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Abstract. Large scale applications of behaviorally realistic transport models pose several challenges to transport
modelers on both the demand and the supply sides. On the supply side, path-based solutions to the user assignment
equilibrium problem help modelers in enhancing the route choice behavior modeling, but require them to generate
choice sets by selecting a path generation technique and its parameters according to personal judgments. This paper
proposes a methodology and an experimental setting to provide general indications about objective judgments for
an effective route choice set generation. Initially, path generation techniques are implemented within a synthetic net-
work to generate possible subjective choice sets considered by travelers. Next, ‘true model estimates’ and ‘postulated
predicted routes’ are assumed from the simulation of a route choice model. Then, objective choice sets are applied for
model estimation and results are compared to the ‘true model estimates’ Last, predictions from the simulation of mod-
els estimated with objective choice sets are compared to the ‘postulated predicted routes. A meta-analytical approach
allows synthesizing the effect of judgments for the implementation of path generation techniques, since a large number
of models generate a large amount of results that are otherwise difficult to summarize and to process. Meta-analysis
estimates suggest that transport modelers should implement stochastic path generation techniques with average vari-
ance of its distribution parameters and correction for unequal sampling probabilities of the alternative routes in order
to obtain satisfactory results in terms of coverage of ‘postulated chosen routes, reproduction of ‘true model estimates’

and prediction of ‘postulated predicted routes.

Keywords: path-based route choice modeling, meta-analysis, path generation, model estimation, model predic-
tion, large scale model applications, path size correction, logit structure.

1. Introduction

In recent years, technological and theoretical enhance-
ments allowed transport planning to move towards
large scale applications of behaviorally realistic models.
A number of activity-based model systems have been
designed for large metropolitan areas such as Portland
(Bowman et al. 1998), San Francisco (Bradley et al.
2001), New York (Vovsha et al. 2002), Columbus (Vov-
sha et al. 2004), Atlanta (PBConsult 2004), Sacramento
(Bradley et al. 2007), Dallas (Pinjari et al. 2008), Tel-
Aviv (Cambridge Systematics 2008) and Jakarta (Yagi,
Mohammadian 2011), and agent-based model systems
have been developed for even larger areas such as Swit-
zerland (Meister et al. 2010). Large scale applications
pose several challenges to transport modelers from the
computational perspective, and judgments supported
from theoretical and empirical considerations enable
transport modelers to search for effective estimation and
running procedures.

While travel demand representation has flourished
with the development of micro-simulation activity-based
model frameworks that are theoretically advanced and
behaviorally realistic, travel supply representation for
large scale networks has not equally thrived. Path-based
solutions to the user equilibrium assignment problem
have the potential to help transport modelers in enhanc-
ing route choice models in static or dynamic large scale
applications.

Conceptual and empirical reasons suggest that
explicit path generation prior to discrete choice model
estimation or path-based traffic assignment is prefer-
able. Conceptually, choice set formation and choice
from alternatives are distinct mental processes that call
for separate modeling: choice set formation is trial-and-
error determined (Richardson 1982), preference-driv-
en (Horowitz, Louviere 1995) and constraint-related
(Kaplan, Prato 2010), while choice from alternatives is
usually represented as a compensatory decision (see,
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e.g., Bovy 2009; Prato 2009). Empirically, various case-
studies show advantages of explicit choice set forma-
tion: higher flow prediction accuracy is illustrated for
path-based solutions to the Stochastic User Equilibrium
(SUE) problem (Cascetta et al. 1997), unrealistic and in-
efficient paths are found within implicit choice sets for
link-based assignment (Bekhor, Toledo 2005), and theo-
retical and computational advantages are shown when
the choice set generation is separately performed prior
to traffic assignment (Bliemer, Taale 2006).

Several solutions have been proposed to the explicit
path generation problem. Deterministic solutions in-
clude variations of shortest path algorithms (e.g., Hunt,
Kornhauser 1996; Lombard, Church 1993; Van der Zijpp,
Fiorenzo-Catalano 2005), minimization of generalized
cost functions (Ben-Akiva et al. 1984), application of
heuristic rules combined with the shortest path search-
es (e.g., Azevedo et al. 1993; De la Barra et al. 1993),
and implementation of a branch-and-bound algorithm
(Prato, Bekhor 2006). Stochastic solutions include single
stochastic simulation (e.g., Ramming 2002; Bekhor et al.
2006), doubly stochastic simulation (Nielsen 2000; Bovy,
Fiorenzo-Catalano 2007) and a random walk algorithm
(Frejinger et al. 2009). Advantages and disadvantages re-
lated to the implementation of existing path generation
techniques are extensively discussed by Bovy (2009) and
Prato (2009).

Even though several solutions have been proposed
to the explicit path generation problem, guidelines for
the implementation of path generation techniques have
never been provided. As transport modelers cannot ob-
serve the subjective choice sets that contain the routes
considered by travelers, they generate objective choice
sets by selecting a path generation technique and its pa-
rameters according to personal judgments.

Although the impact of choice sets on choice prob-
abilities and model performances has received increas-
ing attention recently, the role of path generation tech-
niques on model estimates and flow predictions has not
been documented. Model performances of several route
choice models estimated with different choice sets have
been compared in terms of likelihood values (Bekhor,
Prato 2006; Prato, Bekhor 2007), but the comparison
fails to evaluate which technique better represents the
observed behavior because of the absence of informa-
tion with respect to actual values of model estimates.
Choice probabilities from several route choice modes
estimated for a small synthetic network have been par-
alleled to choice probabilities from a postulated probit
model (Bliemer, Bovy 2008), but the analysis fails to as-
sess the effects of the implementation of path genera-
tion techniques because of the peculiar context with a
universal realm of only 12 alternatives. The influence of
choice set size on objective function values and conver-
gence times of solutions to the SUE problem have been
examined (Bekhor et al. 2008), but the comparison fails
to investigate path generation techniques other than the
k-shortest path algorithm. In a nutshell, existing stud-
ies about the choice set effects on route choice models
focus on the analysis of the robustness of models and
methods, rather than on actual effects of path generation
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techniques and on the provision of general indications
about judgments for generating objective choice sets.

This study presents the first systematic analysis of
the judgments that the transport modelers are required
to apply efficient and unbiased path generation, and
proposes guidelines for effective implementation of path
generation techniques.

The analysis implements several path generation
techniques to a synthetic network. Initially, choice sets
generated with different techniques are used for defin-
ing possible subjective choice sets for the postulation of
‘true model estimates’ of a route choice model and the
simulation of ‘postulated chosen routes. Next, choice
sets generated with different techniques are employed
for constructing objective choice sets for model estima-
tion. Then, route choice models are estimated for all the
possible combinations of subjective and objective choice
sets. Last, predictions from the simulation of models es-
timated with objective choice sets are compared to the
‘postulated chosen routes. The advantage of this ap-
proach is three-fold:

« assuming subjective choice sets according to be-
havioral assumptions behind various path genera-
tion techniques allows covering a large variety of
possible behavior in the absence of any indication
about actual subjective choice sets considered by
travelers;
estimating the same model specification with-
in the same synthetic network allows isolating
choice set effects from model and network effects;
analyzing the possible combinations of subjective
and objective choice sets allows comparing the
relative ability of path generation techniques in
accurately generating ‘postulated chosen routes’
and reproducing ‘true model estimates’

The appraisal of the coverage of the postulated
behavior with the objective choice sets and the assess-
ment of the effects of path generation techniques on
estimation and prediction accuracy are performed with
a meta-analytical approach. Even though meta-analysis
is generally used to review findings across different
empirical studies, this paper proposes the application
of meta-analysis to synthesize the effect of judgments
within the same study when a large number of models
generate a large amount of results that are otherwise dif-
ficult to summarize and to process. Judgments concern
the path generation technique to be implemented and its
parameters to be defined, and the meta-analysis exam-
ines a large number of combinations of subjective and
objective choice sets to provide modelers with general
guidelines for obtaining better coverage of postulated
behavior and higher accuracy in model estimates and
flow predictions.

The remainder of the paper is structured as follows.
Section 2 presents the rationale behind the consider-
ation of path generation techniques for constructing
subjective and objective choice sets. Section 3 describes
the synthetic data and the methods for evaluating model
estimates and flow predictions. Section 4 synthesizes es-
timation and prediction results. Section 5 summarizes
the findings from the analysis.
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2. Generating Subjective and Objective Choice Sets

Judgments about path generation techniques and pa-
rameters to be implemented are examined by consider-
ing a variety of techniques that are included in the analy-
sis according to the rationale presented in four points.

The first point concerns the distinction between de-
terministic and stochastic techniques. Even though intu-
itively superior, considering only stochastic approaches
would bias the current analysis by providing answers
before questions about path generation effectiveness are
even formulated.

The second point involves the selection of deter-
ministic approaches. Even though their evolution sug-
gests the superiority of more recent developments with
respect to the shortest path algorithms, considering the
only one deterministic technique would bias again the
current analysis. The first deterministic technique is con-
sidered to be the largely applied and the most straight-
forward approach to the choice set generation problem
consisting in the computation of k-shortest paths. The
second deterministic technique is considered to be the
iteration of the shortest path search after heuristic rules
which penalize links on the last shortest path computed
in the iterative process (De la Barra et al. 1993), which is
preferable to link elimination (Azevedo et al. 1993) that
introduces network disconnection problems. The third
deterministic technique is considered to bethe enumera-
tion of the paths connecting the origin and destination
of a trip under behavioral and logical constraints within
a branch-and-bound algorithm (Prato, Bekhor 2006).

The third point concerns the selection of stochastic
approaches. The current analysis examines the effects of
three techniques most recently developed and used in
the literature about route choice modeling. The first sto-
chastic technique considered is the most straightforward
stochastic simulation approach to the path generation
problem consisting in the iteration of the shortest path
search after randomization of link impedances (e.g.,
Bekhor et al. 2006; Bovy, Fiorenzo-Catalano 2007). The
second stochastic technique considered is the natural
evolution of the previous approach considering an er-
ror term for traffic network variations and an error term
for traveler taste heterogeneity (e.g., Nielsen 2000; Bovy,
Fiorenzo-Catalano 2007).

The third stochastic technique considered is a ran-
dom walk algorithm that is biased towards the search for
the shortest path (Frejinger et al. 2009).

The fourth point playing a role in the selection of
path generation techniques involves the parameters for
their implementation being relevant for model estima-
tion and model implementation. Considering only one
set of parameters (e.g., number of iterations, specific
parameters, probability distributions) it would bias the
current analysis that intends to provide general guide-
lines about judgments concerning the selection of path
generation techniques.

With respect to the k-shortest path, five values of
k cover from a fairly small to a very large window of
admissible path costs. With respect to the link penalty,

five combinations with increasing penalizing factor cov-
er from a small to a large variation of the alternatives in
the generated choice sets. With respect to the branch-
and-bound, five combinations of the thresholds of the
branching rule allow assessing the effect of increasing
choice set size and route heterogeneity in the genera-
tion process.

With respect to the stochastic simulation, as unfor-
tunately normal distribution produces the negative link
impedances and truncated normal distribution is not
additive over the links, five combinations of shape and
scale of a gamma distribution with mean equal to the
link impedance and a range of increasing variances as-
sure a large variety of positive link impedances. With re-
spect to the doubly stochastic simulation, five variations
of a gamma distribution for the first error component
representing travel time variation and a log-normal dis-
tribution for the second error component capturing taste
heterogeneity cover a range of alternatives with growing
variances. With respect to the random walk algorithm,
five values of the parameters of the Kumaraswami dis-
tribution of the weights encompass a range of variance
with respect to the shortest path in the generation pro-
cess.

In summary, five variations are considered for each
of the six path generation techniques selected in order
for the analysis to account for judgments in terms of
selection of the type of technique, application of the spe-
cific technique, definition of the level of variance of the
parameters, and generation of small or large choice sets.

3. Experimental Setting
3.1. Synthetic Data

The experimental setting applies path generation tech-
niques to the synthetic network represented in Figure
that consists of 38 nodes and 64 links, with link length
proportional to the length of the figure and some links
with speed bumps. The network is originally a part of a
real network of the city of Borldnge (Sweden) and has
been presented by Frejinger et al. (2009) for testing the
random walk algorithm. The universal realm consists of
170 alternative routes between origin O and destination
D, among which 29 have equal minimum length.
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Fig. Network for experimental design (Frejinger et al. 2009)
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Subjective choice sets are unknown and hence their
definition is hypothesized according to the behavioral
assumptions behind the six path generation techniques
applied. Table 1 reports parameters of five variations for
each path generation technique. Parameters are defined
from very small to very large variance, where very large
(small) variance suggests that the resulting choice set is
fairly large (small) since increasing the number of itera-
tions or the variance of distribution parameters produc-
es (does not produce) additional routes.

Datasets of 4000 observations for estimation pur-
poses and 1000 observations for prediction purposes
are generated from the variations of path generation
techniques applied. This procedure creates 30 datasets
of 4000 subjective choice sets for model estimation and
30 datasets of 1000 subjective choice sets for model pre-
diction.

For each dataset of subjective choice sets, a PSC-
Logit model (Bovy et al. 2008) is postulated. The advan-
tage in using the PSC-Logit is two-fold:

« the model accounts for similarities across alterna-

tives while maintaining a simple Logit structure;

* MNL modifications are robust with respect to

variations in the number of alternatives and in
the composition of the choice sets (e.g., Bliemer,
Bovy 2008; Prato, Bekhor 2007).
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The following utility function is specified for each
alternative j and observation n:

Ujn =BienginLength; + By, SpeedBumps ; +
BtumSTumsj + BPSCPSC]' +&5,, (1)

where: Length; is the length; SpeedBumps; is the number
of speed bumps; Turns; is the number of turns; PSC; is
the Path Size Correction of alternative j. The ‘true model
estimates’ are assumed equal to -1 for Bj,,e,, ~0.10 for
Boumps —0.30 for By, 1 for Bpgc, and error terms g, are
independently and identically distributed extreme value
with scale 1 and location 0. The Path Size Correction of
alternative j is defined as (Bovy et al. 2008, 2009):

L
PSC]:—Z 2’5, |, )
ael’; j leC

where: L; is the length of route j; L, is the length of link
a; T'; is the set of links belonging to route j; 8, is the link-
paﬂ"l incidence dummy (equal to one if links a belongs
to route [ and zero otherwise).

For each dataset of subjective choice sets, 4000 ‘pos-
tulated chosen routes’ for estimation purposes and 1000
‘postulated predicted routes’ for prediction purposes are
simulated by selecting the alternative with the highest
utility within the choice set of each observation n.

Table 1. Implementation of path generation techniques

Path generation technique parameter Zziiyarslrcneau \SII;?elllnce 3;:;:5; large variance ng;rcrfe
define length limit in order to define k-shortest paths
k-shortest path length limit 35 36 37 40 51
k 33 51 88 104 170
Iterate the shortest path searches and penalize the shortest path links
link penalty penalty factor 2% 3% 5% 10% 20%
iterations 50 50 50 100 100

connect origin and destination of the trips with five behavioral and logical thresholds

directional 100% 100% 110% 110% 110%
temporal 17 25 33 44 62
branch-and-bound
detour 100% 100% 110% 110% 120%
similarity 85% 80% 80% 75% 70%
movement 4 4 4 5 5

iterate the shortest path searches after extracting link length from gamma distribution

stochastic simulation mean

length

length length length length

st.dev

0.25 length

0.50 length length 2 length 3 length

iterate the shortest path searches after extracting link length from gamma distribution
and travelers’ preferences from log-normal distribution

mean length length length length length
doubly stochastic simulation st.dev 0.50 length ~ 0.50 length length length 2 length

mean -1 -1 -1 -1 -1

st.dev 0.25 0.25 0.5 1 1

calculate route probabilities from link probabilities based on link weights that are Kumaraswami
distributed with two parameters b; and b,

random walk b, 10

7 5 3 1

b, 1

1 1 1 1
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3.2. Evaluation of Model Estimates
and Flow Predictions

Objective choice sets are generated for model estimation
and model prediction purposes from the same 30 varia-
tions of path generation techniques.

For each dataset of objective choice sets, 30 models
are estimated while considering as chosen alternatives
the ‘postulated chosen routes’ from the 30 datasets of
subjective choice sets. Observations where the objective
choice sets do not contain the ‘postulated chosen routes’
are not considered for model estimation, and the cover-
age of the ‘postulated chosen routes’ is evaluated for each
of the 900 objective-subjective combinations:

ZI(Rsub,n € Cobj,n)

__n
Covohj—sub - N

-100, (3)

where: Cov,y; g, is the coverage of the dataset obj of ob-
jective choice sets with respect to the ‘postulated chosen
routes’ from the dataset sub of subjective choice sets; I(-)
is an indicator function equal to 1 when the ‘postulated
chosen route’ Ry, , belongs to the objective choice set
Copjn of observation n, and N is the total number of ob-
servations.

Models are estimated by defining the utility func-
tion:

Vin = H(BlengthLengthj + Bpumps SpeedBumps; +
BtumsTurnsj + BPSCPSCj ), (4)

where: p is the scale parameter. It should be noted that
Blength is fixed to -1 and W, Bbumps’ Bturns and BPSC are
estimated to have the same scale for all models and to
compute the t-test with respect to the corresponding
‘true model estimates. When the random walk algorithm
is used to generate datasets of objective choice sets, the
utility function is:

Vin = H(BlengthLe”g th + Bpumps SpeedBumps ; +
BturnsTurnSj + BPSCPSCJ ) + ln(kj” /qf )’ (5)

where: kj, is the number of time route j is sampled for
observation #; g; is the probability of sampling route j;
the additional logarithmic term corrects for the unequal
sampling probabilities of the routes.

Accuracy of the model estimates with respect to the
‘true model estimates’ of the postulated model is calcu-
lated for each of the 3600 estimated parameters:

Accpar,obj—sub =
est ; —expest
,obj—sub p
Prob| — 24" P <t ]-100, (6)
stderrestpm’obj_sub
where: Accy opj_sup i the accuracy of the estimate of the

parameter for the model with dataset obj of objective
choice sets and ‘postulated chosen routes’ from dataset
sub of subjective choice sets; esty g, o1 is the estimate;
stderrest g op_sup 18 its standard error; expest,,, is the ex-
pected ‘true model estimate’; ¢ is the critical value of the
Student distribution with n degrees of freedom.

For each dataset of subjective choice sets, Monte-
Carlo simulation is applied from the estimates of the 30
models using the same dataset for obtaining the ‘postu-
lated chosen routes. The obtained ‘simulated predicted
routes’ are compared to the ‘postulated predicted routes’
after translating both into network flows by counting the
number of travelers on each link. Predictions from the
estimated models are evaluated with the calculation of
the following error measures for each combination of
estimated model with the respective dataset of subjec-

tive choice sets:
A 2
Zazl(Nsim,a - Npos,a )

RMSE o5 = " ; 7)

pos,a Nsim,a )

N
MAPE,,,, . =—3* ( . ®

sim=pos 4 Lea=1 Npos,a

where: RMSE;, _,, is the root mean square error;
MAPEg,,_, is the mean absolute percentage error be-
tween simulated and predicted routes; A is the number
of links in the network; N;, , is the flow on link a as
calculated by translating the ‘simulated predicted routes’;
Npos,q is the flow on link a as calculated by translating
the ‘postulated predicted routes.

Given the 900 coverage values, the 3600 accuracy
values from model estimation, and the 900 mean abso-
lute percentage errors, a meta-analysis considers cover-
age, estimation accuracy and prediction error as depen-
dent variables and characteristics of the choice sets as
independent variables. Characteristics of the objective
choice sets for model estimation include the technique
applied and the degree of variance, while characteristic
of the subjective choice sets for obtaining ‘postulated
chosen routes’ comprise choice set size (i.e., small for
less than 30 alternatives, medium for 30 to 50 alterna-
tives, large for more than 50 alternatives), degree of het-
erogeneity across routes (i.e., homogeneous for average
path size less than 0.10), and consistency with the objec-
tive choice sets (i.e., both generated with the same path
generation technique and same parameters).

4. Results
4.1. Subjective and Objective Choice Sets

Table 2 summarizes the characteristics of the choice sets
from the implementation of the 30 variations of path
generation techniques. Expectedly:

» the increase in the variance of the parameters for
each path generation technique produces larger
choice sets;

« deterministic techniques generate the same alter-
native routes for the same origin-destination pair,
an unreasonable outcome when considering that
most likely different travelers have different sub-
jective choice sets;

« stochastic techniques produce different alternative
routes for the same origin-destination pair, a be-
haviorally plausible trait.

Table 3 summarizes the coverage of the dataset of

objective choice sets with respect to the ‘postulated cho-
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Table 2. Summary of characteristics of generated choice sets

Path generation technique measure very small small variance average large variance very large
variance variance variance
min 33 51 88 104 170
max 33 51 88 104 170
k-shortest path mean 33 51 83 104 170
st.dev. - - - - -
min 22 29 43 53 49
link penalty max 22 29 43 53 49
mean 22 29 43 53 49
st.dev. - - - - -
min 17 25 33 44 62
max 17 25 33 44 62
branch-and-bound mean 7 25 3 m )
st.dev. - - - - -
min 24 28 33 44 49
stochastic simulation ax 38 e 26 72 76
mean 30.9 35.2 43.8 57.5 62.3
st.dev. 4.3 5.8 8.3 11.0 11.4
min 24 28 34 37 47
o . max 40 46 59 64 73
doubly stochastic simulation ean 37 357 156 199 86
st.dev. 4.6 6.1 8.7 9.6 11.1
min 25 27 33 36 44
random walk max 42 50 55 66 71
mean 33.2 38.5 44.0 51.8 58.7
st.dev. 6.0 7.8 9.1 10.8 11.6
Table 3. Coverage of objective choice sets with respect to ‘postulated chosen routes’
. . o link branch stochastic ~ doubly stochastic ~ random
Path generation technique variation k-path penalty and bound  simulation sin}iulation walk
very small var  54.7 41.0 50.0 42.2 42.2 41.3
small var 82.0 71.7 76.9 70.8 70.8 69.7
k-shortest path average var 94.7 87.3 87.2 87.3 87.3 86.8
large var 97.6 91.3 92.2 93.0 95.6 91.2
very large var  100.0 100.0 100.0 100.0 100.0 100.0
very small var  73.5 69.2 71.1 66.8 66.7 65.2
small var 61.1 75.8 66.7 64.7 64.4 62.6
link penalty average var 79.4 84.8 83.6 75.0 74.5 73.8
large var 72.4 85.1 78.0 75.3 754 73.6
very large var 61.4 77.1 70.1 62.8 62.8 61.5
very small var  59.6 61.7 73.7 56.0 55.4 54.3
small var 76.4 77.6 91.0 73.6 73.5 72.1
branch-and-bound average var 81.2 823 93.2 77.4 774 75.8
large var 87.2 92.0 97.3 87.3 86.9 85.4
very large var 99.5 99.9 100.0 99.7 99.7 99.1
very small var ~ 95.5 96.4 96.5 96.4 95.8 94.9
small var 94.9 95.8 96.1 96.3 95.4 94.4
stochastic simulation average var 93.1 93.8 94.4 94.8 93.5 92.5
large var 85.6 87.6 87.6 88.9 86.5 85.5
very large var 80.0 82.7 82.5 85.0 81.2 80.3
very small var  95.7 96.4 96.7 95.9 96.8 95.0
. small var 94.8 96.0 96.3 95.4 96.5 94.4
doubly stochastic average var 923 933 937 92.8 94.1 91.9
simulation
large var 90.5 92.0 92.1 91.1 92.8 90.4
very large var 84.4 87.1 86.7 85.7 88.2 84.9
very small var 84.8 87.2 87.2 86.5 86.0 88.5
small var 83.0 85.5 85.6 85.8 84.4 87.6
random walk average var 79.5 82.7 83.1 82.0 81.7 85.3
large var 73.9 77.5 77.3 76.8 76.0 80.7

very large var 59.2 65.7 65.4 64.5 63.5 71.0
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sen routes. As 900 comparisons are computed, the table
summarizes the relationship of the 30 variations of the
path generation techniques with respect to ‘postulated
chosen routes’ by combining results for the five varia-
tions of each technique. Expected findings are found
from this snapshot, regardless of the postulated behavior:
« enlarging the number of alternatives considered
in the k-shortest path and relaxing the thresholds
in the branch-and-bound the algorithm increases
in coverage;

« among deterministic techniques, the branch-and-

bound outperforms competing techniques;

- among stochastic techniques, doubly stochastic

simulation outperforms competing techniques.

The most unexpected finding from this snapshot
is that increasing the variance and enlarging objective
choice sets does not boost the coverage. Possibly, the
snapshot is limited because ‘postulated predicted routes’
consider jointly all five variations for each technique and
lose part of the information. Also, larger variance of the
parameters of path generation techniques most likely
generates irrelevant routes that are not created under
different parameters.

The difficulty in interpreting coverage results from
Table 3 motivates the meta-analysis for the 900 com-
binations between datasets of objective choice sets and
‘postulated chosen routes. Table 4 presents estimates
of the regression model that suggest how coverage of
postulated behavior increases with the implementation
of stochastic techniques, average to large variance of
their parameters, and obviously application of the same
technique for generating objective and subjective choice
sets. Among deterministic techniques, branch-and-
bound and link penalty contribute increasing coverage
with respect to the k-shortest paths. Among stochastic
techniques, the doubly stochastic simulation contributes
augmenting coverage with respect to the stochastic sim-
ulation and even more the random walk. If the finding
for deterministic techniques is expected, as the increase
in coverage agrees with the growth in realism of the
behavioral assumptions, the finding for stochastic tech-
niques is less expected, as the more recently developed
random walk does not outperform stochastic simulation.
Coverage of ‘postulated chosen routes’ benefits also from
the analysis of large and homogeneous subjective choice
sets, suggesting that path generation techniques perform
better when the subjective choice sets are numerous and
the alternatives are similar.

Meta-analysis estimates suggest that results from
the snapshot of the coverage in Table 3 might indeed be
unexpected not only because of actual characteristics of
the choice sets, but also because of results aggregated in
the attempt to summarize findings from a large amount
of models. The proposed approach allows not only con-
sidering every single combination of datasets of objec-
tive and subjective choice sets, but also suggesting gen-
eral judgments in the implementation of path generation
techniques regardless of the postulated behavior.

Table 4. Meta-analysis estimates of the coverage

Parameter est. t-stat

characteristic related to the technique
used to generate choice sets

deterministic technique® - -

stochastic technique 26.718 23.76
k-shortest path? - -
link penalty 22.826 20.18
branch-and-bound 27.185 24.04
stochastic simulation 4.418 5.61
doubly stochastic simulation 8.060 8.87
random walk® - -
small variance -10.896 -20.04
average variance® - -
large variance 4.064 7.63

characteristic related to the technique
used to postulate choices

low heterogeneity® - -
medium/high heterogeneity -26.576 -30.99
small choice set size -8.345 -10.64
medium choice set size? - -
large choice set size 7.655 15.77
consistent with generation 16.478 17.20
constant 39.122 62.36
N 3600
R? 0.751

Notes: ?reference category

4.2. Accuracy of Parameter Estimates

Table 5 illustrates the model estimates for the ‘postu-
lated chosen routes’” from the dataset of subjective choice
sets corresponding to complete path enumeration (i.e.,
k-shortest path with 170 routes). This snapshot allows
initial considerations about model estimates. Firstly, all
the variations of the random walk algorithm allow ob-
taining unbiased model estimates, most likely because
of the correction term for unequal sampling probabili-
ties of routes. None of the competing path generation
techniques allows obtaining unbiased model estimates
consistently, and only large to very large variance in
their parameters allows reproducing the ‘true model
estimates, suggesting that a larger generated choice set
helps increasing estimation accuracy. Secondly, link pen-
alty, branch-and-bound and both stochastic approaches
fail almost in every circumstance to reproduce the ‘true
model estimates, suggesting that obtaining higher cov-
erage is not a synonym of having higher accuracy in
model estimation. Thirdly, k-shortest path shows some
promise, but most likely because the ‘postulated chosen
routes’ are generated with a k-shortest path algorithm
rather than for actual higher accuracy. Lastly, the param-
eter By, seems to be recovered almost consistently,
while the scale parameter L appears to be recovered only
sporadically.
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Table 5. Example of model estimates for generated choice sets from different path generation techniques

k-shortest path very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
i 1.00 0.556 13.1 0.627 11.7 0.780 7.4 0.969 1.2 0.972 1.1
Boumps -0.10  -0.132 -1.2 -0.127 -1.2 -0.101 0.0 -0.106 -0.3 -0.107 -0.3
turns -0.30  -0.137 5.6 -0.092 13.0 -0.288 0.9 -0.283 1.2 -0.283 1.2
Bpsc 1.00 1.250 4.1 1.100 2.5 0.967 -0.8 0.943 -14 0.942 -1.4
LL(0) -9430.7 -12894.6 -15648.7 -18420.7 -20543.2
LL(B) -7284.0 -10369.2 -12311.0 -13471.8 -13472.3
rho-bar? 0.227 0.196 0.213 0.268 0.344
link penalty very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
i 1.00 0.626 13.9 0.714 10.9 0.953 1.7 0.782 8.6 0.979 0.8
Bbumgs -0.10 -0.182 -3.9 -0.129 -1.3 -0.501 -14.9 -0.181 -3.5 -0.415 -13.0
Brurns -0.30  -0.134 10.8 -0.261 2.6 -0.092 15.3 -0.249 3.9 -0.062 17.1
Bpsc 1.00 0.757 -6.1 0.475 -13.0 0.389 -14.5 0.509 -11.9 0.252 -18.8
LL(0) -13875.3 -14134.3 -15063.8 -15897.2 -15594.6
LL(B) -12688.1 -12244.1 -12021.2 -12142.4 -11591.2
rho-bar? 0.085 0.133 0.202 0.236 0.256
branch-and-bound very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
i 1.00 1.300 -9.6 0.872 4.9 0.853 5.7 0.834 6.3 0.796 7.7
Bbumgs -0.10 -0.620 -14.1 -0.469 -18.1 -0.400 -14.2 -0.261 -7.7 -0.105 -0.2
Brurns -0.30 -0.530 -10.7 -0.458 -7.6 -0.460 -7.4 —-0.060 15.9 -0.281 1.4
Bpsc 1.00 -1.050 -43.3 0.256 -17.2 0.399 -14.1 0.465 -12.9 0.924 -1.9
LL(0) -11441.2 -12923.5 -13367.1 -15151.7 -16509.2
LL(B) -8997.5 -10413.5 -10575.6 -11303.3 -11863.4
rho-bar? 0.213 0.194 0.209 0.254 0.281
stochastic sim very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
i 1.00 0.392 22.5 0.578 15.6 0.729 10.1 0.841 5.9 0.873 4.7
Bbumﬂ -0.10 -0.097 0.1 -0.099 0.0 -0.103 -0.1 -0.110 -0.5 -0.118 -0.8
Brurns -0.30  -0.264 2.6 -0.263 2.6 -0.261 2.8 -0.257 3.1 -0.259 2.9
Bpsc 1.00 0.851 -3.7 0.846 -3.8 0.826 -4.3 0.751 -6.2 0.715 -7.1
LL(0) -13718.3 -14239.5 -15112.8 -16207.6 -16533.5
LL(B) -11919.4 -11527.9 -11610.2 -12146.6 -11610.5
rho-bar? 0.131 0.190 0.231 0.250 0.298
stochastic sim? very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
i 1.00 0.439 20.8 0.590 15.2 0.750 9.3 0.789 7.8 0.849 5.6
Bbumgs -0.10 -0.098 0.1 -0.100 0.0 -0.106 -0.3 —-0.106 -0.3 -0.111 -0.5
Brurne —030 -0264 26  -0264 26 0259 29  -0259 29  -0256 3.
Bpsc 1.00 0.851 -3.7 0.846 -3.8 0.818 -4.5 0.799 -5.0 0.744 -6.4
LL(0) -13818.3 -14299.9 -15278.2 -15637.4 -16284.3
LL(B) -11765.2 -11444.2 -11447.5 -11064.4 -11043.7
rho-bar? 0.148 0.199 0.250 0.292 0.322
random walk very small var small var average var large var very large var
Parameter value est. t-stat est. t-stat est. t-stat est. t-stat est. t-stat
i 1.00 0.950 1.9 0.976 0.9 0.977 0.9 0.974 1.0 0.973 1.0
Bbumgs -0.10 -0.110 -0.5 -0.114 -0.6 -0.124 -1.1 -0.104 -0.2 -0.109 -0.4
Brurns -0.30 -0.285 1.1 -0.284 1.1 -0.288 0.9 -0.289 0.8 -0.287 0.9
Bpsc 1.00 0.938 -1.5 0.942 -1.4 0.940 -1.5 0.939 -1.5 0.943 -1.4
Brakq 1.00 1.000 - 1.000 - 1.000 - 1.000 - 1.000 -
LL(0) -14011.3 -14606.8 -15141.3 -15799.5 -16307.9
LL(B) -11810.5 -11240.6 -11777.5 -11422.2 -10813.9
rho-bar? 0.157 0.230 0.222 0.277 0.337

Notes: B, = ~14000 observations; ¢-statistic with respect to the ‘true value’
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Again, the difficulty in interpreting estimation re-
sults from Table 5 motivates the meta-analysis of the
accuracy of parameter estimates for the 900 models.
Table 6 presents the regression model over all the 3600
parameters, while Table 7 focuses on each single param-
eter. Unbiased estimates require considering the first and
the foremost which is the same path generation tech-
nique for objective and subjective choice sets and that
obviously increases its estimation accuracy the most.
An increase in accuracy is related to the implementa-
tion of stochastic approaches, preferably random walk
rather than stochastic simulation. Large variance does
not increase estimation accuracy with respect to average
variance, and small variance decreases it significantly.
Estimation accuracy grows when models are estimated
with respect to postulated behavior from large choice
sets with high degree of similarity across alternatives.

Similar results are found when regression models
consider single parameters. Notable differences are the
comparable effectiveness in estimating scale parameters
with choice sets generated with different stochastic tech-
niques, the inferior relevance of stochastic techniques in
estimating scale parameters, and the superior relevance
of random walk in estimating path size estimates. The
general interpretation of these differences does not seem
intuitive, since different techniques are not expected
having different effects on the various estimates.

Table 6. Meta-analysis estimates of the accuracy
of model parameters

Parameter est. t-stat

characteristic related to the technique
used to generate choice sets

deterministic technique® - -

stochastic technique 16.197 30.00
k-shortest path? - -
link penalty 3.544 6.53
branch-and-bound 3.630 6.68
stochastic simulation -6.971 -18.45
doubly stochastic simulation -8.580 -19.67
random walk? - -
small variance -5.347 -20.48
average variance® - -
large variance 0.344 1.35

characteristic related to the technique
used to postulate choices

low heterogeneity? - -

medium/high heterogeneity -7.810 -18.97
small choice set size -5.914 -15.71
medium choice set size? - -
large choice set size 6.484 27.82
consistent with generation 33.748 73.38
constant 10.712 35.56
N 3600
R? 0.698

Notes: ®reference category

4.3. Accuracy of Flow Predictions

Table 8 summarizes the RMSE and MAPE when esti-
mated models are applied to the dataset used for obtain-
ing the ‘postulated chosen routes’ and ‘simulated pre-
dicted routes” are compared to the ‘postulated predicted
routes’ in terms of link flows. Similarly to the coverage,
as 900 comparisons are computed, the table summarizes
the relationship of the 30 variations of path generation
techniques with respect to ‘postulated chosen routes’ by
combining results for five variations of each technique.
Expectedly, stochastic techniques outperform determin-
istic ones significantly, most likely because of better be-
havioral assumptions that for example allow generating
different choice sets for different travelers. Less predict-
ably, link penalty outperforms both k-shortest path and
branch-and-bound, even though its behavioral assump-
tion is simpler and estimation results do not suggest
better modeling performances. None of the three sto-
chastic techniques emerges as preferable for prediction
purposes, an interesting result when considering that
the random walk produces better estimates. Most likely,
the fact that for prediction purposes the correction term
is not used reduces the advantage for the random walk
ability of predicting correct routes.

Again, the difficulty in interpreting prediction
results from Table 8 suggests the meta-analysis of the
MAPE. Table 9 presents the regression model for the
900 comparisons, whose interpretation should consider
that modeling the error implies negative estimates which
should be interpreted as positive relation to prediction
accuracy. As for the estimation accuracy, an increase in
prediction accuracy is related to the implementation of
stochastic approaches, preferably random walk rather
than stochastic simulation and doubly stochastic simu-
lation. Unlike for the estimation accuracy, enlarging
variance helps in prediction, suggesting that modelers
should generate large choice sets for traffic assignment
in order to reproduce predicted flows better, regardless
of the postulated behavior.

Obviously, correct predictions are influenced by
correct reproduction of the ‘true values’ of the model
estimates. Thus, conclusions about the effects of path
generation techniques on model predictions are more
complex to discern and to generalize because results are
dependent on the estimation accuracy.

5. Summary and Conclusions

Path-based solutions to the user equilibrium assignment
problem help transport modelers in enhancing the route
choice models in large scale applications. The imple-
mentation of path-based solution requires modelers to
generate objective choice sets by selecting a path genera-
tion technique and its parameters according to personal
judgments. The literature demonstrates that these per-
sonal judgments affect model estimates and predictions
(e.g., Bekhor, Prato 2006; Bekhor et al. 2008; Bliemer,
Bovy 2008; Prato, Bekhor 2007), but fails to suggest
guidelines for the implementation of path generation
techniques. This paper provides the first comprehensive
guidelines about judgments in the implementation of
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Table 7. Meta-analysis estimates of the accuracy of single parameters
M Brumps Brurns Brsc
Parameter est. t-stat est. t-stat est. t-stat est. t-stat
Characteristic related to the technique used to generate the choice sets
deterministic technique?® - - - - - - - -
stochastic technique 3.976 4.28 19.375 16.85 22.559 19.90 19.861 20.78
k-shortest path? - - - - - - - -
link penalty 4.218 4.52 -0.627 -0.54 7.176 6.29 4.310 4.48
branch-and-bound 6.491 6.95 -3.286 -2.84 4.115 3.61 8.102 8.43
stochastic simulation -1.739 -2.68 -6.262 -7.78 -5.055 -6.37 -15.105 -22.58
doubly stochastic simulation -1.102 -1.47 -8.667 -9.33 -7.529 -8.22 -17.395 -22.52
random walk? - - - - - - - -
small variance -9.866 -21.98 -3.986 -7.17 -5.193 -9.47 -2.659 -5.75
average variance® - - - - - - - -
large variance -0.524 -1.19 -0.072 -0.13 0.338 0.63 0.518 1.14
Characteristic related to the technique used to postulate the choices
low heterogeneity? - - - - - - - -
high heterogeneity 1.568 2.22 -9.401 -10.72 -13.334 -15.43 -10.537 -14.45
small choice set size -2.069 -3.20 -8.610 -10.74 -8.876 -11.23 -4.493 -6.74
medium choice set size? - - - - - - - -
large choice set size 4.235 10.57 9.240 18.61 8.018 16.39 4.823 11.69
consistent with generation 31.043 39.26 28.993 29.59 39.628 41.04 33.498 41.14
constant 8.914 17.21 15.598 24.31 11.162 17.65 6.720 12.60
N 900 900 900 900
R? 0.626 0.790 0.870 0.648
Notes: *reference category
Table 8. Prediction errors of generated choice sets with respect to postulated choice sets
Path generation technique  variation  k-path pelilr;lfty anlarircl)ﬂln d ssit;i}ll:tsitci); doi?zjlt;%ftic raxi&m
k-shortest path RMSE 0.5765 0.9234 1.0198 0.4390 0.4136 0.4663
MAPE 0.0950 0.1105 0.1114 0.1092 0.1052 0.1172
link penalty RMSE 0.2508 0.1420 0.2213 0.1597 0.1658 0.1882
MAPE 0.0670 0.0412 0.0569 0.0514 0.0547 0.0622
branch-and-bound RMSE 0.4654 0.3755 0.2920 0.4158 0.4275 0.4534
MAPE 0.1195 0.0982 0.0739 0.1201 0.1234 0.1335
stochastic simulation RMSE 0.2092 0.1476 0.2177 0.1088 0.1019 0.1728
MAPE 0.0505 0.0401 0.0554 0.0372 0.0356 0.0583
doubly stochastic simulation =~ RMSE 0.2055 0.1488 0.2212 0.1092 0.1006 0.1731
MAPE 0.0495 0.0403 0.0560 0.0372 0.0351 0.0584
random walk RMSE 0.2081 0.1769 0.2340 0.1190 0.1016 0.1837
MAPE 0.0459 0.0452 0.0571 0.0388 0.0339 0.0594

path generation techniques by proposing a methodol-
ogy and an experimental setting that evaluate the effect
of path generation techniques on model estimates and
flow predictions.

Initially, path generation techniques are imple-
mented to generate the possible subjective choice sets
considered by travelers. Next, ‘true model estimates’ and

‘postulated predicted routes’ are assumed from the simu-
lation of a route choice model. Then, path generation
techniques are applied to generate objective choice sets
for model estimation and estimates are compared to the
postulated ‘true model estimates’ Last, predictions from
the simulation of models estimated with objective choice
sets are compared to the ‘postulated predicted routes.
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Table 9. Meta-analysis estimates of the mean average
prediction error

Parameter est. t-stat

characteristic related to the technique
used to generate choice sets

deterministic technique® - _

stochastic technique -0.400 -15.54
k-shortest path? - -
link penalty -0.376 -14.52
branch-and-bound -0.209 -8.06
stochastic simulation 0.107 5.92
doubly stochastic simulation 0.143 6.85
random walk? - -
small variance 0.123 9.84
average variance® - -
large variance -0.035 -2.89

characteristic related to the technique

used to postulate choices

low heterogeneity® - -
medium/high heterogeneity 0.181 9.20
small choice set size -0.019 -1.06
medium choice set size? - -
large choice set size -0.089 -8.00
consistent with generation -0.101 -4.60
constant 0.121 25.31
N 900
R? 0.835

Notes: “reference category

Results that provide guidelines for efficient path
generation by evaluating three requirements for route
choice sets:

« the generation of plausible routes that travelers

would consider;

« the estimation of route choice models that accu-
rately represent the behavior of travelers;

« the prediction of traffic flows that accurately and
consistently measure the network performances
in terms of level-of-service.

With respect to the generation of plausible routes
that travelers would consider, experimental results sug-
gest that the coverage of observed routes increases with
the implementation of stochastic techniques and the se-
lection of average to large variance in their distribution
parameters. Moreover, better results are obtained when
covering behavior postulated from large choice sets con-
taining mainly similar alternatives.

Because of the accurate estimation of route choice
models, experimental results show that the accuracy of
model estimates grows with stochastic methods and in
particular with the random walk algorithm that corrects
for the unequal sampling probabilities of the generated
routes. Variance of the parameters and estimation of
models with the aforementioned characteristics of large
size and high similarity also increase estimation accuracy.

With respect to the consistent prediction of network
performance, experimental results illustrate that the ac-
curacy of flow prediction parallels one of the model es-
timation, with the difference that generating even larger
choice sets seems to improve prediction performances.

The extension of the findings from the analyzed
network to large scale applications concerns only com-
putational issues that memory and multiple-core imple-
mentation are currently able to resolve. Experimental
results suggest that transport modelers should generate
routes by applying stochastic approaches with the pos-
sibility of correcting for unequal sampling probability
while maintaining a reasonable level of variance and
generating a large number of routes. Estimation of mod-
els would greatly improve and the issue of the coverage
of observed behavior would not be raised because the
correction would allow accounting for the addition of
alternatives not generated. On the one hand, results sug-
gest that transport modelers would greatly benefit from
the implementation of the random walk algorithm, since
this is the only algorithm that currently provides this
opportunity. On the other hand, transport modelers
would greatly benefit from the implementation of dou-
bly stochastic path generation techniques that are simple
to implement and also for large scale networks, as il-
lustrated for example for the Greater Copenhagen Area
(Larsen et al. 2010).

In addition, this paper shows the importance of
a meta-analytical approach in the synthesis of a large
number of models generating a large amount of results
that are otherwise difficult to summarize and to process.
Summary statistics only partially capture the influence
of the characteristics of path generation techniques on
model estimates and flow predictions. On the contrary,
meta-analysis successfully summarizes the relevance of
judgments in the selection of path generation techniques
and their parameters for increasing coverage of observed
behavior and augmenting accuracy of model estimation.

The approach seems easily transferable to any study
concentrating on the estimation of a large number of
models and requiring a summary of the results without
involving data mining or Bayesian inference that would
be much more expensive from a conceptual and a com-
putational perspective (Leamer 1983). It should be noted
that the fit of the meta-analytical models indicates that
the variation in the results can indeed be explained by
modeling judgments.

Further research should address the need for a
correction term for unequal sampling probabilities of
alternative routes when both stochastic simulation ap-
proaches are applied, and the need for the experimental
evaluation of the performance of traffic assignment pro-
cedures on large scale networks providing that stochastic
path generation techniques are implemented.
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