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Abstract. Reduction of passenger cars fuel consumption and associated emissions are two major goals of sustainable trans-
port over the last years. Passenger car fuel consumption is directly related to a number of technological aspects of a given 
car, driver behaviour, road and weather conditions and, especially at urban level, road structure and traffic flow and condi-
tions. In this paper, passenger car fuel consumption was assumed to be a function of three input variables, i.e. day of week, 
hour of day and city zone. Over the period of 6 months (during 2015) a car was driven in the randomly chosen routes in 
the city of Niš (Serbia) in the period from 8 to 23 h. The fuel consumption data recorded through on-board diagnostics 
equipment were used for the development of Artificial Neural Network (ANN) models. In order to efficiently deal with a 
number of ANN design issues, to avoid usual trial and error procedure and develop robust, high performance ANN mod-
els, the Taguchi method was applied. For experimentation with ANN design parameters (transfer function, the number 
of neurons in the first hidden layer, the number of neurons in the second hidden layer, training algorithm), the standard 
L18 orthogonal array with two replications was selected. Statistical results indicate the dominant influence of the training 
algorithm, followed by the ANN topology, i.e. interaction of the number of neurons in hidden layers, on the ANN mod-
els performance. It has been observed that 3-8-8-1 ANN model represents an optimal model for prediction of passenger 
car fuel consumption. This model has logistic sigmoid transfer functions in hidden layers trained with scaled conjugate 
gradient algorithm. By using the Taguchi optimized ANN models, analysis of passenger car fuel consumption has been 
discussed based on traffic conditions, i.e. different days of the week and hours of the day, for each city zone and separately 
for summer and winter periods. 

Keywords: fuel consumption, traffic conditions, artificial neural network, Taguchi method, on-board measurements, city 
traffic modelling, prediction model.

Introduction

Ever increasing population, transportation growth and the 
number of passenger cars in cities create concerns about 
the road transportation sustainability. It is estimated that 
passenger cars represent the single largest energy con-
sumer and CO2 emitter among all energy-demand tech-
nologies labelled in the EU (Haq, Weiss 2016). In order 
to ensure a regular traffic there is a need to identify the 
randomly occurring disturbances that affect the transpor-
tation system and to eliminate or reduce their impacts on 

the traffic (Bouamrane et al. 2005). Transportation sector 
depends exclusively on fossil fuels, non-renewable energy 
sources, which have harmful impacts on both the environ-
ment and human health. The increasing amount of road 
users has led to the situation that road network capacities 
seem to be exceeded in many areas due to high traffic load 
creating personal inconveniences of road users being stuck 
in traffic (Dallmeyer et al. 2012). Because of unpredictable 
fuel prices (Moret et al. 2016), fuel consumption is one of 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3846/transport.2018.5174


752 B. Predić et al. Implementation of computationally efficient Taguchi robust design procedure for development ...

the major concerns for consumers which use passenger 
cars in everyday urban and highway transport. As fuel 
consumption is in direct relationship with car emissions, 
prediction and estimation of passenger cars fuel consump-
tion represents a basis for any attempt to ensure energy 
savings and costs as well as to minimize harmful effects 
of fuel burning on environment such as air pollution, acid 
rains, smog, built up of carbon dioxide, changes in the 
heat balance of the Earth, etc. (Çay et al. 2013).

It has been revealed that vehicle fuel consumption 
functions are too complex to be approximated in practice 
due to numerous variables affecting their outcome (Ahn 
et al. 2002). In particular, most of the proposed mathe-
matical models consider a set of parameters from differ-
ent categories such as vehicle engine, traffic, road, vehicle, 
weather and driver related categories (Van den  Brink, 
Van  Wee 2001; Ahn et  al. 2002). Thus, for example, for 
a given vehicle and engine type fuel consumption in a 
random trip depends to varying degrees on a number 
of parameters such as speed and acceleration patterns, 
gear changing management, road grade and surface, traf-
fic density and velocity, number of vehicle stops, weather 
conditions such as temperature, wind speed, etc.

Weather conditions such as rain, snow, fog and ambi-
ent temperature which are not stable and may vary de-
pending on geographical location, weather pattern and 
season may influence to a great extent fuel consumption 
by affecting the way the car is driven and by influenc-
ing aerodynamic and rolling resistances, the operation of 
car auxiliary units and engine (Fontaras et al. 2017). As 
noted by Cartenì et al. (2010), traffic flow, geometric in-
frastructure and environmental specifications have strong 
influence on fuel consumption, making the need for de-

velopment of geographically specific fuel consumption 
prediction models more obvious. One should also note 
that significant differences between the New European 
Driving Cycle (NEDC) with real-world driving cycles that 
are representative for a given city and country may exist 
(Duarte et al. 2016; Tietge et al. 2017). 

Importance of fuel consumption estimation and pre-
diction has attracted a number of researchers which have 
perceived this important topic from various aspects and 
in different context. Since prediction of vehicle fuel con-
sumption in given conditions may be quite complex and 
uncertain, involving a number of influencing and inter-
related variables, a number of researchers focused on the 
application of Artificial Neural Networks (ANNs) for 
modelling these interdependencies. In addition to few 
applications of Radial Basis Function (RBF) ANNs (Wu, 
Liu 2012; Huang et al. 2016; Kumar et al. 2016), ANNs of 
MultiLayer Perceptron (MLP) type have been predomi-
nantly applied. A review of related work with the focus of 
MLP ANNs application is summarized in Table 1.

ANNs, inspired by human brain functionalities, are 
computational models which consists of a number of 
simple processing elements operating in parallel, able to 
acquire, store and utilize experiential knowledge (Zurada 
1992; Haykin 1998), exceeding the possibilities of many 
other conventional modelling methods (Oğuz et al. 2010; 
Rahimi-Ajdadi, Abbaspour-Gilandeh 2011; Huang et al. 
2016). In situations where the process/system variables to 
be studied have complex or nonlinear relationships, that 
cannot be described analytically because there is no suffi-
cient knowledge level of underlying governing mechanisms 
and laws, ANN’s universal function approximation capabil-
ity may provide effective means for predictive modelling.

Table 1. Review of MLP ANNs application for fuel consumption prediction

Reference Application Number of inputs /
ANN topology

Transfer 
functions 
in hidden 

layer

Training 
algorithms 

applied

ANN 
design

Arcaklioğlu, 
Çelıkten (2005)

Prediction of torque, power, 
brake mean effective pressure, 
BSFC, fuel flow, and exhaust 
emissions

3 /
1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 

1-12, 1-13, 1-14, 1-15, 2-9-7, 
2-10-7, 2-9-5, 2-8-7

LS SCGA, PRCGA, 
LMA TEM

Parlak et al. 
(2006)

BSFC and exhaust temperature  
of a diesel engine

3 /
1-7 LS LMA not stated

Sayin et al. 
(2007)

Prediction of BSFC,
brake thermal efficiency, exhaust 
gas temperature and exhaust 
emissions 

4 /
Different architectures, 1-15 

chosen
LS LMA TEM

Kara Togun, 
Baysec (2010)

Torque and BSFC of a gasoline 
engine

3 /
Different architectures, 1-13, 

1-15 chosen
LS LMA TEM

Oğuz et al. 
(2010)

Prediction of power, moment, 
hourly fuel consumption and 
BSFC of diesel engine using  
bio fuels

2 /
From 1-1 to 1-50, 1-28 TS GDMA TEM
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Reference Application Number of inputs /
ANN topology

Transfer 
functions 
in hidden 

layer

Training 
algorithms 

applied

ANN 
design

Yusaf et al. 
(2010)

Torque and BSFC of a diesel 
engine

2 /
1-19, 1-20, 1-21, 1-22, 1-23, 1-24, 

1-25, 2-13-13, 2-22-22
TS, LS, L LMA, GDMA TEM

Rahimi-Ajdadi, 
Abbaspour-
Gilandeh (2011)

Tractor fuel consumption
6 /

2-24-26*, 2-12-14, 2-10-10, 2-18-
16

TS, LS, L
GDMA, SCGA, 

LMA, QNA, 
GDALRA

TEM

Wu, Liu (2011) Car fuel consumption 5 / 
1-250 TS GDMA not stated

Uzun (2012) Prediction of BSFC
3 /

different architectures, 1-5 
chosen

LS SCGA TEM

Çay et al. (2013) Prediction of BSFC and exhaust 
emissions

4 /
1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 

1-12, 1-13, 1-14, 1-15,
LS QNA, RBA, 

LMA, SCGA OFAT

Kannan et al. 
(2013)

Prediction of performance, 
emission and combustion 
characteristics of diesel engine 
fuelled with biodiesel

2 /
2-11-11, 2-14-14, 3-14-14, 4-13-

13, 4-15-15
LS

SCGA, LMA, 
GDMA TEM

Özener et al. 
(2013)

Prediction of torque, power, 
BSFC and pollutant emissions  
of a turbo charged diesel engine

10 /
1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 
1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 

1-14, 1-15, 1-16, 1-17, 1-18, 1-19, 
1-20

TS LMA OFAT

Masikos et al. 
(2014)

Energy consumption of fully 
electrical vehicle

12 /
1-x-x TS SCGA not stated

Siami-
Irdemoosa, 
Dindarloo 
(2015)

Mining dump trucks fuel 
consumption

6 / 
2-2-2, 2-3-3, 2-6-6, 2-3-9, 2-9-
3, 2-9-9, 2-6-9, 2-9-6, 2-15-15, 
2-30-15, 2-30-30, 1-3,1-4, 1-5, 

1-6, 1-8, 1-9, 1-15, 1-30

not stated GDMA TEM

Kumar et al. 
(2016)

Prediction of brake thermal 
efficiency, BSFC, exhaust gas 
temperature
and emissions

5 /
1-10, 1-15, 1-20, 1-25, 1-30, 1-35, 

1-40,
TS

RBA, GDMA, 
GDALRA, 

SCGA, LMA
TEM

Present study

Prediction of passenger car  
fuel consumption in urban area 
during summer and winter 
periods

3 /
1-4, 2-4-4, 2-4-8, 1-8, 2-8-4, 2-8-

8, 1-12, 2-12-4, 2-12-8
LS, TS GDMA, LMA, 

SCGA 

Taguchi’s 
robust 
design 

method

Notes:
– *2-24-26 means two hidden layers with 24 neurons in the first and 26 neurons in the second hidden layer;
− BSFC – break specific fuel consumption;
− L – linear, LS – log-sigmoid, TS – tan-sigmoid;
− QNA – Quasi-Newton algorithm, RBA – resilient backpropagation algorithm, LMA – Levenberg–Marquardt algorithm, SCGA – 

scaled conjugate gradient algorithm, GDMA – Gradient descent with momentum algorithm, GDALRA – Gradient descent with 
adaptive learning rate algorithm, PRCGA – Polak–Ribière conjugate gradient algorithm;

− OFAT – one-factor-at-a- time method, TEM – trial and error method. 

End of Table 1

Based on the researcher’s remarks, some important 
abilities and features of ANN applied to fuel consump-
tion prediction include the following: (1) ANNs are able 
to learn, associate, and be error tolerant providing bet-
ter prediction results in comparison to regression mod-
els (Rahimi-Ajdadi, Abbaspour-Gilandeh 2011); (2) can 

handle large and complex systems with many interrelated 
parameters (Arcaklioğlu, Çelıkten 2005; Kara Togun, 
Baysec 2010); (3) possess powerful modelling capabil-
ity to identify complex relationships from input–output 
data and generalize a wide range of experimental con-
ditions (Parlak et al. 2006); (4) the use of ANN models 



754 B. Predić et al. Implementation of computationally efficient Taguchi robust design procedure for development ...

is quicker, more convenient and cost-effective than fully 
experimental studies (Uzun 2012); (5) can contain mul-
tiple input variables to predict multiple output variables 
(Kannan et  al. 2013); (6) the ANN approach represents 
fast calculation methodology that does not require com-
plex mathematical equations to explain a non-linear and 
multi-dimensional system (Özener et  al. 2013); (7) the 
massive volume and complexity of field dataset make this 
data-driven approach is more suitable in comparison to 
other modelling methods, particularly regression-based 
models which’s development may be a vary laborious, if 
not unfeasible, task (Huang et al. 2016). Also, as noted by 
Oğuz et al. (2010), the prediction by a well-trained ANN 
is normally much faster than the conventional simulation 
programs or mathematical models as no lengthy iterative 
calculations are needed to solve differential equations us-
ing numerical methods but the selection of an appropriate 
ANN topology is important in terms of model accuracy 
and model simplicity. However, related literature review 
shows that trial and error still remained the most fre-
quently applied method for ANN design.

While searching for most acceptable ANN (based cho-
sen criteria and suitable for the problem being solved), 
seven training algorithms, up to two hidden layers, three 
transfer functions in hidden layer and different number of 
hidden neurons, up to 250 in a layer, were tested. Moreo-
ver, on the basis of results, obtained in computational and 
time expansive experimentations, different conclusions 
were drawn, without any particular and practical guide-
lines for ANN design.

Literature review reveals that use of MLP ANNs for 
modelling fuel consumption is common. However, the 
overall aim of this study was to illustrate implementa-
tion of computationally efficient Taguchi’s robust design 
procedure for development of ANN mathematical mod-
els for predicting passenger car fuel consumption at ur-
ban scale under various traffic conditions in summer and 
winter periods. More specifically, ANN mathematical 
models were developed considering three input variables, 
i.e. day of week, hour of day and city zone and by using 
the experimentally measured data for fuel consumption 
recorded through on-board equipment for the period of 
six months. In order to develop high performance model 
with improved robustness and reliability, and at the same 
time reduce time and computational recourses, the Tagu-
chi’s robust design method was used to assist in optimal 
selection of the ANN design parameters. To the authors’ 
best knowledge, although the ANN have been previously 
applied to fuel consumption prediction in different con-
texts, the application of the computationally efficient Ta-
guchi’s robust design procedure for ANN design has not 
been studied previously and is one of the main subjects 
of this study. Investigation of the interaction effects of the 
considered input parameters on the fuel consumption was 
conducted by means of four 3D surface plots. Comparison 
of the fuel consumption of passenger cars at urban scale in 
summer and winter periods is also discussed.

1. ANN modelling issues and Taguchi’s  
robust design method

ANNs are adaptive systems consisting of a number of 
simple processing elements (neurons), grouped into one 
or more layers, that are interconnected with adjustable 
parameters (synaptic weights). Modification of these ad-
justable parameters allows the ANN to learn an arbitrary 
vector mapping input space X to the output space y = f(X) 
(Duch, Jankowski 1997).

For a given set of data, development of a high preci-
sion, robust ANN model is affected by a number of fac-
tors, particularly related to model topology and training 
algorithm settings (Figure 1). Among them, however, the 
specification of an appropriate topology is a key issue be-
cause it governs the model’s capacity to provide adequate 
function approximation. As noted by Çay et  al. (2013) 
the most important factor which determines its success 
in practice, after the selection of ANN architecture, is the 
training algorithm.

The detailed analysis and discussion of all related fac-
tors is beyond the scope of this paper. However, the ANN 
design parameters, identified from the literature review, 
are briefly discussed since they represent influential fac-
tors for the development of ANN models for fuel con-
sumption prediction.

1.1. Transfer functions

The transfer function is a mathematical function which 
forms the neuron’s output from the input signals. The 
choice of transfer functions in ANNs is of crucial impor-
tance for their performance (Duch, Jankowski 1997). The 
most common form of transfer functions used in ANNs 
is sigmoid (log-sigmoid and tan-sigmoid) as these transfer 
functions introduce a certain level of non-linearity into 
the model, thus providing powerful modelling capabili-
ties. In order for ANN to perform non-linear approxi-
mation, a sigmoid transfer function must be used in at 
least one layer, preferably hidden layer, whereas the use 
of linear transfer functions in output layer is sufficient 
in most cases. Above all, the use of linear transfer func-
tions in output layers of ANNs is adequate, considering 
that, when they are used in output layers, they avoid large 

Figure 1. Three main factor groups affecting  
the ANN model performance

• Linear 
• Sigmoidal 
• Combination 
   of different types 
   in hidden and 
   output layers

Transfer functions

ANN model 
performance

•  Number of inputs
•  Number of outputs 
•  Number of hidden layers
• Number of neurons 
   in hidden layers

ANN model topology

•  Training algorithm
•  Algorithm specific parameter settings
•  Number of training iterations

Training process
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weights, which may decrease the performance of ANN by 
affecting its generalization capability and causing paralysis 
during training process (Ghosh et al. 2005). Tan-sigmoid, 
log-sigmoid and linear transfer functions are given by the 
following equations, respectively (Zurada 1992; Patterson 
1996):

1

2 1

1 exp 2

j q

j ij i
i
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= −
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where: xi is the input from i-th neuron from the previous 
layer; yj is the output of j-th neuron; wij is weight coeffi-
cient between i-th and j-th neuron in the adjacent layer; bj 
is the bias of the j-th neuron; q is the number of neurons 
in previous layer.

1.2. ANN topology

Neurons in ANNs are interconnected information-pro-
cessing units that are grouped into input, output and one 
or more hidden layers. Each interconnection between 
neurons from adjacent layers is characterized by certain 
synaptic weight and each neuron in hidden and output 
layer posse’s bias value. These values represent free pa-
rameters that are adjusted during ANN training process 
and are used together with transfer functions for func-
tion approximation. The number of neurons in input and 
output layer is equal to the number of independent and 
dependent variables, thus it is automatically specified by 
the given modelling problem. With the use of nonlinear 
transfer functions, neurons in hidden layers enable ANN 
to approximate the underlying complex, nonlinear func-
tions. By increasing the number of hidden layers and neu-
rons, computational power of the ANN is also increased 
(Aliev, R. A., Aliev, R. R. 2001). However, the complexity 
of the ANN model in terms of free parameters to be deter-
mined during the training process also increases and even-
tually, if too many hidden neurons are used, a well-known 
over-fitting problem may occur which is reflected by the 
fact that ANN loses generalization capability. Actually, it 
has been mathematically proven that the ANN with one or 
two hidden layers can approximate any arbitrary function-
al dependence with a given accuracy, thus the problem of 
ANN topology definition can be reduced to determining 
the optimal number of hidden neurons (Cybenko 1989). 
To this aim a number of researchers proposed various 
methodologies to estimate the number of hidden neurons. 
However, as noted by Sha and Edwards (2007), in order 
for an ANN to be mathematically defined it is necessary 
that the number of free parameters i.e. synaptic weights 

and biases be less than or equal to the number of available 
data for ANN training Ntr. Following this logic, the num-
ber of hidden neurons in the case of ANNs with two hid-
den neurons can be determined as follows. For the double 
hidden layer ANN architecture with single output, with n 
input neurons, m neurons in the first hidden layer and p 
neurons in the second hidden layer, the total number of 
synaptic weights and biases can be expressed as:

( ) ( )1 2 1T m n p m= ⋅ + + ⋅ + + .                                 (4)

Thus for the double hidden layer ANNs with single 
output, the upper limit of the m neurons in the first hid-
den layer can be determined by using the following equa-
tion:

2 1
1

tr
upper

N p
m

n p
− −

≤
+ +

.                                            (5)

The proposed equation can be used to determine the 
appropriate number of neurons in ANNs with two hid-
den layers so as to take the full modelling potential of the 
ANNs. Considering different number of training data and 
input variables (from the literature review), with respect to 
proposed equation, the largest possible ANN topologies, 
in the case when there is more than one neuron in at least 
one hidden layer, are summarized in Table 2.

Table 2. Possible topologies of MLP ANNs  
with two hidden layers

Ntr = 50
n = 3

m 7 6 5 4 3
p 2 3 4 5 7

n = 4
m 6 5 4 3
p 2 3 4 6

Ntr = 100
n = 3

m 15 13 11 9 8 7 6 5 4 3 2
p 2 3 4 5 6 7 9 11 13 17 22

n = 4
m 13 11 10 8 7 6 5 4 3 2
p 2 3 4 5 7 8 10 13 17 22

1.3. Training algorithms

In order to establish the precise relationship between the 
input and output variables, it is necessary to determine 
the values for synaptic weights and biases, which initially, 
before the ANN training process, take small random val-
ues. ANN training is essentially an optimization prob-
lem, in which the goal is to determine values of synaptic 
weights and biases so as to minimize the error between 
ANN prediction and desired output. A number of ANN 
training algorithms were proposed in literature. However, 
discussion in this study is limited only to those which have 
been previously successfully used for training ANNs for 
fuel consumption prediction: gradient descent algorithm, 
scaled conjugate gradient algorithm and Levenberg–Mar-
quardt algorithm.

Gradient Descent Algorithm (GDA). GDA is one of the 
most popular ANN training algorithms. The GDA starts 
at some random point in the synaptic weights hyperspace 
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and moves “downhill” in the steepest descent direction in 
each iteration, i.e. where performance function is decreas-
ing most rapidly (Wilson, Martinez 2003). This first order 
optimization algorithm has problems of local minima and 
slow convergence.

Scaled Conjugate Gradient Algorithm (SCGA). In con-
trast to the basic GDA, conjugate gradient algorithms 
adjust synaptic weights and biases along conjugate direc-
tions. In the first iteration, these algorithms start out by 
searching in the steepest descent direction (negative of the 
gradient), followed by the line search to determine the op-
timal distance to move along the current search direction 
and eventually next search direction is determined so that 
it is conjugate to previous search directions (Demuth et al. 
2008). The SCGA, proposed by Møller (1993), is a varia-
tion of a standard conjugate gradient algorithm and was 
designed to avoid the time-consuming line search along 
conjugate directions, but it requires greater number of it-
erations to converge.

Levenberg–Marquardt Algorithm (LMA). The LMA 
modifies synaptic weights in a group way, after the ap-
plication of all ANN training vectors (Slowik, Bialko 
2008). This algorithm combines advantages of the steep-
est descent method, i.e. minimization along the gradient 
direction, and the Gauss–Newton algorithm, i.e. using a 
quadratic approximation to speed up the convergence (Yu, 
Wilamowski 2011). Although LMA is local and there is no 
guarantee to find a global solution. This algorithm stands 
for one of the most effective training algorithms for the 
feed-forward neural networks (Slowik, Bialko 2008).

Although the afore mentioned training algorithms 
can perform well over a wide variety of problems, it was 
reported that LMA and SCGA are especially suitable for 
training medium and larger sized ANNs, respectively (De-
muth et  al. 2008; Slowik, Bialko 2008; Yu, Wilamowski 
2011). A detailed discussion of training algorithms is be-
yond the scope of this paper and reader should consider 
referential literature (Cybenko 1989; Zurada 1992; Patter-
son 1996; Haykin 1998; Aliev, R. A., Aliev, R. R. 2001).

1.4. ANN model performance

Once an ANN model is developed, it is necessary to per-
form its validation by using data that were never before 
presented so as to assess the generalization performance of 
the ANN model. The most important measure of perfor-
mance is the accuracy of the prediction and to this aim var-
ious statistical methods can be used with Mean Absolute 
Percentage Error (MAPE) being one of the most stringent. 
If one insists on a small prediction error on the testing 
data and acceptable error on the training data, i.e. devel-
opment of ANN models with good generalization, ANN 
performance can be accessed by the following equation:

0.75 0.25performance test treningANN MAPE MAPE= ⋅ + ⋅ ,  (6)

where: MAPEtest and MAPEtrening are MAPEs on testing 
and training data, respectively.

1.5. Taguchi’s robust design method

Aimed to improve the quality of products and process-
es, Taguchi’s robust design method is unique and pow-
erful approach widely used in engineering domain. The 
ultimate goal is to identify optimal settings for control 
parameters making the products and processes robust, 
i.e. insensitive to the various causes of variation (noise) 
which cannot be controlled or are too expensive to con-
trol (Phadke 1989; Ross 1995; Taguchi et  al. 2004). To 
this aim, Taguchi proposed the use of Orthogonal Arrays 
(OAs), Signal-to-Noise (S /N) ratio and ANalysis Of Means 
(ANOM). Related to ANN model development, initializa-
tion of ANN weights and biases using a given method can 
be considered as noise.

OAs are special, partial factor experimental plans that 
are used to cover the entire experimental hyperspace of in-
terest and with a minimum number of trials compared to 
traditional design of experiment approach. Rows in OAs 
represent experimental trials with different combinations 
of parameter levels while columns represent single control 
parameter and its level settings. These are used to system-
atically study the main effects of control parameters and 
in some cases the effects of the interactions between two 
control parameters.

For each combination of control parameter level set-
tings, the mean and variance of the considered response 
are combined into summary statistic known as S /N ratio. 
Taguchi empirically determined that S /N ratios give near 
optimal combination of parameter levels, where the vari-
ance is minimal and mean value is kept close to the target 
value. Depending on the quality characteristics, different 
S /N ratios may be applicable, including smaller-the-bet-
ter, larger-the-better and nominal-the-best. For example, 
in any mathematical modelling it is desirable to develop 
accurate mathematical model having as small as possible 
prediction error, therefore smaller-the-better S /N ratio can 
be chosen and calculated as (Phadke 1989):

2

1

1/ 10 log
n

i
i

S N y
n =

 
 η ≡ = − ⋅
 
 
∑ ,                                   (7)

where: yi is the i-th response value; n is the number of 
observations in an experimental trial.

The optimum level of a parameter is the level that gives 
the highest S /N ratio. The predicted S /N ratio using the 
optimal levels of the parameters ˆoptη  can be calculated 
as (Phadke 1989):

( ),
1

ˆ
m

opt i opt
i=

η = η+ η −η∑ ,                                      (8)

where: ,i optη  is the mean S /N ratio for i-th parameter at 
the optimal level; m is the number of parameters that sig-
nificantly affect the quality characteristic; η is the total 
mean S /N ratio.

The process of estimating the mean S /N ratios for 
each parameter and each of its levels is called ANOM. 
The effect of parameter Q at level k can be calculated  
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as (Marinković, Madić 2011):

( )( )
1

1 /
Qkn

Qk Qk lQk l

S N
n =

η = ⋅∑ ,                                       (9)

where: nQk is the number of appearances of parameter Q 
at level k in experimental plan; (S /N)Qk is the S /N ratio 
related to parameter Q at level k. 

ANOM is usually performed using response graphs 
providing simple visual identification of the quantitative 
and qualitative effects of parameter changes. Although 
ANOM can be used as a statistical tool for determining 
optimal parameter settings, in some cases ANalysis Of 
VAriance (ANOVA) is preferred as it allows estimation 
of the relative significance of each process parameter in 
terms of percent contribution on the overall response.

2. Data collection and ANN model development

2.1. Data collection and pre-processing

In the first stage of this research, experimental data from 
passenger car On-Board Diagnostics (OBDII) interface 
were collected during normal daily commute operation 
in the city of Niš over a period of 6 months. OBDII is cur-
rent (as of 1996) standard in the diagnostic connector, its 
pinout, signalling protocols and messaging format.

Widely available ELM327 based OBDII device was 
used for data collection. This device integrates OBDII 
interface, global positioning system receiver and cellular 
network general packet radio service modem for wireless 
communication with the backend data-collection server 
(Figure 2). During data collection phase, the device was 
collecting standard vehicle operating parameters including 
ignition status, engine RPM, current fuel consumption, 
vehicle battery voltage and standard fault codes. Times-

tamp and geographic coordinates are added to each col-
lected data tuple by device software and one data packet is 
sent to backend data collection service in a JSON format 
using mobile telco operator network. The data collection 
service is a standard REST API Web service developed in-
house specifically for this study. The back-end server uses 
geospatial database (PostGIS) which contains detailed 
road network data for the city experiment was conducted 
in. This road network data was used to map-match each 
received data tuple to specific road network segment. Fur-
ther, this map-matched information allowed collected OB-
DII data classification and segmentation. Spatial database 
road network data includes road type (motorway, sec-
ondary, primary, footway, tertiary, etc.), number of lanes, 
direction (one-way/two-way), etc. In future research, this 
extended spatial info can allow a more detailed classifica-
tion of collected OBDII data using various criteria.

For the experimentation purposes road network of the 
city was classified into two zones: Zone 1 – narrow city 
center; Zone 2 – wider city center area (Figure 3).

2.2. Implementation of Taguchi’s robust design 
method for ANN model development

The purpose of ANN based mathematical modelling in 
this study is to model the underlying relationships be-
tween independent variables (day of week, hour of day 
and city zone) and fuel consumption of the passenger 
car in the city of Niš. On the other hand, the idea of the 
Taguchi method application was to develop high per-
formance ANN model, which is robust and accurate by 
considering different influential factors related to ANN 
design and training such as transfer function A, number 
of neurons in the first hidden layer B, number of neurons 
in the second hidden layer C and training algorithm D.  

Figure 2. Experimental data collection setup
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Considering the literature review, discussion and pro-
posed guidelines for ANN model development, four 
ANN parameters A–D were varied at two and three lev-
els (Table 3). That is, in sum, 9 different ANN topologies  
(3 single hidden and 6 double hidden layers) with different 
transfer functions, trained with different algorithms were 
developed and tested.

Since this case study considers three ANN param-
eter factors at three levels and one at two levels, there are  
3  ×  (3  –  1)  +  1  ×  (2  –  1)  +  1  =  8 degrees of freedom, 
thus the standard L18(21 × 37) OA was selected (Taguchi 
et al. 2004) (Table 4). This mixed design is highly recom-
mended, because interactions are distributed uniformly to 
all columns (Phadke 1989). Note that A and D are discrete, 
while B and C are continuous. As control factor A has only 
two levels it was assigned to column 1, while the others 
were assigned to column 2, 3 and 4, respectively.

For each experiment trial, i.e. combination of ANN 
design parameters, two replications were used, that is in 
sum 18 × 2 = 36 ANN models were developed. For each 
developed ANN model, performance, in accordance with 
equation 6, was estimated, upon which S /N ratios for each 
experimental trial were calculated (Table 4). It has to be 
noted that for all ANN models linear transfer function 

was used in the output layer whereas Nguyen–Widrow 
method was used for weights and biases initialization. 
Also, in order to deal with bias–variance trade-off and 
convergence to local minima, the training process of 1000 
iterations was repeated in some cases several times using 
different initial weights and biases.

By analysing ANNs training process, it was observed 
that LMA has the fastest convergence followed by SCGA 
and GDA. However, SCGA proved to be very robust, i.e. 
different weights initialization patterns had minimal effect 
on global convergence.

On the basis of the calculated S /N values given in Ta-
ble 4 and by using the ANOM, i.e. Equation (9), the mean 
effects of each design parameter on mean S /N ratio are 
presented in a graphical form, whereas the optimal levels 
are marked by circles.

Note that the overall mean value of S /N ratios for the 
experimental region defined by the design parameters lev-
els in Figure 4 was calculated as:

18

1

1
18 i

i

m
=

= ⋅ η∑ ,                                                       (10)

where: the subscript i represents the i-th experiment in 
the OA.

Figure 3. City streets divided into 2 zones overlayed over Open Street Maps (Zone 1 – green, Zone 2 – blue)

Table 3. ANN design parameters and their levels

Design parameter Symbol
Parameter levels

Level 1 (low) Level 2 (middle) Level 3 (high)

Transfer function A tan-sigmoid log-sigmoid –
Number of neurons in the first hidden layer B 4 8 12
Number of neurons in the second hidden layer C 0 4 8
Training algorithm D LMA SCGA GDA
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Figure 4 makes evident that the optimal combina-
tion of the design parameter levels is A2B2C3D2. In other 
words, double hidden layer ANN model having 8 hidden 
neurons in each hidden layer, using log-sigmoid transfer 
function in hidden layers, trained with SCGA represents 
the optimal ANN model (Figure 5).

Note that the slope of lines in Figure 4 determines the 
power of the design parameters effects on the S /N ratios. 
Graphs from Figure 4 clearly suggest a dominant influ-

Table 4. The experiment settings L18 (21 × 37)

Trial
Design parameters ANN 

performance 
[%]

S/N 
ratio 
[dB]A B C D

1 tan-sigmoid 4 0 LMA 12.65 13.21 –23.23
2 tan-sigmoid 4 4 SCGA 13.91 13.57 –22.76
3 tan-sigmoid 4 8 GDA 12.75 13.70 –22.43
4 tan-sigmoid 8 0 LMA 13.41 12.71 –22.32
5 tan-sigmoid 8 4 SCGA 12.55 12.68 –22.02
6 tan-sigmoid 8 8 GDA 13.13 14.22 –22.73
7 tan-sigmoid 12 0 SCGA 11.46 12.36 –21.52
8 tan-sigmoid 12 4 GDA 12.88 14.47 –22.73
9 tan-sigmoid 12 8 LMA 13.35 13.42 –22.53

10 log-sigmoid 4 0 GDA 15.14 12.14 –22.75
11 log-sigmoid 4 4 LMA 12.80 12.63 –22.08
12 log-sigmoid 4 8 SCGA 11.62 12.42 –21.60
13 log-sigmoid 8 0 SCGA 11.78 13.29 –21.98
14 log-sigmoid 8 4 GDA 12.80 12.62 –22.08
15 log-sigmoid 8 8 LMA 12.25 11.49 –21.49
16 log-sigmoid 12 0 GDA 12.63 13.73 –22.41
17 log-sigmoid 12 4 LMA 12.40 12.79 –22.01
18 log-sigmoid 12 8 SCGA 12.67 13.14 –22.22

Figure 4. Mean S/N ratios for main effects
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Figure 5. Optimal MLP ANN model for prediction of passenger fuel consumption
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ence, in a quantitative sense, of training algorithm on the 
change in the S /N ratios. However, in order to determine 
relative importance of design parameters ρ, contribution 
of each ANN design parameter to the change in the S /N 
ratios and finally, estimate the error variance, the ANO-
VA analysis was performed using the S /N ratios (Table 5). 
Due to the possibility of interaction between design pa-
rameters, additional analysis based on interaction plots 
has been carried out. It results in the fact that interaction 
B × C was also included in the ANOVA analysis, because 
of its significance.

The percentage contribution of source to the total vari-
ation defines parameter sensitivity. It can be seen from 
Table 5 that changing the design parameters levels con-
tributes approximately 86% of the total variation in the 
ANN performance. The ANOVA results indicate that 
the training algorithm is the most significant parameter 
contributing 43% to the changes in ANN performance. 
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The interaction between the number of hidden neurons 
in the first and the second hidden layer contributes ap-
proximately 32%. Finally, the transfer function contributes 
approximately 11%.

The S /N ratio using the optimal levels of the param-
eters A2B2C3D2, determined with the use of Equation (8), 
was calculated as ˆ 21.67 dBoptη = − . The final step in the 
application of the Taguchi method is the verification of 
quality improvement, i.e. in this case the improvement 
of ANN model performance. Since ANN model with the 
optimal combination of the main parameters levels does 
not exist in the experimental matrix (Table 4), new ANN 
models were trained with the above-mentioned optimal 
level settings. The observed S /N ratio values from the con-
firmation experiment were obtained as ˆ 21.21 dBexpη = − .

In order to statistically judge the closeness of the pre-
dicted and observed value of S /N ratio, the Confidence 
Interval (CI) was determined using the following relation 
(Ross 1995):

( )1,
1 1

e ef
ver

CI F V
n nα

 
= ⋅ ⋅ +  

 
,                            (11)

where: ( )1, 5.99
ef

Fα =  is the F value from statistic table at 

a 95% confidence level; fe is degrees of freedom for the er-
ror; Ve is the mean square of error; nver is the confirmation 
test trial number; n is defined as:

1
Nn =
+ ν

,                                                               (12)

where: N is the total number of trials in experimental 
matrix; ν is the total degrees of freedom of all design pa-
rameters.

In this study, the CI value of 0.61 was obtained. Since 
the difference between ˆoptη  and ç̂exp is within the CI value, 
it can be concluded that the chosen experimental design 
is functionally adequate and that the applied procedure 
to determine optimal ANN design parameters is statisti-
cally confirmed and valid. Therefore, the developed ANN 
model is used thereafter for further investigation regard-
ing fuel consumption prediction in the city of Niš.

3. Results and discussion

Analysis and discussion of passenger car fuel consumption 
in the city of Niš during summer and winter periods was 
performed by means of four 3D surface plots showing the 
interactions effects of hour of day and days of week for 
two considered city zones (Figures 6 and 7).

Overall, the average fuel consumption decreases from 
8.88 l/100 km for city Zone 1 to 8.36 l/100 km for city 
Zone 2. More specifically, during working days, average 
fuel consumption for Zone 1 is 9.03 l/100 km and is de-
creased to about 8.25 l/100 km for Zone 2. This decrease 
of about 9% is a consequence of less intense traffic flow 
and crowd, i.e. less traffic intensity in wider city zones. 
However, this difference during the weekend days, pos-
sibly due to ease of traffic congestion in the city center 
throughout the day, is almost negligible with average fuel 
consumptions of 8.48 and 8.38 l/100 km in city Zones 1 
and 2, respectively. As could be clearly observed, the fuel 
consumption is particularly increased in the afternoon 

Table 5. ANOVA results for S/N ratios

Source of 
variation

Degrees  
of Freedom 

(DOF)

Sum of 
Squares 

(SS)

Mean 
Square 
(MS)

F ρ [%]

A 1 0.393 0.393 7.44 11.15
B 2 0.132 0.066 1.25 3.75
C 2 0.04 0.02 0.38 1.13
D 2 1.528 0.764 14.46 43.35

B × C 4 1.115 0.279 5.28 31.63
Error 6 0.317 0.053 – 8.99
Total 17 3.525 – – 100

Figure 6. Passenger car fuel consumption in the city of Niš during summer: a – Zone 1; b – Zone 2
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hours when people return from work and high traffic in-
tensity occurs with large lines of vehicles in central city 
streets. As a consequence, each single route in the city 
center inevitably involves a number of vehicle stops on 
traffic lights as well as a number of speed changes with 
different acceleration/deceleration patterns which results 
in higher fuel consumption. In these afternoon rush hours 
between 14 h and 16 h, the average fuel consumption rises 
up to 11 l/100 km in the city Zone 1. A research from 
the city of Poznan (Poland) reports that average fuel con-
sumption for a test vehicle (petrol engine, 1.6 cm3 capac-
ity, 83 kW max output power) in normal city conditions is 
about 9 l/100 km and rise to as much as 12…14 l/100 km 
in a very high level of traffic congestion (Igliński 2009).

From Figure 6b, one can notice another interesting ob-
servation which is reflected in the fact that the deviations 
from average fuel consumption are much less pronounced 
in city Zone 2. Ability to maintain constant speed with 
accompanying smaller fluctuations at certain road sec-
tions in city Zone 2 may be logical explanation for this 
observation.

By using the experimental data for winter period 
and ANN design parameters, as obtained by the Taguchi 
method, second ANN mathematical model for the pre-
diction of fuel consumption was developed. This model, 
having excellent performances with average MAPE values 
on training and testing of 4.15 and 3.84% respectively, was 
used to analyse fuel consumption during winter period 
(Figure 7).

As observed from Figure 7 there is a small difference 
between fuel consumption in city zones when considering 
working days and weekend days separately. On average, 
the fuel consumption decreases from 9.21  l/100  km for 
city Zone 1 to 9.13 l/100 km for city Zone 2. Figure 7 
indicates that there is fuel consumption increase in the 
morning hours and this may be attributed to slower en-
gine heating due to lower ambient temperatures, especially 
over relatively short distances. As noted by Murrell (1980), 

fuel consumption rates increase at low temperatures and 
with high winds, which result in aerodynamic losses. In 
general, from Figures 6 and 7 one can also observe that 
fuel consumption in the morning hours is higher than 
in evening hours because of substantially different traffic 
conditions which characterize these two periods. How-
ever, comparison of Figures 6a and 7a shows that there is 
no evident increase in fuel consumption during afternoon 
hours. In other words, less traffic flow with crowds is no-
ticeable. It seems that in the case of the city of Niš, one can 
conclude that people, due to weather and road conditions, 
prefer to use public transport or taxis over their own cars, 
thus avoiding possible risky driving situations that may 
occur during adverse weather conditions.

Comparison of average fuel consumptions in city 
zones during summer and winter periods is summarized 
in Table 6.

Irrespective of considered city zones and days in the 
week, using the provided data one can calculate that av-
erage fuel consumption during summer is 8.5 l/100 km 
whereas in winter is 9.3 l/100 km. It has been previ-
ously reported that fuel consumption in winter is about 
15…20% higher than in summer (Baker 1994). Smaller 
deviations in fuel consumption during winter and sum-
mer periods reported in this study (about 9%) may be due 
to today’s even more advanced and efficient engines deliv-
ering the same power output with less fuel consumption 
and associated emissions at the same time.

Table 6. Comparison of average fuel consumption by city zones 
during summer and winter periods in the city of Niš

Period Days in the week City Zone 1 City Zone 2

Summer working days 9.03 8.25
weekend days 8.48 8.38

Winter working days 9.21 9.13
weekend days 9.29 9.41

Figure 7. Passenger car fuel consumption in the city of Niš during winter: a – Zone 1; b – Zone 2
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Conclusions

The reduction of fuel consumption, emissions and traf-
fic jams and congestions and increase in traffic safety are 
major tasks of any city’s sustainable transportation system. 
As fuel consumption makes considerable share in trans-
portation and emission costs, its estimation is of prime 
importance in city logistics. In this study, with the im-
plementation of computationally efficient Taguchi’s robust 
design procedure, two ANN models for the prediction of 
passenger car fuel consumption under various traffic con-
ditions in summer and winter periods in the city of Niš 
(Serbia) were developed. Based on conducted analysis and 
obtained results, the following conclusions can be made:

 – It has been observed that SCGA was able to provide 
fast ANN training and achieve better performance 
in comparison to conventional GDA as well as LMA. 
The algorithm proved to be stable and robust while 
being able to escape from local minimums irrespec-
tive of the different weights initialization schemes;

 – It has been revealed statistically that the number of 
neurons in hidden layers may not be of much impor-
tance. However, the interaction between the number 
of neurons in the first and the second layer, which 
define the ANN topology, significantly determined 
ANN performance and is nearly equally important 
as the training algorithm;

 – It has been observed that the same number of hid-
den neurons distributed in two layers represents ap-
propriate ANN topology for fuel consumption pre-
diction and in this sense confirms observations that 
have been reached by trial and error method (Siami-
Irdemoosa, Dindarloo 2015; Kannan et al. 2013);

 – The implementation of computationally efficient 
Taguchi’s robust design procedure significantly de-
creased the number of experimentation trials with 
different combinations of ANN design parameters 
and ensured development of reliable model which 
can be used for passenger car fuel consumption pre-
diction;

 – It has been revealed that the passenger car fuel con-
sumption in the city of Niš is predominantly affected 
by the time of day. In summer periods fuel consump-
tion is increased in the afternoon rush hours due to 
increased traffic jams and congestions while in the 
winter period fuel consumption is increased in the 
morning hours due to prolonged engine pre-heating 
time due to lower ambient temperatures. Also, an 
increase of about 10% of fuel consumption was re-
corded during winter period and this can be directly 
mapped to increase in transportation costs;

 – Specific traffic conditions that occur in the city of Niš 
and as modelled by the ANNs are reflected in the 
fact that due to lesser traffic intensity and ability to 
maintain constant speed over longer distances, there 
is a decrease in fuel consumption in wider city zones 
(Zone 2) in comparison to downtown areas (Zone 1).

Although the problem of fuel consumption prediction 
is very complex, involving a number of input variables 
having different influences and interdependencies, the use 
of ANNs in this study ensured quite accurate passenger 
car fuel consumption predictions. As a result of higher 
intensity traffic with occurrence of traffic jams and con-
gestions during the summer period which was reflected 
through more intensive gear changes as well as speed and 
acceleration patterns, somewhat higher prediction errors 
of ANN model were obtained. On the other hand, lower 
traffic intensity and less frequent car speed changes with 
much lower acceleration/deceleration rates, which are pro-
nounced during winter period due to weather and traffic 
conditions, resulted in much smaller ANN prediction er-
rors. Finally, one needs to note one important characteris-
tic of ANNs which is particularly beneficial for vehicle fuel 
consumption predictions. Namely, as traffic conditions in 
urban areas may be highly uncertain and unpredictable, 
the ability of ANNs to be retrained, i.e. to broaden or 
modify its knowledge if new training patterns are avail-
able, is very beneficial so as to predict fuel consumption 
in different traffic conditions for the same road segments.

Practical implications of this study pertain to the pos-
sible usage of the developed mathematical models for the 
estimation of travel costs and route optimization in the 
city of Niš for different city zones, days of the week and 
hours of the day. Also, predictions of fuel consumption 
can be used for estimation of CO2 emissions. The future 
work will be focused on implementation of eco-driving 
programs and preparing an experimental database for 
development of new ANN models for fuel consumption 
prediction so as to compare possible fuel savings.
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