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Abstract. The goal of this paper is to find a solution for route planning in a transport network where the network 
type can be arbitrary: a network of bus routes, a network of tram rails, a road network or any other type of a transport 
network. Furthermore, the costs of network elements are uncertain. The concept is based on the Dempster–Shafer 
theory and Dijkstra’s algorithm which helps with finding the best routes. The paper focuses on conventional studies 
without considering traffic accidents or other exceptional circumstances. The concept is presented by an undirected 
graph. In order to model conventional real transport, the influencing factors of traffic congestion have been applied in 
the abstract model using uncertain probabilities described by probability intervals. On the basis of these intervals, the 
cost intervals of each road can be calculated. Taking into account the uncertain values of costs, an algorithm has been 
outlined for determining the best routes from one node to all other nodes comparing cost intervals and using decision 
rules that can be defined by the end user, and if necessary, node by node. The suggested solution can be applied for 
both one type of network as well as for a combination of a few of those.
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1. Introduction

A number of works deal with choosing routes (Fre-
jinger, Bierlaire 2007; Burinskienė 2009; Jakimavičius, 
Burinskienė 2009) and navigation (Dee, Hogg 2009) in 
the transportation area; however, only a small part of 
those takes uncertainty into account. Literature defines 
uncertainty information as a stochastic phenomenon 
(Lin 2009a, 2009b), a fuzzy value (Ji et al. 2007; Su et al. 
2008) or is given with two limit values (Demetrescu, 
Italiano 2006). 

There are some publications on route planning 
methods based on multi-criteria or/and uncertain infor-
mation. One of these works describes a learning-based 
model of route-choice behaviour when information is 
provided in real time (Ben-Elia, Shiftan 2010), whereas 
other studies analyze the behaviour of choosing a route 
when travel time is uncertain (De Palma, Picard 2005) 
(Henn, Ottomanelli 2006). Other papers present an in-
teractive method for analyzing the multicriteria shortest 
path problem; nevertheless, this work does not consider 
uncertain information (Granat, Guerriero 2003). Also, 
a study on multicriteria adaptive path problems where 
arc attributes are stochastic and time-varying is provided 

(Opasanon, Miller-Hooks 2006). None of those offers 
the opportunity to choose (during the route finding pro-
cedure) for a driver thus providing information about 
the total range defining the parameters of the best route. 
The aim of research published in this paper is to solve 
the routing problem based on uncertainty information 
derived from a lack of information. 

Transportation network routing is a problem occur-
ring in many tasks: ware transportation among the cities 
by lorries, public transportation within the city, individ-
ual driving, etc. The aim of the paper is to find a route of 
the lowest cost in a road network. The concept of this pa-
per is based on previous work (Szűcs, Sallai 2009) where 
the road network is represented by a graph given with 
the ordered pair G = (V, E) comprising set V of vertices 
or nodes together with set E of edges (roads) connecting 
two nodes. The task of the article is to reach node C from 
node A in the graph at the lowest cost. The task can be 
also defined by a directed and undirected graph; never-
theless, this paper presents only the undirected one. The 
paper focuses on conventional studies without consider-
ing traffic accidents or other exceptional circumstances. 
The graph and predefined costs as the original costs of 
edges are given; an example is provided in Fig. 1. The 
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costs of edges are changeable (costs are larger than the 
original costs) according to a lack of information. The 
goal of research is to develop a route planning procedure 
taking into account a shortage of information. 

Classical Dijkstra’s (1959) and improved Dijkstra’s 
algorithm (Xu et al. 2007; Cantone, Faro 2004) would 
give the shortest path in the graph with non-negative 
edge path costs; however the model described in this pa-
per also contains uncertainty about cost. Therefore, the 
Dempster–Shafer (DS) theory (Dempster 1968, 2008; 
Shafer 1976) of evidence is needed, which deals with 
uncertainty about belief functions.

2. Dempster–Shafer Theory

The Dempster–Shafer (DS) theory denotes different 
states of a system by Hi similarly to the classical prob-
ability theory. In the set  1 2, , ..., nH H H   of all pos-
sible states of the system, H1, …, Hn are still mutually 
exclusive. Power set 2W is denoted by P(W) and element 
P(W) by A; thus, A is a composite event:

 1 2 3 1 2( ) 2 {},{ },{ },{ },...,{ , },..., .P H H H H H      (1)

The DS theory defines functions m (also referred to 
as mass) called basic belief assignment (BBA) on P(W) 
for expressing the proportion of all relevant and avail-
able evidence that supports the claim that the actual 
state belongs to A but not to the particular subset of A: 

: 2 0, 1 ;m        (2)

( ).A m A  (3)

Therefore, it enables to work with non-mutually 
exclusive pieces of evidence represented by power set 
P(W). The basic belief assignment (m) function has to 
satisfy: 

  0;m     (4)

 
 

1.
A P

m A
 

   (5)

Sets A where     0 m A   are called focal elements. 
m(A) can be interpreted as the degree of the belief given 
to A and to none of its subsets. In other words, m(A) 
represents the proportion of evidence that the actual 
state belongs to A but there is no knowledge about the 
evidence of the subsets of A. Using the DS theory, a low-
er and upper limit on prob(A) and the real probability of 
evidence can be defined.

Belief function Bel(A) of set A is defined as the sum 
of all the BBA (basic belief assignment) of the subsets 
of A taking into account that a portion of the belief as-
signed to B (B is a subset of A) must be assigned to other 
hypothesis it implies:

   
|

.
B B A

Bel A m B


   (6)

The DS theory also defines plausibility Pl(A) as the 
sum of all the BBA of sets B (where B is an element of 
power set) that intersects the set of A:

   
| 0

.
B B A

Pl A m B
 

   (7)

Then, the measures are related to each other as fol-
lows, where prob(A) is the probability of A:

   ( ) .Bel A prob A Pl A   (8)

The relationship between the plausibility of set A 
and the belief of the complement of set A is derived as:

   1 .Pl A Bel A   (9)

3. New Model for Route Planning  
with Uncertain Information

Road traffic is the most important information for 
routing in the transportation area. This can be sim-
plified considering two states whether it is conges-
tion or not. Thus, the model presents two states (hy-
potheses) investigated in the DS theory: Congestion 
(CO) and No Congestion (NC), i.e.: { , }CO NC  , 

 ( ) {},{ }, { },{ , }P CO NC CO NC     can be character-
ised by the BBA values of focal elements m(CO), m(NC) 
and m(W) where m(W) expresses uncertainty.

In case of congestion on a given road, cost is con-
sidered n-times of the predefined cost (cost represents 
transfer time on the road as seen in Fig. 1), otherwise 
cost remains the predefined cost. (e.g. if n is 2, then, the 
cost of congestion is twice of the predefined so called 
original cost.)

The evolving traffic jam (congestion) in the inves-
tigated case can be caused by the following different in-
fluencing facts (factors):

•	weather; 
•	vehicle density;
•	closed lane. 
Regarding the simplified situation, the above fac-

tors are binary variables: the values of the weather are 
bad or good, the values of vehicle density are nominal 
or high and the values of a closed lane are yes or no. The 
basic belief assignment (BBA) functions are as follows:

•	m1: bad weather; 
•	m2: high vehicle density;
•	m3: closed lane.
BBA functions are given taking into account each 

edge. An example of all values in view of the graph in 
Fig. 1 is shown in Table 1.

The values presented in the table and suggesting the 
DS theory mean that the investigated hypothesis is true 

Fig. 1. The example of a diagram showing  
the predefined costs of edges
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with how much probability, e.g.  3 0.7 m CO  means 
that the fact of a closed lane supports the hypothesis of 
congestion with the probability of 0.7 and  3 0.2 m    
is the uncertainty of evidence. These values are estima-
ted with reference to the previously gathered statistical 
data using relative frequency calculation. 

Table 1. BBA functions for 3 edges

m
Edges

AC AB BC

m1(CO) 0.40 0.50 0.30

m1(NC) 0.20 0.20 0.20

m1(W) 0.40 0.30 0.50

m2(CO) 0.80 0.60 0.90

m2(NC) 0.05 0.10 0.05

m2(W) 0.15 0.30 0.05

m3(CO) 0.70 0.75 0.60

m3(NC) 0.10 0.05 0.15

m3(W) 0.20 0.20 0.25

If more than one factor appears on the edge, they 
can be cumulated based on the following formula where 
A is the investigated set, B, C are the elements of P(W) 
and mi, and mj are the basic belief assignment functions: 

 
   

   ,

0

.
1

i j
B C A

i j
i j

B C

m B m C
m A

m B m C
 

 




 




 (10)

The cost of the edge will be the sum of the prede-
fined fixed cost (represents transfer time on an empty 
road) and uncertainty cost from DS calculation. The DS 
theory gives a DS interval for each set: Bel and Pl, the 
lower and upper limits (DS limits) of the likelihood of 
evidence for the concerned set. Uncertainty cost will be 
calculated by the product of the fixed cost and DS limits. 

4. Calculations

Let us assume that only a closed lane is true for edge 
AC, high vehicle density and a closed lane are true for 
edge AB, and high vehicle density is true for edge BC. In 
this session, the calculations of the costs of edges using 
the values given in Table 1 are shown. The ratio of the 
maximal and predefined cost of each edge is also n.

A. Investigation into edge AC:
  0.7;Bel CO 
   1 1 0.1 0.9;Pl CO Bel NC      
     Cost AC e AC 

   1 ( 1) ;  1 ( 1)n Bel CO n Pl CO        
4 0.3 0.7;  0.1 0.9 ;n n      

B. Investigation into edge AB:
The cumulative formula should be used consider-
ing two factors:

 
   

   
2 3

2,3
2 3

0

.
1 (

B C A

B C

m B m C
m A

m B m C
 

 




 




 (11)

Sets A, B and C are the subsets of all possible 
states of the system. The products of the BBA values 
of the subsets are shown in Table 2. 

Table 2. BBA Functions having 2 factors

m2 · m3 
m3

CO NC W

m2

CO 0.450 0.030 0.120

NC 0.075 0.005 0.020

W 0.225 0.015 0.060

The intersection of the following pairs 
will  be empty :     , CB CO NC 

 
and     , B NC C CO  . Thus, the denominator will 

be:  1 0.03 0.075 0.895    . The nominator is:
   2 3 ;

B C A
m B m C

 
  (12)

if set A is CO: 0.45 0.12 0.225 0.795;  
if set A is NC: 0.005 0.02 0.015 0.04;  
if set A is Ω: 0.06.

Using the nominators and denominator the 
results are:

 2,3 0.888;m CO 
 2,3 0.045;m NC 
 2,3 0.067;m  
  0.888;Bel CO 
  1 0.045 0.955;Pl CO   
   Cost AB e AB 

       1 1 ;  1 1n Bel CO n Pl CO        

2 0.112 0.888;  0.045 0.955 .n n      
C. Investigation into edge BC:

  0.9;Bel CO 
  1 0.05 0.95;Pl CO   
   Cost BC e BC 

       1 1 ;  1 1n Bel CO n Pl CO        
1 0.1 0.9;  0.05 0.95 .n n      
The cost of the route of edges AB, BC is the sum of 

the interval of serial edges: 
 ,Cost AB BC 

2 0.112 0.888;  0.045 0.955n n       
1 0.1 0.9;  0.05 0.95n n       

0.324 2.676;  0.14 2.86 .n n     
A comparison of the above with the interval of an-

other cost:
  1.2 2.8;  0.4 3.6Cost AC n n        
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indicates that the route of edges AB, BC is always better 
(shorter) for each n (n>1), because the lowest value of 
interval AC is worse than the highest cost of the other 
route. Therefore, the route of the lowest cost presented 
in this example is the route of edges AB, BC.

5. Route Planning Algorithm with  
Uncertain Information

Making a decision of the compared interval was easy in 
the previous example, because the lowest value of one 
of them was higher than the highest value of the other 
one. If there is an overlap between the intervals, then 
the decision is not always easy. If both end points of the 
interval are lower than the end points of the other inter-
val, the routing procedure could decide for lower values. 
However, if one interval is an inner part of another in-
terval, the decision is ambiguous. One possible election 
is a comparison of the middle points of the intervals. 
Election rules depend on the human decision maker: the 
end user can develop the worst or the best case design or 
other types of design for making decisions. 

An algorithm with uncertain information has been 
developed for route planning; a simplified version is 
presented in the block diagram in Fig. 2. The algorithm 
calculates the intervals of the lowest cost for each node 
from the source node where S is the set of the examined 
nodes, T is the set of remaining (not examined) nodes 
in the graph and s is the source (start node). Proc DS 
procedure calculates cost values with uncertainty based 
on the DS theory and the outputs of this procedure are 
cost intervals. 

The next stage of the algorithm presents a circle 
for all u nodes where that node will be selected and the 
cost of which is minimal. Next, all the neighbours of u 
will be used for comparison purposes in order to find 
the minimal cost of u. If the result of the comparison is 
unambiguous, then, cost intervals will be determined, 
otherwise an automatic decision process (Proc_autoDe-
cision) will calculate the values based on the predefined 
rules, or the human decision maker will be provided a 
possibility of overwriting them. At the end of the circle, 
node u will be examined and transferred from set S to 
set T. If the set (T) of not examined nodes is empty, 
then, the algorithm terminates. The obtained results will 
be the best cost intervals for all nodes. The running time 
of the algorithm is O(|V|2 + |E|) (which is not very fast); 
however, a big advantage of the procedure is knowledge 
about dispersion (deviation) around the expected value 
of the received result (a user gets an interval instead of 
one value).

Combination of any type of network
People use vehicles, city trains and public trans-

port in cities, which leads to the problem of multimodal 
transport. Such complex situation requires an expla-
nation for route planning. In order to deal with mul-
timodal transport, a simple solution has been used: a 
large diagram was drawn from the standalone graphs. 
The combined diagram is the union of (i) different types 

of the network as diagrams and (ii) connections among 
them. These connection edges represent transfer possi-
bilities from a type of transport mode to another. Let us 
see a little example for the diagram combination.

Fig. 3 shows four types of the network (a – road, 
b – tram, c – railway, d – metro) and some connection 
possibilities among them: node 1 and 13, node 8 and 13, 
node 9 and 14, node 12 and 13, node 12 and 16, node 
16 and 20. Furthermore, there are some similar nodes in 
different networks, e.g. transport mode can be changed 
at once (without any additional cost) in node 9. Fig. 4 
represents the combined diagram where the union of 
small graphs is indicated.

Example
The algorithm described above has been tested in 

small and medium-sized diagrams. Fig. 4 shows the in-
vestigated combined network, including costs (original 
cost without taking uncertain information into account) 
built from four diagrams displayed in the previous ex-
ample by combining them. 

Fig. 2. Route planning algorithm based on uncertain 
information

Proc_DS(e1, e2) for all e

START

S={s}
T=V – {s}

u =s

d(u) = infinite for all u
d(u )= 0

0

0

T empty?

for all v
neighbours of u

d1(v) + e1(u, v) < d1(u)
AND

d2(v) + e2(u, v) < d2(u)

d1(u) = d1(v) + e1(u, v)
d2(u) = d2(v) + e2(u, v)

end of loop

d1(v) + e1(u, v) > d1(u)
AND

d2(v) + e2(u, v) > d2(u)

Proc_auto Decision (d1(u), d2(u))
OR

Human Decision (d1(u), d2(u))

S = S + {u}
T = T – {u}

STOPY

u: = minimal cost
from T

Yes

No
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Let us assume that the influencing factors and their 
uncertainties are given as seen in Table 3. The first col-
umn contains edges while the second one shows actual 
facts for a given edge where I means bad weather, II – 
high vehicle density, III – a closed lane. The last 9 col-
umns contain BBA values (m). 

The implemented algorithm described in the pre-

Fig. 3. Four transport networks Fig. 4. Road network including costs
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Table 3. BBA functions and real facts

m1 m2 m3

edges facts CO NC W CO NC W CO NC W

1–2 0.50 0.20 0.30 0.70 0.10 0.20 0.65 0.10 0.25
1–3 III 0.60 0.10 0.30 0.65 0.20 0.15 0.80 0.05 0.15

1–13 I; II 0.65 0.20 0.15 0.50 0.10 0.40 0.75 0.10 0.15
2–3 II; III 0.80 0.05 0.15 0.75 0.20 0.05 0.60 0.20 0.20
2–4 III 0.70 0.10 0.20 0.85 0.10 0.05 0.65 0.20 0.15
2–8 0.55 0.05 0.40 0.70 0.10 0.20 0.60 0.10 0.30
3–6 I 0.45 0.20 0.35 0.80 0.05 0.15 0.85 0.10 0.05
4–7 I; II; III 0.60 0.15 0.25 0.60 0.10 0.30 0.90 0.05 0.05
4–8 II 0.40 0.20 0.40 0.90 0.05 0.05 0.70 0.10 0.20
5–6 III 0.50 0.10 0.40 0.80 0.10 0.10 0.90 0.05 0.05
5–8 I; III 0.65 0.05 0.30 0.70 0.10 0.2 0.65 0.20 0.15
6–9 0.75 0.10 0.15 0.65 0.10 0.25 0.85 0.10 0.05
7–8 I; III 0.45 0.10 0.45 0.75 0.20 0.05 0.60 0.10 0.30
8–9 III 0.50 0.30 0.20 0.85 0.10 0.05 0.90 0.05 0.05

8–13 II 0.60 0.15 0.25 0.90 0.05 0.05 0.80 0.10 0.10
9–10 II 0.65 0.05 0.30 0.80 0.05 0.15 0.70 0.10 0.20
9–11 I; II; III 0.40 0.10 0.50 0.70 0.20 0.10 0.80 0.05 0.15
9–14 III 0.55 0.10 0.35 0.60 0.20 0.20 0.75 0.10 0.15

10–12 III 0.60 0.10 0.30 0.70 0.10 0.20 0.80 0.15 0.05
11–16 0.50 0.10 0.40 0.75 0.10 0.15 0.60 0.10 0.30
12–13 II 0.45 0.25 0.20 0.80 0.05 0.15 0.75 0.15 0.10
12–15 I 0.60 0.15 0.25 0.85 0.05 0.10 0.90 0.05 0.05
12–16 I 0.35 0.30 0.35 0.65 0.10 0.25 0.80 0.10 0.10
13–18 0.70 0.20 0.10 0.55 0.20 0.25 0.70 0.15 0.15
14–17 II 0.65 0.15 0.20 0.80 0.10 0.10 0.65 0.20 0.15
14–20 I; II 0.40 0.30 0.30 0.70 0.10 0.20 0.85 0.10 0.05
16–20 III 0.75 0.10 0.15 0.65 0.10 0.25 0.60 0.20 0.20
18–19 III 0.45 0.30 0.25 0.80 0.10 0.10 0.70 0.10 0.20
19–20 0.60 0.30 0.10 0.90 0.05 0.05 0.80 0.15 0.05

vious section calculates cost intervals. Fig. 5 shows the 
network with the calculated cost intervals of each edge 
(in case of n = 2) based on BBA and facts. Small digits 
correspond to edges, whereas the large ones show the 
best cost intervals for all nodes, for example, the best 
route from nodes 1 to 20 is 1–2–8–9–11–16–20, and the 
best cost interval is [36.56, 40.14].

Transport, 2012, 27(1): 79–85 83



6. Conclusions

The paper provides a model and an algorithm for rout-
ing in any type of the transport network taking into ac-
count uncertainty about information on the condition of 
roads and cost-influencing factors. The improved model 
is capable of handling multimodal transport as well as of 
aggregating unimodal transport possibilities. Probabil-
ity values are uncertain in the model, whereas an algo-
rithm determines and uses probability intervals defined 
by minimum (belief) and maximum values (plausibil-
ity) using the DS theory. While applying these extreme 
values, cost uncertainty intervals for each road can be 
calculated and further used for any route. 

Besides uncertain information values (written in 
table format), another parameter (n) can be given for 
the improved algorithm that determines the ratio of 
maximum and minimum costs. The proposed algorithm 
presents the best routes from one node to all other nodes 
comparing cost intervals and using decision rules. Not 
only the best route but also the cost interval of the best 
choice can be obtained. 

The results of investigation presented in this 
paper can be used for binary decisions in trans-
port (McCammon, Hägeli 2007), or route planning 
(Keshkamat et  al. 2009), where the route planning al-
gorithm takes into account environmental and socio-
economic considerations for selecting alternative routes. 

The research results can be used for transportation 
enterprises, public transport companies and individual 
drivers. The concept can be investigated considering an 
economical aspect. The input of the concept is estimat-
ed data (with probability values) arising from statistical 
data on traffic under different circumstances (situation 
types). Producing such input data is expensive because 
of a large amount of information necessary for each 
situation. However, if using the concept formulated in 
this paper, income received by transportation and pub-

lic transport companies could be larger than the cost of 
producing these input data. The base of higher income 
is more sophisticated route planning and a high amount 
of vehicles; this profit can be realized later. 

The research paper is aimed at solving the rout-
ing problem based on uncertainty information derived 
from a lack of data. The novelty of the paper is offering 
a driver the opportunity for finding the best route and 
providing detailed information about the total range of 
the parameter of the best route (information on the cost 
interval).
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