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Abstract.  e paper presents the optimization possibilities of port terminal operations in order to generate maxi-
mum gain. Planning these processes is a demanding daily task taken on before dealing with port management, since 
transhipment operations, cargo loading and dispatching, maintenance and control of transhipment and transportation 
means are subject to hardly predictable and unexpectable stochastic conditions under which planning optimal termi-
nal operations will include the examination of stochastic processes on the terminal. A model of states and transitions 
with gain and a model of optimal strategies in terminal management are set up. Furthermore, a model for determining 
the structure of transhipment equipment is developed.  e devised models were adapted to the speci#cities of a port 
terminal and tested using the sample of a general cargo terminal.
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1. Introduction

Sea ports are links in the chain of transporting goods 
from manufacturers to consumers. Paulauskas and 
Bentzen (2008) emphasize sea motorways as a part of 
the logistics chain. Considering the constant growth of 
transporting goods worldwide as well as ever more dis-
tinct competition between ports in a speci#c region, it is 
exceptionally important that port management develops 
an optimal business strategy and congruent operating 
plans to draw cargo and achieve maximum e$ciency in 
the existing facilities. Furthermore, this strategy should 
also involve development guidelines on port facilities for 
achieving maximum gain.
Considering short-term, seasonal and long-term 

oscillations of the quantity and type of goods, transport 
is a characteristically stochastic, i.e. random process, 
which complicates the engagement of port facilities con-
siderably. Also, uncertain factors, such as vessel delay, 
weather conditions and mechanical equipment faults 
additionally complicate balancing operational processes 
and de#ned plans. For example, Baublys (2007) consid-
ers problems such as the development of a probability 
model to determine the malfunction of the terminal, the 
determination of emergency situations in the terminal 
based on statistical data, the optimization of the e%ect of 
failures on the operation of the terminal, the identi#ca-
tion of con&icting situations when making managerial 
decisions in the terminal.  e aim of this paper is to 

examine the possibilities of the successful management 
of a port as a transport system through the application 
of methods and procedures for the stochastic process 
theory.  e key feature of stochastic models adapted to 
port operations is to contribute to planning, organiza-
tion, management (Liu et al. 2009) and control of pro-
cesses in ports (Jaržemskis, Vasilis Vasiliauskas 2007). 
Although various stochastic models have been taught, 
developed and successfully applied in the production 
and service provision processes over the last decades 
(Česnauskis 2007; Chen, Zeng 2010; Hess, Hess 2010), 
the possibilities of sea port management using stochas-
tic models are still insu$ciently researched in scienti#c 
literature.
Baublys (2009) evaluates a technological process as 

a random process and assesses respective models.  e 
author suggests a methodology for formalizing tech-
nological processes in the terminal and criteria for the 
optimal control and quality of the technological pro-
cess. Machuca et al. (2007) explore the management of 
service operations. Kia et al. (2002) study port capacity 
by computer simulation. Cullinane et al. (2005) apply a 
mathematical programming approach to estimate the ef-
#ciency of container port production. Cullinane (2002) 
investigates possible methods and their applications for 
productivity and e$ciency modelling of ports and ter-
minals. Even though the wide range of planning prob-
lems within shipping industry received signi#cant atten-



tion from researchers so far, there are still problems that 
have to be addressed, i.e. planning port operations under 
uncertainty. Port and ship operations contain consider-
able uncertainty due to weather conditions, mechanical 
problems and strikes, and thus optimization under un-
certainty is an important #eld within operation research, 
see the survey by Gendreau et al. (1996). Wentzel and 
Ovcharov (1986) elaborate Markov stochastic processes 
and the theory of queues providing numerous examples 
of solutions that incorporate Markov stochastic process-
es. Radmilović (1989) describes the operation of port 
transhipment and transportation means involving Mark-
ov discrete processes at the constant time and suggests 
the application of models that describe a technological 
process of direct and indirect cargo transhipment using 
a di%erential equation system.
 e basic aim of the paper is the examination of 

stochastic processes in the port terminal de#ned by 
Markov chains for the purposes of modelling.  ree 
basic terminal states and a matrix of transition prob-
abilities between states have been determined, on the 
basis of which the probabilities of certain states a/er n 
transitions are obtained. Each transitional state causes a 
certain gain/loss and the aim is to determine the overall 
gain/loss a/er n transitions. Furthermore, this work sug-
gests and settles possible strategies for terminal manage-
ment and comes up with a model that brings the optimal 
strategy that can serve as a good basis for port manage-
ment while bringing tactical decisions.  e article also 
helps with determining the best structure of tranship-
ment means that assists in achieving maximum gain. For 
the purpose of testing the suggested models, daily work 
charts of the general cargo terminal were analyzed.  e 
obtained results provided initial data on forming a ma-
trix of transition probabilities, state vectors and a gain 
matrix. On the following pages, there is a short descrip-
tion of the problem followed by the models for #nding 
a solution to the problem and results of the test made 
for a general cargo terminal case in the port of Rijeka. 
Finally, the bene#ts and shortfalls of the given models 
along with practical applications are highlighted as well 
as the possibilities of the further development of the sug-
gested models are displayed.

2. "e Problem

A port terminal is one of port subsystems where the oper-
ations of vessel transhipment and unloading, cargo load-
ing and dispatching, transhipment and transportation 
equipment (TTE) control and maintenance take place 
(Hess et al. 2008). Daily running of the above mentioned 
operations are a%ected by stochastic factors that are hard 
or impossible to predict and which disturb normal run-
ning of operations according to the operating business 
plan (Hess, Hess 2010; Vukadinović, Popović 1989). 
 ese factors are caused by weather conditions, vessel 
delays, cargo delays in land, market &uctuations, worker 
strikes, breakdowns due to port equipment faults, etc.
In case the terminal is equipped with new and reli-

able equipment that is rarely damaged, the probability 

of the intermission state due to maintenance would be 
relatively low. Likewise, if a terminal is extremely busy 
with respect to cargo unloading and loading, then the 
probability that this terminal would be in the standby 
state will be insigni#cantly low in relation to the operat-
ing state (Hess et al. 2007).
When beginning with the initial state, the main 

problem is to determine the probabilities of certain 
states a/er a certain number of phases in order to un-
dertake necessary actions that would influence the 
change of states at a certain moment in the future or ac-
tions that in&uence the adjustment in the state to come 
in advance. Along with the probabilities of certain states, 
it is extremely important to determine the overall gain 
of terminal operation. For that purpose, a model of gain 
was developed in this work. Furthermore, by setting 
possible business strategies, the goal is to determine an 
optimal strategy that yields maximum gain (Vasilis Vasi-
liauskas, Barysienė 2008).  erefore, a model for optimal 
strategies was developed. Another problem was how to 
determine optimal structures of TTE on a terminal ac-
complishing maximum operating and economic results. 
 e problem was solved around the existing terminal 
resource structure and a suggestion was given for model 
modi#cation to encompass changing conditions in the 
market of TTE.

3. Model Setup

Considering operating processes in the port terminal 
(Hess, Hess 2009), three basic states when a terminal 
can be found at a given moment can be distinguished:
S1 – standby state (no working operation on the wharf, 
but the collection and analysis of data regarding 
cargo, vessel and weather);

S2 – operating state (cargo loading and unloading, cargo 
dispatching from the operating wharf to warehous-
es or inland means of transport; this is the most 
favourable state economically);

S3 – intermission state (regular maintenance of TTE, re-
pairs in case of a sudden fault, break in case of bad 
weather which prevents from safe transshipment 
actions, break due to possible workers’ strikes, post-
ponement of work due to vessel or cargo delay from 
the inland).
 e following possible transitions between states 

were determined from the above mentioned ones:
I12 – from the standby state to the operating state a/er 
vessel arrival, cessation;

I13 – from the standby state to the intermission state;
I21 – from the operating state to the standby state;
I23 – from the operating state to the intermission state;
I31 – from the intermission state to the standby state;
I32 – from the intermission state to the operating state 
a/er eliminating causes for breakdown.
Port terminals act stochastically if states and transi-

tions between individual states do not follow the course 
of operations due to various internal and external unpre-
dictable e%ects on regular operations.  erefore, a ter-
minal will be represented as homogenous Markov chain 
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with the following matrix of transitional probabilities:
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 (1)

and initial state vector P0:

% ! "& '0 1 2 3(0), (0), (0) .P p p p   (2)

 ese formulae will be implemented in the experi-
ment presented in Part 4.

3.1. States and Transitions with Gain

Terminal processes, de#ned by states and transitions, 
have economic e%ects since all transitions between states 
cause certain gain or loss. Let us assume that rij is the 
gain caused by system transition from state xi to state xj 
and interpreted as:

gain for direct transition;
gain for being in state xi (or xj) throughout a sin-
gle time unit.
 e interpretation of gain for direct transition can 

be applied to shipping where individual ports make for 
system states, transition between states makes for goods 
or passenger transportation between ports and rij is the 
ship owner’s gain for the carried transport.
 e second interpretation of gain discussed in this 

paper contributes to practical application; thus, terminal 
states are de#ned by terminal standby, operating and in-
termission states (including transshipping and transpor-
tation means and workers), so that rij is relevant pro#t 
gained while the terminal is in state xi before transition 
to state xj. If rij > 0, the terminal is exploited and gains 
pro#t; if rij < 0, the terminal is in the standby or inter-
mission state and negative gain which is loss is achieved.
 e task given in this paper is to come up with a 

model to #nd overall gain a/er n terminal transitions 
between states.
Let us assume that a system, in which a discrete 

Markov process is taking place within discrete time 
(Markov chain), has k states, and the matrix of transi-
tional probabilities P and the corresponding matrix of 
gain R are (Vukadinović, Popović 1989):
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Let us assume that matrix R is symmetrical, i.e. rij = rji.
 e following assumptions are given:
the system begins to function from state xi;
overall gain a/er n phases (transitions) is equal 

to vi(n);
gain for one phase from state xi to state xj equals rij;
gain for n phases can be represented as the sum 
of rij+vj(n-1), where vj(n-1) is gain for n-1 transi-
tions starting with state xj.
System transition from state xi to state xj is accom-

plished by probability pij, so the expected overall gain for 
n phases of the system starting with functioning from 
state xi, equals:
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If we introduce symbol qi for the expected gain for 

one phase from state xi to xj, state 
%
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1, ..., k, formula (4) can be written in the following form:
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Gain measures v1(n), v2(n),..., vk(n) are the com-
ponents of the gain vector for n phases, v (n) = (v1(n), 
v2(n), …, vk(n)), whereas gain measures q1, q2,..., qk form 
the gain vector for one phase: q = (q1, q2, ..., qk).  e 
components of vector q can be noted in matrix products 
P and R, i.e. in matrix G:
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Considering the condition that rij = rji, it is clear 
that the components of vector q form the main diagonal 
of matrix G. Equation (4) can be written in the following 
form of the vector:

% ( + )( ) ( 1)v n q P v n . (7)

If there are stationary possibilities for Markov 
chain, i.e. if Markov chain is ergodic, than for n → ∞:
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where: t = (t1, t2, ..., tk) is the #nal probability vector 

%

, -
%. /. /

0 1
*

1

1
k

i
i

t resulting from equation t ∙ P = t.

 e expected gain in the stationary regimes of sys-
tem operation equals:
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3.2. Optimal Strategies for Terminal Operations

A general approach to solving problems of operating 
process management that can be de#ned by Markov 
chains is comprised of examining k of di%erent rules 
(strategies) leading to appropriate solutions. Alternative 
solutions are obtained by changing the elements of ma-
trixes P or R. For the h-th rule, let us mark matrices P, 
R and G with h and their elements as follows:

5 6 5 6 5 6% % %( ) ( ) ( ) ( ) ( ) ( ),  ,  h h h h h h
ij ij ijP p R r G q . (10)

Maximum expected gain for n phases, if the system 
is initially in state xi and takes on optimal value in each 
of the following transitions, equals:
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% 7 %1, ; 1, 2, ...i k n , (11)

where: vj(n–1) is the maximum expected gain for n–1 
phases if the system started functioning from state xj.
In the matrix form, (11) is:
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For a su$ciently high n number of transitions 
between states, it is suitable to introduce multiplier ! 
(0 "  !  " 1) that multiplies expression P(h) ∙ v(n  – 1) in 
Formula (12). Since this proves to be suitable practically, 
this multiplier allows maximum gain to always be #nal. 
 e selection of an optimal solution is done as follows. 
In order to determine the optimal solution at the #rst 
stage, i.e. for n = 1, the initial state of gain is de#ned: 
v(0) = 0 and matrices G(h) = P(h)R(h) for each value h = 
1, 2, ... are calculated:
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By selecting elements on the main diagonal from 
each G(h) matrix, the result of h vector-columns is ob-
tained:
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All these vectors can be collected in one rectangu-
lar matrix (generally h#$#k):
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Product P(h) ∙ v(n – 1) is calculated and, since the 
expected gain for the initial state is v(0) = 0 and repre-
sents the null vector, P(h) ∙ v(0) = 0. In order to determine 
maximum gain at the #rst stage, it is necessary to select 
a maximum element of vector-row from matrix (15) and 
to determine it:

5 6 5 6
% %

% ( + %( ) ( ) ( )

1 1
(1) max (0) maxh h h

h h
v q P v q . (16)

 is way, a procedure for determining an optimal 
variant at the #rst stage is reduced to an overview of the 
vector-row element values of matrix ( )h

kq  and maximum 
selection.  en, a vector is formed from the symbols of 
maximum element points:

8 9% 1 2( ) ( ), ( ), , ( )kd n d n d n d n# , (17)

where: the i-th element di(n) is the whole number be-
tween 1 and h, which shows the ordinal number of a 
rule and maximizes the expected gain for one transition 
if the system starts functioning from state xi.
Determining optimal solutions at the second stage 

(n=2) is as follows.  e calculation procedure is ana-
logue to that at the #rst stage.  e initial data is com-
prised of matrix ( )h

kq and the vector-column of calcu-
lated gains v(1).  e procedure is similar to that at stages 
n = 3, 4,  ... At the same time, a set of vectors of optimal 
rules for operational decisions is obtained.

4. Experiment and Results of Analysis

4.1. Model for States and Transitions with Gain  
for the General Cargo Terminal

 e set model is tested on the system of the general cargo 
terminal in the port of Rijeka where operating processes 
throughout the year are de#ned by homogenous Markov 
chain with the following transition probability matrix:

, -
. /

% . /
. /
0 1

0.55 0.40 0.05

0.40 0.40 0.20

0.05 0.75 0.20

P .  (18)

 e elements of the transition probability matrix 
are obtained by a statistical analysis of processes from 
daily work charts on the examined terminal in the port 
of Rijeka within one year (2009) and are interpreted 
through running daily operations. In the observed pe-
riod, the terminal is found in the standby state with the 
probability of 0.55 due to considerable capacity unem-
ployment. Transitions from the standby to intermission 
state occur with the probability of 0.05 because of regu-
lar equipment maintenance. Since the existent operat-
ing means on the operating wharf of the general cargo 
terminal are outdated, the probability of transition from 
the intermission state to the operating state is 0.2. From 
the intermission mode, the terminal returns to the op-
erating state with the probability of 0.75, since the inter-
mission mode most o/en occurs in the event of fault for 
mechanical equipment during transhipment/transporta-
tion. Due to the speci#c organization of work and semi-
mechanized work, inadequate equipment for machine 
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maintenance and probability that the terminal will again 
return to the intermission state in the next phase is 0.2.
From #nancial reports based on daily work charts 

on the examined terminal, gain matrix R was extracted 
and expressed as a coe$cient:

, -) )
. /

% . /
. /) )0 1

1.0 1.0 1.5

1.0 2.0 0.0

1.5 0.0 2.5

R . (19)

If the terminal remains in the standby mode, it does 
not gain but loses due to the ine$ciency of facilities with 
a coe$cient of –1. By transition from the standby state 
to the operating state, the terminal gains the pro#t of 
+1. By transition from the standby state to intermission 
state, the terminal will lose more than in the standby 
state because of maintenance expenses (–1.5). Gain is 
the highest in the operating state and totals 2. In case 
it is necessary to switch from the operating to intermis-
sion state, the terminal will neither lose nor gain.  e 
terminal returns from the intermission to operating state 
and then neither gains nor loses. Remaining in the in-
termission state is obviously the most unfavourable (loss 
–2.5) because the terminal does not earn any money but 
spends on recovering from intermission.
For each individual case in practice, values from 

gain matrix R can be turned into certain money units. 
It is important to understand relations between states 
that are the nature of transition between states (whether 
transition is positive, negative, higher or lower in rela-
tion to another regarding pro#t gain).  en, these values 
can easily be turned into money units for the speci#c 
case (for example, USD 1 000 or HRK 1 000). From (6), 
we obtain matrix G:
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0.025 1.350 0.950

0.300 1.200 1.100

0.400 1.550 0.575

G . (20)

 e elements of the main diagonal of matrix G con-
stitute the expected gain vector for one stage:

, -)
. /

% . /
. /)0 1

0.225

1.200

0.575

q . (21)

From (7), we then obtain gain vector for one stage 
starting from the #rst, second and third state:
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. /
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0.225

(1) 1.200

0.575

v . (22)

 e obtained results have the following meaning: 
if the terminal was initially in the standby state, follow-
ing one transition, there would be a loss of 0.225 money 
units (m.u.).  e reason for this is the fact that the next 
transition will have a relatively high probability of 55% 
to return to the standby state where the terminal gener-

ates pro#t. If it was in the operating state, the generated 
pro#t would make 1.12 m.u., which is even higher if the 
probability of transition back to the operating state is 
higher than 40%. Starting with the intermission state 
which per se generates loss for the terminal, any fur-
ther transition will generate yet another loss; only this 
loss will be lower if transition is to the operating state. 
Considering the probability of transition to the operat-
ing state of 75% and the probability of remaining in the 
same intermission state of 20%, the generated loss a/er 
one transition is 0.575 m.u.  e expected gain following 
two and three stages is:
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0 1

0.1025

(2) 1.4750

0.1988

v ; 
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0.43

(3) 1.87

0.58

v . (23)

If at the beginning of examination the terminal was 
in the standby state, a gain of 0.43 m.u. was generated 
following three stages, which can be explained by the 
fact that transition to the operating state, in which the 
terminal generates pro#t, was achieved in three transi-
tions with the probability of 40%.  e pro#t of 1.87 m.u. 
generated within three transitions in case the terminal 
was initially in the operating state, is not much higher 
than that generated following the #rst stage (1.2 m.u.) 
precisely because of similar probabilities of transition 
(40%) to the unfavourable standby state and operating 
state. Furthermore, a gain in case of transition from the 
intermission state is 0.58 m.u. and is not that negative as 
it was following the #rst stage.  is is due to high prob-
ability that the terminal will move from the intermission 
state to the operating state at three stages.
In order to determine the ultimate expected gain, 

#rst, it is necessary to #nd the #nal vector of state prob-
ability (vector or ergodic state probabilities) t = (t1, t2, 
t3) from the condition of t %#P = t :

8 9 8 9
, -
. /
+ %. /
. /
0 1

1 2 3 1 2 3

0.55 0.40 0.05

0.40 0.40 0.20

0.05 0.75 0.20

t t t t t t . (24)

Applying computing program MATLAB R2009A, a 
stable state was achieved following 8 stages: t = (0.4138 
0.4483 0.1379).

Fig. 1. Probability distribution of terminal states
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With (9), the expected pro#t was generated in the 
stationary operation regime q = 0.3656, which means 
that the expected gain, when examining the terminal 
during a larger number of stages with the known cur-
rent state, equals 0.3656 m.u.  is is valid regardless of 
the current terminal state and the state at which the ter-
minal will move to the next transition.

4.2. Optimal Strategy Model for General  
Cargo Terminal Management

 e previous section shows it is necessary to improve 
the e$ciency of business in the general cargo terminal 
in the port of Rijeka.  e question raised is which meas-
ures should be taken and the optimal strategy selected 
out of the possible ones devised for that purpose:
  I. to draw cargo, i.e. increase throughput with-
out any investments in new equipment sup-
ply, enhance or renovate the existing facilities 
(throughput &; investments '),

 II. to increase throughput and invest #nancial 
means in order to provide faster and better 
service on the terminal (throughput &; invest-
ments &),

III. throughput remains the same and means are 
invested in more e$cient service providing 
(throughput '; investments &#).

Starting with transition probabilities, matrix P and 
gain matrix R set up in the previous section of the exper-
iment, each of the mentioned strategies, considering its 
content, draw associated probability and gain matrices. 
 erefore, for strategy I, the matrices are the following:
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for strategy II:
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IIP ;

, -) )
. /

% . /
. /) )0 1

( )

1.0 1.5 1.5

1.5 3.5 0.5

1.5 0.5 2.0

IIR ;  (26)

and for strategy III:

, -
. /

% . /
. /
0 1

( )

0.55 0.40 0.05

0.50 0.40 0.10

0.05 0.85 0.10

IIIP ;

, -) )
. /

% . /
. /) )0 1

( )

2.0 2.0 2.5

2.0 2.5 0.0

2.5 0.0 3.0

IIIR .  (27)

Having the known matrices P(h) and R(h) , a/er a 
short calculation of (13) and (14), q(h) is determined, 
and considering that v(0) =0, equation (12) for n=1 be-
comes:

: ;, - , - , -)
< <. / . / . /

% = >. / . / . /
< <. / . / . /) )0 1 0 1 0 1? @

0.475 0.475 0.425

(1) max 1.800 , 3.000 , 2.000

1.300 0.150 0.425
h

v , (28)

where maximization for three elements of the #rst, sec-
ond and third line is done. Accordingly, the associated 
vector of the expected maximum gains:

, -
. /

% . /
. /
0 1

0.475

(1) 3.000

0.150

v . (29)

Finally, the vector of optimal rules is:

8 9 8 9% %1 2 3(1) (1), (1), (1) 1 or 2, 2, 2d d d d . (30)

 e results show that in practice, if the terminal is 
in the standby state, rule h = 1 or h = 2 should be used 
(in all respects, to increase throughput by investing or 
not investing in modernization). In that case, the maxi-
mum expected gain is 0.475 money units. If the terminal 
is in the operating state, rule h = 2 should be used (to 
draw cargo, but through investments in port facilities) 
and then the expected maximum gain is 3 m.u.  e sec-
ond rule h = 2 should also be applied to the intermission 
state where the maximum pro#t generated is 0.15 m.u. 
 e following is obtained with (12) for n = 2:

: ;, - , - , - , -
< <. / . / . / . /

% %= >. / . / . / . /
< <. / . / . / . /
0 1 0 1 0 1 0 1? @

2.45 2.45 1.04 2.45

(2) max 3.70 , 5.46 , 3.45 5.46

0.72 2.74 2.16 2.74
h

v . (31)

 e procedure is the same for stages n = 3, 4, ... 
Calculations are done until the desirable number of 
transition is achieved. At the same time, a vector set of 
optimal rules is noted until this vector is stabilized.  is 
means that the calculation procedure should proceed 
until state vector stops changing so that at stages n it 
equals state vector following stages n – 1, which in the 
case of the examined terminal was achieved for n = 8 
(see 4.1).  us, the obtained solution denotes that there 
is a single determined rule of making a decision on all 
states, and that this rule should be followed in the course 
of time.

4.3. Model for an Optimal Structure of TTE  
on the General Cargo Terminal

Following a decision to apply a strategy for increas-
ing capacities regarding the modernization and supply 
of new TTE, a question is raised as to which type of 
resources to obtain should be the most cost-e%ective. 
 is issue should be addressed with regard to the cur-
rent state of equipment on the terminal the structure of 
which consists of diesel forkli/s and makes 31%, trailer 
tugs – 23% and mobile cranes – 46%.  e vector of the 
initial state probability is:
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! "% & '0 0.31 0.23 0.46P  (32)

and the matrix of transition from state i to state j, that is 
transition from one type of resource to another obtained 
from the comparative analysis of operating e%ects of the 
existing equipment and professional opinion, is:

! "
# $

% # $
# $& '

0.7 0.1 0.2

0.1 0.6 0.3

0.1 0.1 0.8

P . (33)

Let us assume that the supply cycle (phase dura-
tion), following which the changes of the state are re-
corded, is 5 years. State probabilities a/er n phases are 
obtained by P(n) = P0 ∙ P  n, which means that P(1) = [0.29 
0.21 0.50], P(2) = [0.272 0.207 0.521] and P(3) = [0.263 
0.204 0.533].

 is means that following 3 stages (15 years), the 
structure of TTE on the operating wharf of the general 
cargo terminal in the port of Rijeka would make 26.3% 
of diesel forkli/s, 20.4% of trailer tugs and 53.3% of mo-
bile cranes.
In order to apply to value indicators in the previous 

example that bring us to the optimal resource structure, 
the gain matrix is constructed, which is, considering the 
overall expenses of supply and maintenance, is obtained 
so that the overall expenses of supply and maintenance 
for three above mentioned types of means were put in 
the following relation: D:T:M = 4.99:4.85:2.44, where: D, 
T and M are symbols for the quantity of diesel forkli/s, 
tugs and mobile cranes respectively.  e values of rela-
tion are associated money units. If the initial assump-
tion is that the e%ect of remaining with mobile cranes 
makes 8.0 m.u., other e%ects are computed referring to 
the obtained ratio and percentages of increasing/lower-
ing expenses generated by transitions to other types. 
 erefore, the gain matrix is:

! "
# $

% # $
# $)& '

3.912 4.022 5.911

3.908 4.024 6.024

0.360 0.098 8.000

R . (34)

 e expected gain vectors for stages 1, 2 and 3 are:

! "
# $

% # $
# $& '

4.32

(1) 4.61

6.37

v ; 

! "
# $

% # $
# $& '

9.08

(2) 9.72

12.36

v ; 

! "
# $

% # $
# $& '

14.12

(3) 15.06

18.14

v , (35)

which means that the best e%ect is achieved using mo-
bile cranes, that is transition or remaining with that type 
of means in order to perform the greatest part of opera-
tions in the terminal.  is was well expected since the 
overall supply and maintenance expenses, with regard 
to the operating e%ects of mobile cranes, are the lowest 
ones.
 e presented model was also extended to the mod-

i#ed content of the TTE supply problem. For example, 
a new type of equipment along with the existing ones 
may appear on the market. It is assumed that this type 
would be given priority over the other ones. Complete 
production cancellation of some existing equipment be-
coming technologically outdated might also take place. 
 erefore, the existing structure can change by introduc-
ing a new type of equipment and/or by eliminating the 
existing one.
In the case of introducing a new type of equipment, 

the vector of the initial state probability would be P0 = 
[0.31 0.23 0.46 0.00], where element p4 = 0, since at the 
beginning of testing the structure, there was no Type 4 
of equipment, which appeared in the following 5 years. 
 en, the probability matrix of transition with the intro-
duced Type 4 or equipment is:

! "
# $
# $%
# $
# $
# $& '

0.3 0.1 0.2 0.4

0.2 0.1 0.3 0.4

0.1 0.0 0.6 0.3

0.0 0.0 0.0 1.0

P . (36)

 e matrix shows that transitions from all types of 
equipment to the new ones are the most probable, along 
with the probabilities of remaining on the same type 
due to established practices and a lack of justi#cation 
for transition to another type of equipment or obtain-
ing a new type if the old one meets demands. Following 
stage 1 (5 years), vector P(1) (state probabilities) is P(1) = 
[0.185 0.054 0.407 0.354] and state probabilities follow-
ing the second, that is stage 3, make P(2) = [0.107 0.024 
0.297 0.572] and P(3) = [0.067 0.013 0.207 0.713].
Even following stage 1, the introduced new type 

of equipment in the overall structure represents 35%, 
following 10 years – 57%, and following –15 years, i.e. 
3 steps, the ratio of a new type of equipment will make 
71%, whereas the ratio of other types is insigni#cant, 
with the exception of the mobile crane making ap-
proximately 21%. Such a high ration of the new type 
of equipment can be explained by constant advances 
in technology and new solutions to higher e%ects and 
lower maintenance expenses.
In the case of eliminating the existing type of TTE, 

the vector of the initial state probability is the same as 
in the case of introducing a new type since this existing 
equipment constitute only 23% of the structure in the 
beginning.  erefore, P0 = [0.31 0.23 0.46 0.00].

Fig. 2.  e layout of TTE structure
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However, the transition probability matrix, which 
is now:

! "
# $
# $%
# $
# $
# $& '

0.4 0.0 0.2 0.4

0.2 0.0 0.3 0.5

0.1 0.0 0.6 0.3

0.0 0.0 0.0 1.0

P  (37)

shows that all elements, i.e. probabilities of transition to 
another type of equipment for which elimination was 
presupposed, equal zero.
State probabilities following 5 years are P(1) = [0.216 

0.000 0.407 0.377] and associated state probabilities for 
stages 2 and 3 are P(2) = [0.13 0.00 0.29 0.58] and P(3) = 
[0.080 0.000 0.198 0.722].
In transition probability matrix P, all probabilities 

in the second column equal zero, which means that 
transition to the second type of TTE is impossible. For 
this reason, this type of TTE is not present in the TTE 
structure following stages 1, 2, 3, etc.
 e structure of TTE following stage 2, i.e. 10 years, 

during which the elimination of the existing and intro-
duction of a new type of equipment took place, makes 
13% of the #rst, 0% of the second, 29% of the third, and 
58% of the new type, and following 3 stages (15 years), 
there is 8% of the #rst, 20% of the third, and 72% of the 
new type of TTE.

5. Conclusions

1.  e main aim of this paper was to examine the pos-
sibilities of successful management of a port as a 
transport system through applying the methods and 
procedures of the stochastic process theory.
2.  e advantage of the model set with gain is in the 
quanti#cation of transition probabilities which can be 
expressed in any measurable units.  e coe$cients 
from gain matrices calculated considering #nancial 
reports have a direct in&uence on the #nal results; 
thus, the selection and quality of data obtained from 
work datasheets are of particular signi#cance and 
may represent the object of another research.  is 
paper examines transitions generating loss and pro#t 
for the terminal.  e practical use of the model for 
port management lies in the simplicity of procedure 
applications in order to determine and plan meas-
ures to increase the probabilities of the most favour-
able transitions with regard to generating the greatest 
pro#t.
3.  e set up model of Rijeka general cargo terminal 
provides an answer to the question regarding the 
most optimal business strategy under the given con-
ditions.  e results of the examined terminal showed 
that the #rst and second strategies with an increase in 
throughput and investing, i.e. no investments in fa-
cilities, were equally good. If examination starts with 
the operating state, it is necessary to use the second 
strategy, i.e. drawing cargo and investing in facilities. 
 e same strategy should be applied if the terminal 
was initially in the intermission state.

4. A/er making a decision on how to apply the strategy 
for increasing capacities regarding the modernization 
and supply of new TTE, a question as to which type 
of equipment to obtain would be the most cost-e%ec-
tive is raised. It was identi#ed that when following 
each stage, the best e%ect was achieved using mobile 
cranes, i.e. transition to or remaining with this type 
of equipment to perform the greatest part of opera-
tions on the terminal.  is was well expected since the 
overall supply and maintenance expenses, with regard 
to the operating e%ects of mobile cranes, are the low-
est ones. Also, the possibilities of model expansion 
considering possible changes in the long term on the 
TTE market were examined.
5. Further research should be directed to the develop-
ment of models within the meaning of educating an 
additional operating process in a wider port area.  e 
expansion of gain models would be classifying gain 
with regard to various types of cargo in transhipment, 
or various types of vessels. When dealing with the 
model of optimal strategies in terminal business, it 
is possible to develop additional strategies with more 
detailed content.
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