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Abstract. As known in transport engineering, civil engineering, transport planning and mathematics, traffic flow is 
the study of interactions between vehicles, drivers and infrastructure (including highways, signage and traffic control 
devices), with the aim of understanding and developing an optimal road network with efficient movement of traffic 
and minimal traffic congestion problems. The presented paper discusses a small part of a traffic flow study – the devel-
opment of the methodology for assessing the speed and acceleration of a car during the column movement following-
the-leader, based on a new mathematical method. Two methods – (1) the numerical calculation of the first derivative, 
i.e. speed of the car movement; (2) the numerical calculation of the second derivative, i.e. acceleration of the car move-
ment – were developed, using the fast spline transformation. In the future, parameters obtained with the help of two 
new methods, can be used to solve complex transportation problems, such as: (1) control of traffic flows; (2) organisa-
tion of harmonised work of traffic lights; (3) analysis of psycho-physiological condition of a driver, etc.
Keywords: traffic flow, car speed, car acceleration, column movement, following-the-leader model, fast spline transfor-
mation, numerical calculation.
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1. Topicality

Depending on road loading, some characteristic modes 
of transport flows were distinguished, connecting them 
with the concept of movement convenience levels.

Dense or sated flow (a level of movement conveni-
ence) is the most difficult structural form of traffic flow, 

which is characterised by identical speeds and approxi-
mately identical distances between cars moving one after 
another, without the overtaking possibility, which means 
that movement of each car in the flow is connected 
with actions of the front car. Movement speed sharply 
decreases and jams are possible at road intervals with 



deteriorated conditions. This results in strained driving 
conditions. 

Movement in a dense car flow requires special at-
tention and high concentration. In this instance, keeping 
in a lane becomes especially urgent, as it is the main 
condition for fast and safe movement in the traffic flow. 
Additional obstacles and inconveniences to other drivers 
are often created by frequent and useless change of lanes, 
which often leads to road accidents.

Driving in a dense car flow requires choosing the 
speed, which depends on the speed of the flow move-
ment. The distinctive feature of driving under limited 
conditions is that drivers get tired faster than usual and 
rather frequently lose control over themselves, tending 
to overtake vehicles moving in front. Most road acci-
dents occur due to attempts to change a lane filled with 
passing cars.

Driving in a dense car flow requires the ability to 
keep a safe distance from the car moving in front. While 
choosing the distance, it is necessary to take into con-
sideration conditions of the road pavement, developed 
traffic situation, technical conditions of own car, and 
compare the speed of own car with the average speed 
of the traffic flow. Besides, there is no need to keep too 
big of a distance as it may encourage other drivers to 
get in front. 

2. Analysis of Researches and Publications 

To solve problems related to the reduction of the num-
ber of road traffic accidents (especially car collision), it is 
necessary to undertake a detailed analysis of interaction 
between cars that move in the same direction. 

Traffic flow problems can be analysed in three ways, 
which correspond to the three main scales of observa-
tion in physics: 

 – Microscopic scale. At the most basic level, every 
vehicle is considered as an individual. An equa-
tion  – usually an ordinary differential equa-
tion – can be written for each. Cellular automa-
tion models can also be used, where the road is 
divided into cells, each of which either contains 
a moving car, or is empty. The Nagel–Schrecken-
berg model is a simple example of such model. 
As cars interact, it can model collective phenom-
ena such as traffic jams. Microscopic traffic flow 
models simulate single vehicle–driver units, so 
the dynamic variables of models represent mi-
croscopic properties such as the position and 
speed of single vehicles. For example, micro-
scopic models investigated in researches, which 
were carried out by scientists Knorr (2013); 
Sheu (2013); Vaiana et al. (2013); Kerner, Klenov 
(2010, 2006); Hawas, Hameed (2009); Yeo (2008); 
Kerner et al. (2006), etc.; 

 – Macroscopic scale. Similar to models of fluid dy-
namics, it is considered useful to employ a sys-
tem of partial differential equations, which bal-
ance laws for some gross quantities of interest; 
e.g. the density of vehicles or their mean speed. A 

macroscopic traffic flow model is a mathematical 
model that formulates the relationships between 
traffic flow characteristics such as density, flow, 
mean speed of a traffic flow, etc. Such models 
are conventionally arrived at by integrating mi-
croscopic traffic flow models and converting the 
single-entity level characteristics to comparable 
system level characteristics. For example, macro-
scopic models investigated in researches, which 
were carried out by scientists Ngoduy (2013, 
2012); Velasco, Saavedra (2008); Helbing et  al. 
(2001); Zhang et al. (1997), etc.;

 – Mesoscopic (kinetic) scale. The third, intermedi-
ate possibility, is to define a function ( ), ,f t x V  , which expresses the probability of having a ve-
hicle at time t in position x, which runs at a 
speed  V. This function, following methods of 
statistical mechanics, can be computed using an 
integral-differential equation such as the Boltz-
mann equation. Mesoscopic models combine the 
properties of both microscopic and macroscopic 
simulation models. These models simulate indi-
vidual vehicles, but describe their activities and 
interactions based on aggregate (macroscopic) 
relationships. For example, mesoscopic (kinetic) 
models investigated in researches, which were 
carried out by scientists Lu et al. (2013); Bello-
quid et  al. (2012); Chiu et  al. (2010); Bonzani, 
Mussone (2009); Tosin (2009); Bonzani et  al. 
(2008); Coscia et al. (2007), etc.

The engineering approach to analysis of traffic flow 
problems is primarily based on empirical analysis (i.e. 
observation and mathematical curve fitting). One major 
reference used by American planners is the Highway 
Capacity Manual (2010). This recommends modelling 
traffic flows based on the whole travel time across a 
link using a delay/flow function, including the effects 
of queuing. This technique is used in many US traffic 
models and, for example, in the Saturn (http://www. 
saturnsoftware.co.uk) model in Europe, etc.

In European countries, a hybrid empirical approach 
to traffic design is used, combining macro-, micro-, and 
mesoscopic features. Rather than simulating a steady 
state of flow for a journey, transient ‘demand peaks’ of 
congestion are simulated. These are modelled by using 
small ‘time slices’ across the network throughout the 
working day or weekend. Typically, the origins and des-
tinations for trips are first estimated and a traffic model 
is generated before being calibrated by comparing the 
mathematical model with observed counts of actual traf-
fic flows, classified by the type of vehicle. ‘Matrix esti-
mation’ is then applied to the model to achieve a better 
match to observed link counts before any changes, and 
the revised model is used to generate a more realistic 
traffic forecast for any proposed scheme. The model 
would be run several times (including a current baseline, 
an ‘average day’ forecast based on a range of economic 
parameters and supported by sensitivity analysis) in or-
der to understand the implications of temporary block-
ages or incidents around the network. From the models, 
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it is possible to total the time taken for all drivers of dif-
ferent types of vehicles on the network and, thus, deduce 
average fuel consumption and emissions.

To better represent traffic flow, relationships 
were established between three main characteristics  – 
(1) flow; (2) density; (3) speed. These relationships help 
in planning, design, and operations of roadway facilities.

The bases of the mathematical modelling of traf-
fic laws were established in 1910–1912 by the Russian 
scientist G. D. Dubelir (1910, 1912). The first attempt to 
generalise mathematical researches of traffic flows and 
present them in the form of an independent section of 
the applied mathematics was made by American scientist 
F. A. Haight (1963, 1966). Because of studies on high-
density traffic flows and special experiments carried out 
by American experts, the theory of following-the-leader 
was proposed, mathematical expression of which is the 
microscopic model of traffic flow. It is called microscop-
ic, because it considers an element of the flow, a pair 
of vehicles following one another. The model displays 
the laws of the complex ‘driver–car–road–environment’, 
particularly, the psychological aspect of car control. It 
considers that actions of a driver moving in a dense traf-
fic flow are conditioned by the change in the speed of the 
leading car and the distance to it.

Problems related with traffic flow are considered 
in researches of domestic and foreign scientists, such 
as Beliatynskii and Kuzhel (2010); Beliatynskii et  al. 
(2011); Beljatynskij et al. (2009); Junevičius (2011); Ku-
zhel (2011); Sil’yanov (1977); Lobanov, Sil’yanov (1974); 
Lobanov (1975); Haight (1963, 1966); Buslaev et  al. 
(2012); Siegel, Coeymans (2005), etc.

The theory of traffic flow, such as following-the-
leader, involves the development of theory for simplified 
dynamic models. It is based on hypothesis on existence 
of a law regarding the interaction of cars that follow one 
after another at a short distance. The differential equa-
tion of the theory of traffic flow, such as following-the-
leader, is received from the initial condition that all cars 
move in a column at a distance that is required by traffic 
regulations. Then, coordinates of the position of the п 
and (п+1) cars can be described using the relation:

( )+ += + + ⋅ +1 0 1n n p n nx x l t v l , (1)

where: xn, xn+1 – coordinates of the back and front cars; 
l0  – minimum distance between the stationary cars; 

⋅p nt v  – distance between the cars that are established 
depending on the speed of the movement; ln+1 – length 
of the car; п – serial number of the car.

Differentiating the previous equation by time, the 
following is received:

+ = + ⋅1n n n
p

dx dx dv
t

dt dt dt
,  (2)

where: п = 1, 2, 3.
This equation can be expressed in terms of speed in 

the following form:

+ = + ⋅1
n

n n p
dv

v v t
dt

;  (3)

+ − = ⋅1
n

n n p
dv

v v t
dt

;  (4)

( )+= ⋅ −1
1n

n n
p

dv
v v

dt t
, (5)

where: ndv
dt

  – acceleration of the back car; vn, vn+1  – 

speeds of the back and front cars; lp – time of the driver 
response. 

This rule can be expressed in terms of speed in the 
following form:

2
1

2
1 .n n n

p

d x dx dx
t dt dtdt

+ 
= ⋅ − 

 
 (6)

3. Statement of the Research Task 

To investigate this model of movement following-the-
leader with real objects, it is necessary to process data on 
movement of connected objects (for example, by means 
of GPS-receivers), which are received with errors (errors 
caused by inaccuracy of measuring equipment).

It is also required to find the first and the second 
derivative of the ‘noise’ traffic diagrams of the objects, 
which correspond to the speeds and accelerations of the 
car movement. Therefore, the task to develop the math-
ematical method of the estimation of the parameters of 
movement, which would allow minimising the specified 
errors, was assigned.

4. Statement of the Basic Material

Methods for numerical calculation of the function de-
rivative, which is observed against the casual errors of 
the test data, are based on smoothing of this function 
by polynoms of the best root-mean-square approach, 
Fourier series, splines (Korn, G. A., Korn, T. M. 2000). 
Then, the further finding of the derivative itself is car-
ried out analytically.

That is, the task is assigned: to numerically calcu-
late the derivative of function (for speed definition):

( ) ( )
=

dY t
F t

dt
, (7)

where: ( )Y t   – route (coordinate) of the car, which is 
observed against the errors.

Let on the interval   0,T  at points { } =
= 1

N
i it t  the 

values { } =
= 1

N
i iY y  of some discrete time function be de-

fined. They correspond to the (not yet estimated) reports 
of the derivative { } =

= 1
N

i iF f  at points { } =
= 1

N
i it t . 

Then Y and Y would be connected with the rela-
tions: 

= ⋅F P Y ;  (8)

= ⋅Y Q F ,  (9)

where: P , Q  – operators of the differentiation and in-
tegration accordingly.

Let’s consider that values of a derivative F are de-
scribed by the local cubic Hermitian spline (Korn, G. A., 
Korn, T. M. 2000):
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= ⋅3S X A ,  (10)

where: X – planning matrix; { }
=

=
0

r
j j

A a  – vector of the 
parameter estimation (ordinates of points of the spline 
area patching). Such spline belongs to 1C – class of the 
continuously differentiated functions.

Then = ⋅ ⋅Y Q X A, the matrix is designated through 
= ⋅W Q X  with the dimension ( )⋅ +1N r , which consists 

of the integrated local functions of the spline form.
The condition of the minimum of the standard de-

viation is to be fulfilled:

= =

 
 − ⋅ =
 
 

∑ ∑
2

1 0
min

N r

i ij j
i j

y w a , = 0,j r . (11)

This condition is satisfied by the decision of the sys-
tem of the normal equations:

( ) ( )− ⋅ ⋅ − ⋅ = minTY W A Y W A ; (12)

⋅ ⋅ = ⋅T TW W A W Y ; (13)

( )−= ⋅ ⋅ ⋅
1T TA W W W Y . (14) 

The obtained vector of the estimated parameters 
{ }

=
=

0

r
j j

A a  completely defines the spline = ⋅3S X A . It 

should be noted that the matrixes WT and ( )−⋅
1TW W  

do not depend on the input parameters and can be pre-
liminarily calculated. Thus, using the time reports of the 
initial function { } =

= 1
N

i iY y , a spline approximation S3 of 
the derivative F of this function can be quickly found 
without preliminary calculation of reports of the deriva-
tive { } =

= 1
N

i iF f .
Values of the local cubic Hermitian spline (Korn, 

G. A., Korn, T. M. 2000) at the arbitrary point are cal-
culated by formula:

( ) ( ) ( )−= ⋅ + ⋅ +1 2
1j jS t a x t a x t

( ) ( )+ +⋅ + ⋅3 4
1 2j ja x t a x t

for 
+

 ∈  1
,

j ju ut t t , (15)

where: aj – value of the ordinates of patching units of 
the spline areas; ( )kx t  – local shape functions, whose 
discrete values complete the columns of the planning 
matrix X and are calculated by formulas:

( )
( )− −

⋅ ⋅ −
= −

⋅ +

22
1

1 1

1j ij ij
ij

j j j

h x x
X

h h h
, = 2,j r , −= + 11 ,j ji m m

 
;  (16)

( )⋅ ⋅ −
= − −

+

2
1 1 12

1 1
1 2

1
1 i i

i i
h x x

X x
h h

, = 11,i m ; (17)

( ) ( )
+ −

⋅ ⋅ − ⋅ ⋅ −
= − − +

+

22
2

1 1

1 1
1

j ij ij j ij ij
ij ij

j j j

h x x h x x
X x

h h h
,

= −2, 1j r , −= + 11 ,j ji m m ;  (18)

( )
−

⋅ ⋅ −
= − −

2
2

1

1
1 r ir ir

ir ir
r

h x x
X x

h
, −= + 11 ,r ri m m ; (19)

( )⋅ ⋅ −
= −

2
1 1 13

1 1
2

1i i
i i

h x x
X x

h
, = 11,i m ; (20)

( ) ( )
+ −

⋅ ⋅ − ⋅ ⋅ −
= − −

+

22
3

1 1

1 1j ij ij j ij ij
ij ij

j j j

h x x h x x
X x

h h h
, 

= −2, 1j r , −= + 11 ,j ji m m ; (21)

( )
−

⋅ ⋅ −
= −

+

2
3

1

1r ir ir
ir ir

r r

h x x
X x

h h
, −= + 11 ,r ri m m ;  (22)

( )
( )+ +

⋅ ⋅ −
= −

⋅ +

2 2
4

1 1

1j ij ij
ij

j j j

h x x
X

h h h
, = −1, 1j r , 

−= + 11 ,j ji m m ; (23)

−−
= 1i j

ij
j

x x
x

h



; −= − 1j j jh x x  ; 

=1,j r ; − ∈ 1,i j jx x x  ; 

= −1, 1j r ; −∈  1,i r rx x x  ;

=
= ∑

1

j

j u
u

m K , =1,j r ; 

− = =1 0 0m m ; =rm N , 

where: Ku – number of the reports on the interval u.
The number of multiplication operations, addition, 

necessary for calculation of fast spline approximation of 
the function derivative, which was observed:

( ) ( )= ⋅ + + + 21 1M N r r . (24)

Let’s compare the quality of the offered method for 
numerical calculation of the function derivative, which 
is observed against the casual errors of the test data, with 
the classical method (smoothing by spline function and 
the further analytical finding of the derivative itself).

As an example, the function ( ) ( )= ⋅ +310y t t n t  
is taken on the interval   0, 2  at points with the step 
1/32 (Fig. 1), where ( )n t  – Gaussian signal-independ-
ent noise. The derivative of the deterministic bases is 
( )′ = ⋅ 230y t t  accordingly (Fig. 1). The calculations were 

performed in MatLab.
For 64 reports of the initial function and 16 patch-

ing units of the spline, the following results were re-
ceived:

 – standard deviation of the input Gaussian sig-
nal-independent noise changed from 0.2 to 1.1 
(Fig. 2);

 – at the same time, the standard deviation of the 
theoretical derivative of the derivative, numeri-
cally calculated by the classical method, changed 
from 2.40 to 3.48 (Fig. 2);

 – standard deviation of the theoretical derivative of 
the derivative, numerically calculated by the of-
fered method, changed from 0.53 to 2.87 (Fig. 2).

In a similar way, it is also possible to calculate the 
fast spline approximation of the second derivative (car 
acceleration).
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That is, the task is assigned: to numerically calcu-
late the second derivative of the function (for accelera-
tion definition):

( ) ( )
=

2

2

d Y t
Z t

dt
, (25)

where: ( )Y t   – route (coordinate) of the car, which is 
observed against the errors.

Let on the interval   0,T  at points { } =
= 1

N
i it t  the 

values { } =
= 1

N
i iY y  of some discrete time function be 

defined. They correspond to the (not yet estimated) re-
ports of the derivative { } =

= 1
N

i iF f  at points { } =
= 1

N
i it t , 

and (not yet estimated) reports of the second derivative 
{ } =

= 1
N

i iZ z  at points { } =
= 1

N
i it t . 

Then, Y and Z would be connected with the rela-
tions: 

= ⋅Z V Y ; (26)
= ⋅Y L Z, (27)

where: V, L – operators of the double differentiation and 
double integration accordingly.

Let’s consider that values of the second derivative 
Z are described by the local cubic Hermitian spline 
(Korn, G. A., Korn, T. M. 2000):

= ⋅3S X A ,  (28)

where: X  – planning matrix; { }
=

=
0

r
j j

A a   – vector of 
parameter evaluation (ordinates of points of spline area 
patching). Such spline belongs to C1 – class of the con-
tinuously differentiated functions. 

Then = ⋅ ⋅Y L X A , the matrix is designated through 
= ⋅G L X , with the dimension ( )⋅ +1N r , which consists 

of the integrated local functions of the spline form.
The condition of the minimum of the standard de-

viation is to be fulfilled:

= =

 
 − ⋅ =
 
 

∑ ∑
2

1 0
min

N r

i ij j
i j

y g a , = 0,j r . (29)

This condition is satisfied by the decision of the sys-
tem of the normal equations:

( ) ( )− ⋅ − ⋅ = minTY G A Y G A ; (30)

⋅ ⋅ = ⋅T TG G A G Y ; (31)

( )−= ⋅ ⋅ ⋅
1T TA G G G Y . (32)

The obtained vector of the estimated parameters 
{ }

=
=

0

r
j j

A a  completely defines the spline = ⋅3S X A. It 
should be noted that the matrixes GT and ( )−⋅

1TG G  do 
not depend on the input parameters and can be pre-
liminary calculated. Thus, using the time reports of the 
initial function { } =

= 1
N

i iY y , a spline approximation S3 
of the second derivative Z of this function can be found 
quickly without preliminary calculation of the reports of 
the second derivative { } =

= 1
N

i iZ z  and the first derivative 
{ } =

= 1
N

i iF f .
Values of the local cubic Hermitian spline 

(Korn, G. A., Korn, T. M. 2000) at the arbitrary point 
are calculated by formula:

( ) ( ) ( )−= ⋅ + ⋅ +1 2
1j jS t a x t a x t

( ) ( )+ +⋅ + ⋅3 4
1 2j ja x t a x t  

for 
+

 ∈  1
,

j ju ut t t , (33)

where: aj – value of the ordinates of patching units of 
the spline areas; ( )k x t  – local shape functions, discrete 
values of which complete the columns of the planning 
matrix X and are calculated by formulas(16)–(23), stated 
above.

The number of operations of multiplication, ad-
dition, necessary for calculation of fast spline approxi-
mation of the second derivative of function, which was 
observed:

( ) ( )= ⋅ + + + 21 1M N r r . (34)

Let’s compare the quality of the offered method of 
the numerical calculation of the second derivative of 
function, which is observed against the casual errors of 
the test data, with the classical method (smoothing by 
spline function and the further analytical finding of the 
derivative itself).

As an example, the function ( ) ( )= ⋅ +310y t t n t  
is taken on the interval   0, 2  at points with the step 

Fig. 1. The derivatives (car speeds), numerically calculated 
by the classical and offered methods from the input signal 

with the standard deviation ( ) σ =  0.5n t  of input Gaussian 
signal-independent noise: 1 – input signal with the noise 

to differentiation; 2 – theoretical derivative; 3 – derivative, 
numerically calculated by the offered method; 4 – derivative, 

numerically calculated by the classical method
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1/32 (Fig. 3), where ( )n t  – Gaussian signal-independent 
noise. The second derivative of the deterministic bases is 

( )′′ = ⋅60y t t , accordingly (Fig. 3).
For 64 reports of the initial function and 16 patch-

ing units of the spline, the following results were re-
ceived:

 – standard deviation of the input Gaussian signal-
independent noise changed from 0.02 to 0.05 
(Fig. 4);

 – at the same time, the standard deviation of the 
second theoretical derivative of the second de-
rivative, numerically calculated by using the clas-
sical method, changed from 2.72 to 12.45 (Fig. 4);

 – standard deviation of the second theoretical de-
rivative of the second derivative, numerically 
calculated by using the offered method, changed 
from 1.25 to 3.25 (Fig. 4).

While comparing the quality of the offered method 
for numerical calculation of the first and second deriva-
tives (speed and acceleration of the cars accordingly) of 
function, which was observed against the casual errors 
of the test data, with the classical method (smoothing 

of this function by a spline and the further analytical 
finding of the derivative itself), it was established that 
the errors of the numerical calculation of the derivative 
of function, which were observed against the casual er-
rors of the test data, of the offered method were lower 
than the errors of the numerical calculation of the same 
derivative of the classical method. It is indicated by the 
lower standard deviation.

Conclusions

1. The method for numerical calculation of the deriva-
tive (speed of the car movement) was developed us-
ing the fast spline transformation (the fast spline ap-
proximation of the derivative was constructed, which 
was calculated from the initial function without the 
previous estimation of the derivative of this function 
itself).

2. The method for numerical calculation of the second 
derivative (acceleration of the car movement) was 
developed, using the fast spline transformation (the 
fast spline approximation of the second derivative was 
constructed, which was calculated from the initial 
function without the previous estimation of the first 
and second derivative of this function).

3. The quality of the offered methods for numerical 
calculation of the derivative of function, which was 
observed against the casual errors of the test data, 
was compared with the classical method (smoothing 
of this function by a spline and the further analytical 
finding of the derivative itself). 

4. Thus, the error of the numerical calculation of the de-
rivative of function, which was observed against the 
casual errors of the test data, of the offered method 
were lower than the errors of the numerical calcula-
tion of the same derivative of the classical method.
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