with intervals having the following 

de$nitions:

! ! " "
#$

[inf( ), sup( )] { | inf( ) sup( ),
inf( ), sup( ), },
x x x x x x x

x x x
 (1)

where: inf(x) denotes a lower limit to x; sup(x) denotes 
an upper limit to x.

Certainly, the uncertainty of the variable may be 
indicated by its lower and upper bounds of range or by 
means of the midpoint and its radius:

rad(x) = w(x)/2; (2)

mid(x) = (sup(x) + inf(x))/2. (3)

Other key features of these concern the concept of 
independence and extremes. Caused by independence, 
numerical values vary independently between intervals; 
calculations carried out at the ends of input variables, 
instead, lead to an output with the largest possible range.
Let % &! ' (,a a a , % &! ' (,b b b  be real compact intervals 

and ! represents any operation as addition, subtraction, 
multiplication and division.
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For example, for intervals a and b, operations can 
be de$ned by:

) *! # #% & % & % & % &' ( ' ( ' ( ' (| ,a b a b a a b b! ! , (4)

where: 0 # [b] in case of division is assumed.

It is easy to prove that the set I($) of real compact 
intervals is closed with respect to these operations. What 
is even more important is the fact that % & % &' ( ' (a b!  can be 
represented by using only the bounds of [a] and [b].  e 
following rules hold:

% &+ ! + +% & % &' ( ' ( ' (,a b a b a b ; (5)

% &, ! , ,% & % &' ( ' ( ' (,a b a b a b ; (6)

) *%- !% & % &' ( ' ( 'min , , , ,a b ab ab ab ab  

                
) *&(max , , ,ab ab ab ab

                     
(7)

if it is de$ned:

. /
! # 0% & % &1 2' ( ' (% & 3 4' (

1 1
0b b if b

bb
, (8)

then:

5 ! -% & % & % &' ( ' ( ' ( % &' (

1
a b a

b
. (9)

Interval-valued functions follow from the interval 
arithmetic of two types (Neumaier 2001): interval exten-
sions and united extensions (or true solution sets).
Interval extensions are functions where interval 

arithmetic is applied to calculate results.
United extensions are more computationally in-

tensive and involve calculating $xed-point results with 
all possible combinations of variable interval endpoints. 
 e disadvantage of interval extensions is that they can 
over expand the true solution sets of a function.  is 
quality of interval extensions is unfortunate since both 
types of extensions guarantee the containment of all 
possible numerical results of the function giving inputs. 
Also, both extensions satisfy a property called inclusion 
monotonicity (given inputs, extension generates the 
widest possible bounds) which is similar to the extreme 
principle of interval arithmetic.
One of the strengths of IA is its ability to evaluate 

the whole range of values in one calculation that would 
take an in$nite number of $xed-point calculations to 
produce (Carrizosa et  al. 2004; Moerbeek et  al. 2004; 
Qiu 2005; Mitrea, Tucker 2007).
 is method provides easy deterministic imple-

mentation of the multiple state of design and produces 
the ranges of values for evaluation (Alefeld, Mayer 2000; 
Hargreaves 2002).

2.3. Application

 e proposed procedure has been applied in the study on 
a transition curve.  e aim of the plan is to evaluate the 
most critical parameters for ful$lling requirements de-
termined by road standards in the most convenient way.

 is methodology would respond to a precise re-
quest for FHWA:

What is the degree to which a guideline is re-
duced?
Will the exception a%ect other guidelines?
Are there any additional features mitigating de-
viation introduced?
 e variables treated with interval analysis are su-

perelevation (e), de#ection angle (!) and time for circu-
lar curve distance (tcir).
Superelevation (e) characterizes the slope of a 

transversal section and for a local rural road and radii 
between 45 m and 437 m is always equal to 0.07.  e de-
#ection angle among the sides of two straight stretches 
directly in#uences the length of residual circumference. 
To assure respect for Italian Road Standards, a great 
value of ! is needed, which is o@en inconsistent with 
the morphology of a territory. Time for distance repre-
sents time spent by the driver on the residual circular 
curve travelling at design speed Vd. Italian standards 
have established minimum time (2.5 seconds) and this 
prescription imposes great values of choosing de#ection 
angles and radii R.
Although it is possible to choose other variables, 

however, it is not convenient to use design speed Vd. 
As for design speed exception, AASHTO (A Policy on 
Geometric Design… 2004) recommends that designers 
should not propose alternative design speed, because 
this variable is important for all features on the road. 
It will potentially result in unnecessary reduction in all 
speed-related design criteria rather than in only one or 
two features that led to the need for the exception.
In particular, we assigned some deviations (rad) 

from the nominal (mid) values of superelevation (e), 
de#ection angle (!) and time employed to cover input 
variables of residual circumference (tcir).
 e nominal value coincides with the value as-

sumed by the parameter of limit check that is a scenario 
where the values assigned to certain input variables al-
low no #exibility in the management of output values 
(Table 1).

Table 1. Limit check with Italian road standard

Trial 1 Vd = 70 km/h

INPUT

mid rad

q [%/100] 0.07 0.0000

! [cent] 47.0000 0.0000

tcir [sec] 2.50 0.0000

OUTPUT

mid rad

R [m] 178.00 0.00

A* [m] 121.00 0.00

Ast [m] 121.00 0.00

Mar [m] 0.2829 0.00

SVcir [m] 49.00 0.00
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For example, the results achieved for the composi-
tion of a planimetric transition curve with the following 
input data give a rise to a single solution:

design speed (Vd): 70 km/h;
circumference radius (R): 178 m;
the angle of deviation between sides of polygon 
(!): 47.0000 c;
superelevation (e): 0.07 %/100;
minimum time employed to cover residual cir-
cumference (tcir): 2.50 seconds;
design speed di%erence between circumference 
and clothoid start point (%Vd): 10 km/h.
Parameter A derived from regulatory limits (Ast) 

is 121 m, i.e. the designer might assume values equal to 
or greater than 121 m but lower than the radius of 178 
m. Nevertheless, the values higher than 121 m result in 
choosing a clothoid of such a length that it does not al-
low a residual circumference coverage time of at least 
2.5 seconds to be maintained as recommended in the 
norms.  e designer is thus obliged to select value A = 
121 m if s/he wishes to respect regulations.
 e numerical formulations performed by assign-

ing input variables in terms of the interval were consid-
ered to:

rationalize the choice of acceptable ranges for 
output variables exceeding regulatory limits 
when these are deemed to be possible, for exam-
ple following safety analyses;
identify input parameters that a%ect output varia-
bles under examination the extent to which these 
may diverge from their nominal values.
 e procedure will be applied to designing the 

planimetric curve in which the solution resulting from 
the imposition of the standard cannot be applied be-
cause of the presence of an obstacle (e.g. a building). As 
a result, we will study various provisions for alignment, 
slightly changing the angle of deviation between the two 
axes of the polygonal from 0 up to 6c.  is change will 
have an impact on dependent variables exceeding the 
limits of the standard.  e most interesting aspect of the 
procedure is to obtain a solution to the designer’s prob-
lem working on certain variables considered less critical 
than the others.  at statement could derive, for exam-
ple, from accident analysis (Kapskij, Samoilovich 2009).

3. Results

In order to test the procedure, we performed some nu-
merical simulations, the results of which are summa-
rized in the graphs and table below. In particular, the 
functions of A* and Ast versus a variation on angle ! 
have been evaluated to identify areas eligible for choos-
ing parameter A. In Figs 1÷3, the cases with R= 76 m, 
118 m and 178 m are reported.
 e results obtained applying interval analysis re-

gard the following variables (Table 2):
R: circular curve radius;
A*: the clothoid parameter beyond which there 
is a possibility of having the minimum length of 
the arc is prescribed by the standard;

Fig. 1.  e function of A* and Ast versus a variation  
on angle ! when R= 76 m

Fig. 2.  e function of A* and Ast versus a variation  
on angle ! when R= 118 m

Fig. 3.  e function of A* and Ast versus a variation  
on angle ! when R = 178 m
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Ast: the clothoid parameter derived from regula-
tory criteria;
Mar: A*–Ast is the margin providing a possibility 
of selecting parameter A and completely satisfy-
ing regulations;
SVcir: residual length of the arc.
In practical design, if there is need for reducing de-

viation angle ! between two sides of the polygonal road 
up to the value of 6c (e.g. caused by a territorial con-
straint), the application of interval analysis in four dif-
ferent trials and setting variable ! (in the form of <mid; 
rad>) amounted to <47; 0>, <47; 2>, <47; 4>, <47; 6> 
produced the results displayed in Tables 2 and 3.
In this simulation, variables (e) and (tcir) have 

<rad> = 0.
 e results produced in Tables 2 and 3 indicate that:
there are no repercussions on R and Ast;
A*  = <121; 12.3586> (Trial 4) means that in 
the worst combination possible A* = 121–12 = 
109 m. In this case, it is impossible to achieve 
tcir > 2.5 seconds;

consequently, SVcir = <49; 16> means that circum-
ference development is 16 m lower than nominal 
measurement that guaranteed the coverage of the 
circumference arc in at least 2.5 seconds.
In practical terms, therefore, this departure really 

relates to reducing the residual length of the arc, i.e. 
A = 121 m must be used with the arc length of SVcir = 
49–16 = 33 m.
 e proposed methodology, according to the estab-

lished exception, permits to derive the range of accept-
ing its dependent variables with single calculation.
Numerical results are summarized in Fig. 4 where 

the abscissa is a deviation from the nominal value of the 
input parameter (de#ection angle !) and the ordinate 
represents a deviation from A* and SVcir.
However, to limit this methodology, such straight-

forward cases do not allow any appreciable advantages 
over traditional calculation methods.  e greatest pro$t 
of this procedure is its ability to rapidly distribute the ef-
fects of an exception over more than one input variable.
Two further numerical simulations illustrate the 

above presented information. In the $rst case (Fig. 5), a 
$xed deviation from the superelevation rate (e) of 0.01 
was introduced for every trial in conjunction with a de-
viation of variable (!) between 0c and 6c. As expected, 
the resulting values showed even higher deviation than 
nominal values when a single input variable was changed 
which suggests that:

by establishing an admissible deviation from out-
put variables, this exception can be distributed 
over one or more input variables simultaneously 
if necessary;
if more than one input variable is involved, devia-
tion will necessarily be lower than in case it was 
distributed over a single variable and its extent 
could be accurately calculated by the procedure.
 e last simulation (Fig. 6) involves deviation from 

three input parameters such as de#ection angle (!) (var-
ying from 0c to 6c), superelevation (e) (kept at a con-
stant 0.01) and the residual length of the arc (1 second).  

Table 2. Numerical processing based on interval analysis 
when Vd = 70 km/h, trials 1 and 2, ! is the only input 

variable when rad & 0

Trial 1 Midpoint Radius Trial 2 Midpoint Radius

INPUT INPUT

e [%/100] 0.07 0.0000 e [%/100] 0.07 0.00

! [cent] 47.0000 0.0000 ! [cent] 47.0000 2.0000

tcir [sec] 2.50 0.00 tcir [sec] 2,50 0,00

OUTPUT OUTPUT

R [m] 178.00 0.0001 R [m] 178.00 0.0001

A* [m] 121.00 0.0001 A* [m] 121.00 4.1005

Ast [m] 121.00 0.0001 Ast [m] 121.00 0.0001

Mar [m] 0.2829 0.0001 Mar [m] 0.2136 4.1005

SVcir [m] 48.99 0.0001 SVcir [m] 48.99 5.5894

Table 3. Numerical processing based on interval analysis 
when Vd  = 70 km/h, trials 3 and 4, ! is the only input 

variable when rad & 0

Trial 1 Midpoint Radius Trial 2 Midpoint Radius

INPUT INPUT

e [%/100] 0.07 0.00 e [%/100] 0.07 0.00

! [cent] 47.0000 4.0000 ! [cent] 47.0000 6.0000

tcir [sec] 2.50 0.00 tcir [sec] 2.50 0.00

OUTPUT OUTPUT

R [m] 178.00 0.0001 R [m] 178.00 0.0001

A* [m] 121.00 8.2151 A* [m] 121.00 12.3586

Ast [m] 121.00 0.0001 Ast [m] 121.00 0.0001

Mar [m] 0.0045 8.2151 Mar [m] –0.3482 12.3586

SVcir [m] 48.99 11.1786 SVcir [m] 48.99 16.7679 Fig. 4. Relationship between %!, A* and SVcir
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 e graph illustrates the consistency of a number of out-
put variables such as (R) and (Ast) and their dependence 
on other factors displaying higher values than those ob-
served in the previous simulations.
 is methodology permits the production of a 

synthesis table (Table 4) in which, once the maximum 
exception for the variable (SVcir) has been assigned, it 
is possible to establish an acceptable range of depend-
ent variables and, therefore imagine a range of scenarios 
presenting acceptable solutions.
To illustrate the procedure, for example, the choice 

of input and output parameters was introduced. Other 
variables and quite speci$c deviation values could be 
used if justi$ed by suitable safety analyses.

4. Discussion

 is study was undertaken in response to the di&cul-
ties developers sometimes encounter when strict adher-
ence to regulatory norms makes it impossible to $nd 
solutions that are respectful of the territorial context 
involved.
Any application for waiving norms addressed to the 

authorities responsible for granting designing permis-
sion should always include thorough preliminary acci-
dent analysis in order to distinguish variables that will 
allow no #exibility from those the ranges of which could 
safely be slightly wider than regulations prescribe.
To this end, a methodology based on interval anal-

ysis able to satisfy a number of requirements has been 
proposed and thus perform the following functions:

derive, in a few simple analytic steps, new ranges 
of dependent variables from those identi$ed by 
means of accident analysis;
quantify how much waiving will be required;
check which variables are a%ected and to what 
extent;
facilitate the quanti$cation of further risk before 
and a@er analyses and introduces mitigating ele-
ments.
When designing roads, there are some situations 

that the engineer can solve in di%erent ways considering 
great #exibility, i.e. numerous solutions. On the other 
hand, boundary conditions are so restrictive that involve 
incompatibility with the standard. For example, Fig. 1 
represents the case of a transition curve when R = 76 m 
and the solution fully respectful of the standard exists 
only with great deviation angles between the two sides of 
the polygonal (low admissible zone). If radius increases, 
the task of the designer is easier, as shown in Figs 2 and 
3. However, it is not always easy if important spatial con-
straints exist.
 erefore, there is need to ‘force’ the limits imposed 

by the rule, provided however, by evaluating e%ects on 
dependent variables from the parameter you want to 
change. In this case, applying the interval analysis tech-
nique to (e), (!) and (tcir) was an interesting point. In 
particular, the analyst may be interested in managing 
variation in one of these variables (for example, recog-
nized critical analysis of an accident) and, conversely, 
exacerbate the range of the others two.
As combinations can be numerous, the results pre-

sented in this article have been limited due to reasons of 
synthesis (Figs 4÷6).
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Table 4. An example of the exception of di%erent alternatives

Exception of SVcir=15 m

! [cent] e [%/100] tcir [sec]

Alternative 1 0.0 0.011 0.0

Alternative 2 0.2 0.010 1.0

Alternative 3 0.4 0.010 0.0

Alternative 4 5.2 0.000 0.0
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 ese considerations suggest that, with di&culty, 
rules indicate precise intervals to be given to variables, 
as this will depend greatly on the environmental context 
in which they are applied.
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