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Abstract. Transit flow is the basement of transit planning and scheduling. The paper presents a new transit flow 
prediction model based on Least Squares Support Vector Machine (LS-SVM). With reference to the theory of Support 
Vector Machine and Genetic Algorithm, a new short-term passenger flow prediction model is built employing LS-
SVM, and a new evaluation indicator is used for presenting training permanence. An improved genetic algorithm is 
designed by enhancing crossover and variation in the use of optimizing the penalty parameter γ  and kernel parameter 
s  in LS-SVM. By using this method, passenger flow in a certain bus route is predicted in Changchun. The obtained 
result shows that there is little difference between actual value and prediction, and the majority of the equal coefficients 
of a training set are larger than 0.90, which shows the validity of the approach.
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1. Introduction

With the development of the Intelligent Public Trans-
port System, the dispatcher can obtain timely passenger 
flow information. Meanwhile, it is difficult to predict 
short-term passenger flow exactly and reliably applying 
a usual forecasting method indicating that the informa-
tion of passenger flow cannot be effectively applied to 
real-time scheduling.

At present, there is no full insight into short-term 
passenger flow prediction, however, there are some pre-
diction methods used in the areas such as traffic flow 
prediction, passenger flow prediction etc. that apply new 
ideas for short-term passenger flow prediction. Chen and 
Grant-Muller (2001) used a sequential learning method 
for forecasting short-term traffic flow. Dia (2001) ad-
vanced a traffic flow forecasting method on Neural Net-
works used in a certain highway. Then, Vlahogianni et 
al. (2005) modified a genetic algorithm by adopting a 
multilayer structure strategy, considering the randomic-
ity of traffic. De Gooijer and Hyndman (2006) studied 
a method for time series prediction and concluded that 
the method was needed to be proved in some aspects. 
Hamzaçebi (2008) studied the use of the modified ge-
netic algorithm on a time series prediction method. Tsai 
et al. (2009) studied the use of MUTNN Multiple Tem-
poral Units Neural Network and PENN Parallel Ensem-
ble Neural Network for passenger flow prediction on the 

railway and considered these two methods to be more 
exact than the conventional MLPNN (Multi-Layer Per-
ception Neural Network) one. Castro-Neto et al. (2009) 
advanced a new method for predicting short-term road 
traffic flow using a support vector machine.

2. Summary of Least Squares Support  
Vector Machine

Support Vector Machine (SVM) is a new pattern recog-
nition method developed in recent years and is based 
on a statistical learning theory. It has a successful ap-
plication in pattern recognition, function regression 
and function approximation. Compared with the neu-
ral network algorithm, this method settles an excessive 
learning problem and a local-minimizer achieving prob-
lem. Therefore, the complexity of the SVM algorithm 
depends on the number of sample data, when quadratic 
programs are more complicated and calculation speed 
is slower.

Suykens and Vandewalle (1999), and Suykens et al. 
(2000) put forward Least Squares Support Vector Ma-
chine (LS-SVM). The main difference between LS-SVM 
and standard SVM is that the sum of the squares of er-
rors is added to objective functions and unequal restric-
tions are changed into equal restrictions. In this way, the 
speed of the solution procedure is noticeably accelerated.
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Here is a training sample set   . Mapping the sample set from ingoing 
space to high dimension characteristic space by non-lin-
ear mapping φ , the nonlinear fitting problem is shifted 
to the linear fitting problem and the linear equation is as 
follows:

( , ) ( )Tf x w w x b= φ + , (1)

where: w and ( )xφ  are n-dimensional vectors and b  is 
threshold.

Based on the principle of structural risk minimiza-
tion, the regression problem is expressed as a problem of 
constrained optimization:

 (2)

Parameter iξ  represents error and 0γ >  represents 
penalty term ( 0γ > ). 

To solve the above optimization problem, the La-
grange function is built as:

 
. (3)

Based on conditions ∂L / ∂w = 0, ∂L / ∂b = 0, ∂L / ∂ξ = 0, 
∂L / ∂α = 0, we can deduce the following function:

 (4)

Eliminating parameters ω  and ξ , we get a system 
of linear equations:
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where: e is vector (l×1) and each element is 1. I is identity 
matrix (l×1), α and y are kernel parameter matrixes 
( 1 2( , , , ) ,T

nα = α α α  , 
.

According to Mercer’s condition, we define nuclear 
function ( , ) ( ) ( )i j i jK x x x x= φ ×φ :

( , ) ( ) ( )i j i jK x x x x= φ ×φ . 

Then, the linear decision function is presented be-
low:
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=

= α +∑ . (6)

3. Parameter Optimization of LS-SVM Based on the 
genetic Algorithm

3.1. Evaluation Indicators
The value of penalty parameter ( γ ) and kernel param-
eter (s ) in LS-SVM is related to its generalization abil-

ity. In actual application, the grid method is a common 
method to select parameters. It is a direct and simple 
method to research parameters. Nevertheless, when 
there are too many parameters or search range is inap-
propriate and step length is uncertainty, an inaccurate 
result will be obtained and search time becomes very 
long. Under such consideration, a new evaluation indi-
cator as a new fitness function in the genetic algorithm 
is proposed in this paper.

Here, the RMSE of the predicted value and actual 
value is regarded as the evaluation indicator:

1
(1 ) ( )

N

i i
i

F N y y
=

= − −∑ , (7)

where: F  is the evaluation indicator; N  is the number 
of the training sample; iy  is the actual value; iy is the 
predicted value. 

The effect of the training sample on the parameters 
is considered, but the effect of the verification sample is 
not taken into account. Thus, the evaluation indicator 
(U ) of training performance and the evaluation indica-
tor (V ) of testing performance are put forward.

Sampling set T is decomposed into P  disjoint 
subsets iT and each subset contains m samples. That is 

1 1 2 2{( , ),( , ), ,( , )}i i i i i im imT x y x y x y=  , 1,2, ,i p=  . Each 
time, a subset is selected as a testing sample set and oth-
er subsets ( 1p − ) are regarded as training sample sets. 
Suppose that a testing subset is iT  in i  experiment, the 
evaluation indicator ( iU ) of training performance and 
the evaluation indicator ( iV ) of testing performance are 
defined as follows:
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Now, we define l  as the equilibrium coefficient of 
iU  and iV , then we get the evaluation indicator ( iF ) of 

the whole performance:

 (10)

According to the above statement, an optimization 
problem is described as:

1 2
,

min ( ) /pF F F F p
γ s

= + + + . (11)
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3.2. Design of the Genetic Algorithm
The optimal solution to the problem is the optimum 
value of γ and σ. The genetic algorithm is designed in 
the paper to solute the optimization of parameters in 
LS-SVM. The algorithm includes several parts as follows:

1. Coding: In this solution, a real-coded schema is 
used to avoid affecting the performance of the 
evolutionary algorithm and precise calculation 
because of repeated decoding, coding operation 
and the length of the binary character string in 
the binary code.

2. Original colony initialization: Parameters γ and 
σ must be greater than zero in the theory, and 
therefore population size is proposed as m=80. 

3. Adaptive function: In this research, the adaptive 
function is defined as formula 10.

4. Selection method: Roulette is used in the algo-
rithm, in which the selection probability Pi of 
unit i is described as: 

1
/

m

i i k
k

P f f
=

= ∑ , (12) 

where: fi is the fitness of unit i; m is population 
size.

5. Crossover and variation: When the numbers of 
iteration are small, a higher crossover and muta-
tion rates are used to enlarge the scope of search-
ing and keep population diversity effectively. In a 
contrary manner, when the numbers of iteration 
are large, a lower crossover and mutation rates 
are suggested to avoid good individuals being 
destroyed. Some improvement is put forward on 
crossover and mutation rates:

 (13)

where: Dc presents iteration times; Nc presents 
maximum iteration times; Hc shows crossover 
rates and Hm presents mutation rates.

6. Termination criteria: In general, searching ends 
as the value of iteration times is over default 
limit or the best individual is found according to 
testing performance. In this research, Nc =500 
is used.

The procedure of LS-SVM parameter optimization 
based on the genetic algorithm is shown in Fig. 1.

4. LS-SVM Model for Passenger Flow Prediction 

4.1. Analysis of Influencing Factors on  
Passenger Flow
Short-term passenger flow varies randomly because of 
the weather effects, due to competitive routes etc. It also 
has a certain law varying at a cycle of seven days. 

For example, passenger flow on Monday is relevant 
to that on Mondays of m  weeks before. There is a con-
nection between passenger flow for the day and that in 

the past few days. Taking it into account the received in-
formation, passenger flow can be predicated according to 
the sequence of passenger flow in n days before. Now we 
can define that the time unit for short-term prediction 
is T0 (minute). If the operation time of a certain bus is T 
(minute), then it can be divided into n0 observation time 
units (n0=T/T0). Suppose that passenger flow in a certain 
time unit is closely related to the value in s time units be-
fore, then passenger flow t

dF  is closely related to those, 
such as 7*

t
d mF − , , 14

t
dF − , 7

t
dF − , t

d nF − ,…, 2
t
dF − , 1

t
dF − ,

t s
dF − , …, 2t

dF − , 1t
dF − , among which d  represents date and 

t  represents time unit. When T0=60(min), the corre-
sponding prediction value is passenger flow in an hour. 

4.2. Building a Prediction Model
According to the above analysis, passenger flow in a cer-
tain time of some day is relevant to that in s  time units 
before the same day, to that in the same time in n  days 
before and also to that in the same time in the same 
work days in m weeks before.

If t
dF  represents passenger flow in time t in some 

day d, passenger flow in the whole time units of the day 
is expressed as: 01 2[ , , , ]n

d d d dF F F F=  . 
iy  is defined as passenger flow in time s i+  in 

some day and impact factor of iy  is expressed as:

Then, we can get the training set 
, in which l  is the number of samples. It can 

be shown as follows:

Getting optimum 
parameters 

Coding and 
Initializing 

Calculating the value of
 the adaptive function 

genetic operators of
genetic algorithm:

selection operator
crossover operator
mutation operator 

LS-SVM model

Stop or not?

generation population

Yes

No

Fig. 1. The process of LS-SVM parameter optimization 
based on the genetic algorithm
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.

The passenger flow is expressed as:

1 2
T

ly y y y =   .

Put the training set into LS-SVM and compute La-
grange multiplier α and threshold b. Then, we get linear 
decision function f(b) (formula (6)). 

Using constructive impact factors as input variables 
and putting them into decision function f(x) we can get 
the prediction value of passenger flow. 

4.3. Example
To test the efficiency of the method, it was realized with 
the help of the GA Toolbox of MATLAB. Research re-
ferred to the data applied by Yang (2008) that repre-
sented passenger flow on Route 6 in Changchun, at the 
peak time on May 8–10, 2007. The basic data is shown 
in Table 1 and Table 2.

The procedure of short-term passenger flow predic-
tion is as follows:

1. First, passenger flow between 8:20 and 8:30 on 
May 10 was regarded as a testing set, whereas 
the other was regarded as a training set. Because 
of limited data, passenger flow was predicted ac-
cording to passenger flow in the same time set 
two days before and that in two time sets in the 
same day. Namely, 2

t
dF − , 1

t
dF − , 3t

dF − , 2t
dF − , 1t

dF −  
were used to predict t

dF .
2. The equilibrium coefficient 0l =  was initialized 

as 0l = .
3. Parameters γ  and s  were optimized applying 

the LS-SVM method based on the genetic algo-
rithm shown as Fig. 1.

Table 1. The actual value of passenger flow on Route 6 in Changchun at the peak time on May 8, 2007 
(certain direction )

Time 
The number of bus stops

1 2 3 4 5 6 7
6:30–6:40 39 17 15 29 15 13 0
6:40–6:50 26 28 25 41 21 8 1
6:50–7:00 23 12 24 15 25 6 4
7:00–7:10 23 30 5 20 35 15 1
7:10–7:20 6 17 25 42 34 8 0
7:20–7:30 44 20 10 8 11 13 1
7:30–7:40 16 18 16 21 0 1 2
7:40–7:50 5 9 25 17 13 1 1
7:50–8:00 14 0 0 6 11 9 0
8:00–8:10 9 6 6 4 12 12 11
8:10–8:20 5 0 12 14 16 17 26
8:20–8:30 6 0 5 3 3 5 12

Table 2. The actual value of passenger flow on Route 6 in Changchun at the peak time on May 9, 2007 (a certain direction)

Time
The number of bus stops

1 2 3 4 5 6 7
6:30–6:40 36 16 16 30 16 12 1
6:40–6:50 25 30 25 38 22 9 0
6:50–7:00 23 12 25 16 22 7 5
7:00–7:10 22 28 6 22 30 14 2
7:10–7:20 6 19 22 40 35 9 0
7:20–7:30 40 25 11 7 10 12 2
7:30–7:40 14 22 15 20 1 2 2
7:40–7:50 6 8 24 18 14 1 1
7:50–8:00 13 1 0 7 12 8 0
8:00–8:10 10 7 7 5 11 11 13
8:10–8:20 6 0 11 11 15 16 24
8:20–8:30 6 1 5 4 3 4 13
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4. Having applied the trained LS-SVM, passenger 
flow between 7:00-8:30 on May 10 was predicted 
and normalized.

5. Searching ended as 1l = , otherwise 0.1l = l +
return to step (3).

6. By comparing different indicator F  at different 
equilibrium coefficient 0l = , the corresponding 
equilibrium coefficient 0l =  to minimal F  was 
found out as an optimal equilibrium coefficient. 
Accordingly, the optimal values of parameter γ , 
s  and predicting passenger flow were obtained. 

Considering the above iteration process, the best 
testing performance was discovered when 0.1l =  and 

2127.39, 238.69γ = s =  were the optimal value. By in-
serting γ ands  in LS-SVM, predicting passenger flow 
was got, shown as Table 3, Fig. 2 and Fig. 3.

There is an evident difference between the predicted 
and observed (8:20–8:30) passenger flow at bus stop 5. It 
is relevant for the following reasons:

1. There was less data on training and the perform-
ance of passenger varying at a cycle of seven days 
was not considered in the prediction. 

2. The randomness and complexity of passenger 
flow is an important reason for deviation. An 
equal coefficient was put forward:

2

1

2 2

1 1

( ( ) ( ))
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∑
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, (14) 

where: ( )tT k  presents actual passenger flow on 
board at bus stop k , ( )tP k  presents predicted 
passenger flow on board at bus stop k and ZS  
presents the whole number of bus stops along 
the route. The coefficient presents the fitness of 
the model, which is between 0 and 1.The larger 
is the coefficient, the better is the result.

There is little difference between the actual value 
and prediction. The equal coefficient of the training set 
is larger than 0.94 and the equal coefficient of predic-
tion (8:20–8:30) is 0.876 (Table 4), the accuracy of which 
meets the requirements of an actual application.

Table 3. The actual value and the prediction value of passenger flow on Route 6 in Changchun at the peak time on May 10, 2007 
(a certain direction)

Time/ The number of bus stops
1 2 3 4 5 6 7

A.V. P.V. A.V. P.V. A.V. P.V. A.V. P.V. A.V. P.V. A.V. P.V. A.V. P.V.
6:30–6:40 37 – 15 – 18 – 25 – 13 – 13 – 1 –
6:40–6:50 25 – 27 – 22 – 40 – 20 – 9 – 1 –
6:50–7:00 23 – 13 – 24 – 16 – 22 – 7 – 5 –
7:00–7:10 23 23 29 27 6 5 20 21 36 32 13 12 1 2
7:10–7:20 7 7 19 18 20 21 42 40 32 33 7 8 0 0
7:20–7:30 42 40 21 21 11 12 8 8 12 12 12 11 2 3
7:30–7:40 17 17 20 20 14 14 21 20 1 2 2 2 2 3
7:40–7:50 5 5 7 8 27 25 17 18 13 12 1 2 1 1
7:50–8:00 13 14 0 1 0 1 6 6 12 12 9 9 0 0
8:00–8:10 10 10 7 6 5 6 4 6 14 14 16 15 15 13
8:10–8:20 5 6 1 1 15 15 14 13 14 16 17 17 29 28
8:20–8:30 7 6 2 2 5 6 3 4 2 5 4 4 9 10

(Remarks: A.V. – actual value; P.V. – prediction value)
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Fig. 2. The actual value and the prediction value of 
passengers boarding on the bus from 7:00 to 8:30 at bus stop 

1 on Route 6 in Changchun
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Fig. 3. The actual value and the prediction value of 
passengers boarding on the bus from 8:20 to 8:30 at each bus 

stop on Route 6 in Changchun
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 Table 4. Equal coefficients (EC) in different time sets

Time set EC
7:00–7:10 0.956
7:10–7:20 0.977
7:20–7:30 0.974
7:30–7:40 0.976
7:40–7:50 0.960
7:50–8:00 0.959
8:00–8:10 0.943
8:10–8:20 0.969
8:20–8:30 0.876

5. Conclusions 

The paper presents a new transit flow prediction model 
based on Least Squares Support Vector Machine (LS-
SVM) according to non-linear, stochastic and complex 
flow characteristics. The improved Genetic Algorithm 
(GA) is used for optimizing the penalty parameter and 
nuclear parameter. An actual example showed the valid-
ity of the approach.
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