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Highlights:
 ■ design of closed-loop supply chain under stochastic and cognitive uncertainty;
 ■ offering a novel RSP approach using pentagonal numbers; 
 ■ presenting possibility necessity and credibility criteria for pentagonal numbers;
 ■ evaluating the RSP approach in the stone paper industry;
 ■ proposing trade-offs between objective functions considering the decision risk.

Article History: Abstract. The lack of information and hybrid uncertainties in Supply Chain (SC) parameters affect managerial 
decisions. It is inevitable to consider random uncertainty based on fuzzy scenarios and cognitive uncertainty to 
model a Sustainable Closed-Loop SC (SCLSC) problem. Using Pentagonal Fuzzy Numbers (PFNs) has higher com-
prehensiveness and accuracy than triangular and trapezoidal fuzzy numbers due to taking into account higher 
uncertainty, less lack of information, and taking into account maximum subjectivity Decision-Makers (DMs). There 
is a gap in the literature regarding the use of PFNs in SCLSC problems. This research presents a new model using 
PFNs to solve deficiencies in stochastic-possibilistic programming. Developing a Robust Stochastic-Possibilistic 
(RSP) based on PFNs under fuzzy scenarios, presenting measures of necessity, possibility, and credibility for mak-
ing decisions founded on different levels of DMs’ risk, and proposing global solutions through providing linear 
programming models are the main innovations and contributions of the present research. An actual case study 
evaluates the presented approach to reduce the cost and carbon pollution in the stone paper SC. In the suggested 
method, trade-offs could be formed between the mean of objective functions and risk by modifying the robust-
ness coefficients. According to the proposed approach, an optimal value of confidence is specified. Additionally, 
robustness deviations are controlled in the model, which results in more accurate and reliable results. Numerical 
simulations confirmed the efficacy of the robust approach proposed.
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Notations 

Abbreviations:
CC – collection centre; 

CLSCND – closed-loop SCND; 
DC – distribution centre;

DM – decision-maker; 
IFPS – interactive fuzzy programming solution; 

MC – manufacturing centre; 
NIS – negative ideal solution;
PFN – pentagonal fuzzy number; 
PIS – positive ideal solution;
RC – recovery centre; 
RS – recycling site; 

RSP – robust stochastic-possibilistic; 
SC – supply chain;
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SCLSC – sustainable closed-loop SC; 
SCND – SC network design; 

SD – standard deviation;
SPP – stochastic possibilistic programming; 
TH – Torabi–Hassini.

Variables and functions:
c – the related set to the customer centres c = 1, 

2, ..., C; 
  qgdtsch  – the cost of carrying each unit of good q from 

the recovering location g to the DC d in time t 
and scenario s;

  qmdtsco  – the cost of carrying each unit of good q from the 
MC m to the DC d in the time t and scenario s;

  qlgtscp
 
– the cost of carrying each unit of good q from 

the collecting location l to the recovering loca-
tion g in time t and scenario s;

  qcltscq
 
– the cost of carrying each unit of good q from 

customer place c to CC l in time t and scenario s;
  qlntscs  – the cost of carrying each unit of good q from 

the collecting place l to the RS n in time t and 
scenario s;

  qdctscu  – the cost of carrying each unit of good q from 
the DC d to the customer place c in time t and 
scenario s;

  unvtscv  – the cost of carrying each item u from the RS n to 
the secondary market v in time t and scenario s;

 d – the related set to the DCs d = 1, 2, ..., D;
 qctsd  – the amount of demand for good q by customers 

of place c in period t and scenario s;
 uvtd  – demand for recycled items u by the secondary 

market v in time t;
 qcltse  – the carbon emissions for transmitting each unit 

of good q from the customer location c to the 
CC l in time t and scenario s;

 qdctse  – the carbon emissions for transmitting each unit 
of good q from the DC d to the customer loca-
tion c in the time t and scenario s;

 qdtse  – the carbon emissions for processing each unit 
of good q in the DC d in time t and scenario s;

 qgdtse  – the carbon emissions for transmitting each unit 
of good q from the RC g to the DC d in time t 
and scenario s;

 qgtse  – the carbon emissions for recovering each unit of 
good q in the RC g in the time t and scenario s;

 qlgtse  – the carbon emissions for transmitting each unit 
of good q from the CC l to the RC g in time t and 
scenario s;

 qlntse  – the carbon emissions for transmitting each unit 
of good q from the CC l to the RS n in time t and 
scenario s;

 qltse  – the carbon emissions for processing each unit 
of good q in the CC l in time t and scenario s;

 qmdtse  – the carbon emissions for transmitting each unit 
of good q from the MC m to the DC d in time t 
and scenario s;

 qmtse  – the carbon emissions for the production of each 
unit of good q in the MC m in the time t and 
scenario s;

 untse  – the carbon emissions for recycling item u in the 
RS n in time t and scenario s;

 unvtse  – the carbon emissions for transmitting each unit 
of item u from the RS n to the secondary market 
v in time t and scenario s;

  ifc  – the cost of opening the ith centre (i Î {m, d, l, 
g, n});

g – the related set to the RCs g = 1, 2, ..., G;
qgdtsh  – the transmitted amount of good q from the re-

covering location g to the DC d in time t and 
scenario s;

qmdtsh  – the transmitted amount of good q from the MC 
m to the DC d in time t and scenario s;

i – the related set to the considered centres (i Î {m, 
d, l, g, n});

l – the related set to the CCs l = 1, 2, ..., L;
m – the related set to the MCs m = 1, 2, ..., M;

imc  – if the ith centre is opened 1, otherwise 0 (i Î {m, 
d, l, g, n});

n – the related set to the RSs n = 1, 2, ..., N;
qmdtso  – the transmitted amount of good q from the MC 

m to the DC d in time t and scenario s;
sP  – the possibility of the scenario s;



ipp  – the greatest capacity of the ith centre (i Î {m, 
d, l, g, n});

qlgtsp  – the transmitted amount of good q from the CC l 
to the RC g in time t and scenario s;

 q – the related set to the type of product q = 1, 2, 
..., Q;

qcltsq  – the transmitted amount of good q from cus-
tomer place c to CC l in time t and scenario s;

qctsr  – the amount of returned goods q by customers 
of place c in time t and scenario s;

s – the related set of scenarios s = 1, 2, ..., S;
qlntss  – the transmitted amount of good q from the CC l 

to the RS n in time t and scenario s;
t – the related set to the times t = 1, 2, ..., T;
u – the related set to the recycled items u = 1, 2, 

..., U;
qdctsu  – the transmitted amount of good q from the DC d 

to the customer place c in time t and scenario s;
v – the related set to the secondary markets v = 1, 

2, ..., V;
unvtsv  – the transmitted amount of item u from the RS 

n to the secondary market v in time t and sce-
nario s;

qcw  – the average percentage of returned goods q by 
customers of place c;

unts  – the recycling cost of each item u in the RS n in 
time t and scenario s;

qlts∂  – the processing cost of each good q in the CC l in 
time t and scenario s;

qdts  – the processing cost of each good q in the DC d 
in time t and scenario s;

qmts  – the production cost of each unit of good q in 
MC m in time t and scenario s;

qgts  – the cost of recovering each unit of good q in RC 
g in time t and scenario s;



qt  – the average failure rate of good q in time t.
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1. Introduction

Recently, designing SCs by considering different real-world 
applications has been emphasized in the literature (Chen 
et al. 2023). It has also become essential and inevitable 
due to the issues of competitive pressure in international 
markets, customer expectations, continuous improvement 
of manufactured products, dynamic customer behaviour, 
and efficient supply and transportation processes (Hos-
seini Dehshiri, Amiri 2024). For practitioners of SC in the 
current era, SCND has become crucial due to its benefits 
and impact on enhancing the competitive advantage that 
it delivers (Seydanlou et al. 2023). 

As a result of growing environmental concerns and 
competitive pressures to increase the life cycle of products 
and reduce their costs, researchers and industrial activ-
ists have begun to focus more on the SCLSC (Ghosh, Roy 
2023). Due to the financial advantages of recovery and 
recycling and the concern for environmental sustainabil-
ity and waste reduction, CLSCND has become increasingly 
significant for corporations (Zhou et al. 2023a). Sustainable 
CLSCND oversees an expansion in the profitability of the 
SC through the reduction of waste and prevents the with-
drawal of products and the short life cycle of the prod-
uct, and is emphasized due to the simultaneous attention 
to economic and environmental aspects (Seydanlou et al. 
2023).

The complexity, dynamics, and extent of the SC net-
work have led to uncertainty, which affects the perfor-
mance of CLSCND (Izadikhah et al. 2021). Controlling un-
certain parameters is one of the responsibilities of SCLSC 
management; challenges in sustainable CLSCND include 
uncertainties in supplying products or raw materials, dis-
tribution and production processes, demand estimates, 
and the number of product returns (Garai et al. 2021). The 
impact of uncertainty is very significant in sustainable CLS-
CND decisions with a strategic horizon, and it should be 
considered in network design. Various types of uncertainty 
have been investigated by researchers in sustainable CLS-
CND problems (Izadikhah et al. 2021). 

Epistemic uncertainty is one type of uncertainty in sus-
tainable CLSCND problems. In this state, the parameters 
are inadequate and ambiguous, the SCLSC problem has 
cognitive uncertainty, and possibilistic programming is 
used to face DMs without knowledge of cognitive uncer-
tainty (Serrano-Guerrero et al. 2021). Possibilistic program-
ming is flawed because it relies on taking into account ex-
pected values of vague parameters and the objective func-
tion (Zhou et al. 2023a). Some parameters have stochastic 
uncertainty in SCLSC modelling, so a stochastic fuzzy sce-
narios approach should be considered (Qiao, Chen 2023). 
One weakness of the possibilistic-stochastic approach is 
the lack of reduction possibilistic and scenario deviations 
(Hosseini Dehshiri, Amiri 2024). Robust programming was 
expanded to address the drawbacks of the stochastic-
possibilistic approach (Zhang et al. 2023). In the robust 
approach, the solution’s robustness should be considered 
from the optimality and feasibility robustness perspective, 

and the solution should not be sensitive to all values of 
non-deterministic parameters (Pishvaee et al. 2012; Zhou 
et al. 2023b). Robust optimization can reduce uncertain-
ty even when there is little distributional data (Hosseini 
Dehshiri, Amiri 2024). The possibilistic-scenario deviations 
and the constraints un-fulfilment are controlled in a RSP 
approach (Hosseini Dehshiri et al. 2023). Thus, using a RSP 
approach allows SCLSC problems to take uncertainty into 
account.

Extensive, complex, sustainable CLSCND problems re-
quire simultaneous attention to fuzzy and robust aspects. 
Fuzzy numbers are a helpful factor in analysing hybrid un-
certainty because they consider ambiguous terms and con-
cepts in computations, and the outcomes heavily depend 
on the form of these numbers’ membership functions (Ver-
yard et al. 2023). Numerous domains, such as fuzzy process 
modelling, control theory, decision-making, and expert 
systems, use fuzzy numbers (Qahtan et al. 2023). Triangu-
lar, trapezoidal, and PFNs are frequently preferred because 
they have simple membership functions (Mondal, Mandal 
2017). According to a review of studies, PFNs are prefer-
able for considering hybrid uncertainty since they are effi-
cient and convenient for high-performance computing and 
have piecewise linear membership functions that can only 
be fully represented by a small number of actual values 
(Báez-Sánchez et al. 2022). The PFNs are beneficial for DMs 
to analyse the result more accurately due to their ability 
to estimate imprecise parameters and consider uncertainty 
(Mondal, Mandal 2017). 

The completed sustainable CLSCND research reveals 
that triangular and trapezoidal fuzzy numbers evaluate 
cognitive and random uncertainties in modelling and DMs’ 
opinions. This is even though PFNs have not been used in 
modelling the SCLSC problem. Also, until now, PFNs have 
not been used in stochastic-possibilistic programming and 
robust approaches for hybrid uncertainty modelling in 
SCLSC. There is a shortage of research in this field. Thus, 
to address the current shortages, in this research, for the 
1st time, the novel approaches of possibilistic and RSP are 
developed using PFNs for stone paper SCLSC in Iran. PFNs 
are used because they can achieve the most significant 
subjectivity of DMs compared to other fuzzy sets, such as 
trapezoidal or triangular fuzzy numbers. Also, in different 
conditions, DMs can consider different types of PFNs ac-
cording to the problem definition and have higher accu-
racy than trapezoidal and triangular numbers, considering 
the uncertainty of the real world (Mondal, Mandal 2017). If 
DMs want to consider more uncertainty or lose less infor-
mation, using PFNs is more appropriate than triangular or 
trapezoidal fuzzy sets. Therefore, this study uses PFNs to 
reduce ambiguity and lack of knowledge and to improve 
accuracy and comfort in considering uncertainty. The prin-
cipal contributions and objectives of this research are as 
follows: 
 ■ considering the maximum subjectivity of DMs compared 
to triangular and trapezoidal fuzzy numbers by using 
PFNs for modelling SCLSC under hybrid uncertainty;
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 ■ introducing the novel possibilistic programming ap-
proach based on PFNs to solve the sustainable CLSCND 
problem under uncertainty and improve in reducing the 
degree of ambiguity and lack of information;

 ■ developing a novel RSP approach for simultaneously 
considering cognitive and random uncertainties and 
paying attention to robustness in SCLSC modelling;

 ■ presenting the measures of necessity, possibility, and 
credibility based on PFNs to consider uncertainty ac-
cording to the different levels of DMs risk-taking and 
presenting linear models of RSP programming to obtain 
the optimal global solutions;

 ■ evaluation of the presented RSP approach in the actual 
case for reducing the cost and environmental effects in 
SCLSC and robustness-sensitivity analysis, and compari-
son of the efficiency of the presented approaches;

 ■ offering a realistic and flexible approach to make trade-
offs among the sustainable objectives, including cost 
and environmental effects in the presented case, con-
sidering the risk level based on the range of optimistic-
pessimistic preferences of DMs’ opinions and values of 
robustness coefficients.

The construction of this research is as follows: 
 ■ the current Section 1 – introduction; 
 ■ the literature examines the usage of PFNs and SCLSC 
problems under uncertainty in the Section 2; 

 ■ the offered SCLSC problem is examined in the Section 3; 
 ■ the Section 4 introduces a novel possibilistic program-
ming approach based on PFNs;

 ■ the Section 5 proposes a novel RSP programming us-
ing PFNs; 

 ■ in the Section 6, applying the suggested procedure is 
evaluated in the actual study, and robustness analysis, 
sensitivity analysis, performance evaluation of the of-
fered procedure, and insights are presented;

 ■ in the Section 7, conclusions and scientific and practical 
suggestions are presented.

2. Literature review

Due to the advantages of PFNs compared to trapezoidal 
and triangular fuzzy numbers, such as providing more ac-
curacy, reducing the lack of information, and the need 
to consider uncertainties in the SCLSC problem, in this 
section, at 1st, the conducted studies using PFNs are dis-
cussed. Then, the performed studies using possibilistic 
programming and RSP programming are classified and 
compared in the field of sustainable CLSCND, and the in-
novations of the current study are highlighted in compari-
son with the previous studies.

2.1. Applications of PFNs

Zadeh (1965) introduced the concept of fuzzy numbers. In 
the crisp set theory, each element is specified exactly and 
each element is placed inside or outside the set, while in 
the logic of the fuzzy theory, a set is specified with uncer-

tain boundaries (Kazda et al. 2023). Due to the advantages 
and wide range of fuzzy numbers, various applications for 
these numbers have been presented in different fields 
(Amoozad Mahdiraji et al. 2018; Hosseini Dehshiri et al. 
2024). Trapezoidal and triangular numbers are widely uti-
lized in the literature; however, much information may be 
lost by DMs. Using PFNs, DMs can consider more uncer-
tainty and maximum subjectivity in evaluation, and PFNs 
are more suitable than triangular and trapezoidal fuzzy 
numbers (Mary, Sangeetha 2016). Researchers looked into 
the concept of PFNs and pentagonal fuzzy matrices in this 
regard because there is uncertainty in many mathematical 
models in various sectors of science and industry (Panda, 
Pal 2015).

A category of related literature developed the theo-
retical framework and mathematical approaches for PFNs: 
Panda & Pal (2015) discussed PFNs 1st. Based on PFNs, the 
structure and fundamental characteristics of pentagonal 
fuzzy matrices were examined. This paper discussed some 
unique kinds of PFN matrices and their algebraic proper-
ties. Mondal & Mandal (2017) investigated PFNs and de-
veloped a type of PFN. Using linear and non-linear mem-
bership functions, they defined symmetric and asymmetric 
PFNs in fuzzy equations. They provided a numerical exam-
ple to evaluate the proposed concept. Considering mem-
bership functions, Visalakshi & Suvitha (2018) developed 
a performance index for fuzzy queues utilizing the α-cut 
approach. The α-cut method was applied to linear PFNs, 
and a numerical example was investigated in this research. 
Srinivasan et al. (2021) investigated a finite source queue 
model based on PFNs. The arrival and service times were 
converted to definite values for PFNs using Pascal’s trian-
gular graded mean. The suggested method converts PFNs 
into deterministic values that can be applied to the limited 
resource queuing model. This procedure was evaluated 
through numerical examination. In this class of studies, 
only mathematical model development has been consid-
ered theoretically. Numerical examples have been used to 
assess the approach, and these studies have a shortage of 
introducing new applications in actual cases.

The new applications for using PFNs were investigated 
in some studies: by applying a linear membership func-
tion, Dhanamandand & Parimaldevi (2016) ranked PFNs. 
This research was applied to the multi-item, multi-objec-
tive inventory mode. In the research in a fuzzy condition, 
Anitha & Parvathi (2017) developed an EPQ model for 
products with stock-dependent demand rates. Using the 
linear membership function, they provided expected crisp 
values of PFNs in inventory control problems. Hemalatha 
& Annadurai (2023), using 4 types of triangular, trapezoi-
dal, pentagonal, and hexagonal fuzzy numbers, developed 
an optimization inventory system with advanced payment 
in a fuzzy situation. This study reduced the overall cost, 
and numerical studies were provided to reveal the applica-
tions of the suggested procedure. The optimal fish manu-
facturing amount for perishable fish goods was examined 
by Kuppulakshmi et al. (2021) utilizing PFNs. An efficient 
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method was presented to discover the amount of annual 
fish production and production to manage demand and 
supply to retailers based on PFNs. In a paper, Alharbi & 
El-Wahed Khalifa (2021) provided a straightforward meth-
od using PFNs for the flow-shop scheduling problem. The 
PFN ranking technique was utilized to specify the fuzzy 
flow scheduling problem. A numerical example was given. 
Chakraborty et al. (2022) investigated nonlinear pentago-
nal intuitionistic fuzzy numbers and classified them in dif-
ferent scenarios. A new technique was investigated to deal 
with nonlinear pentagonal intuitionistic fuzzy numbers. 
The implementation of the procedure was investigated in 
the EPQ problem, and numerical examples were used to 
evaluate the approach. In this class of studies, new appli-
cations using PFNs were introduced, but in most previous 
studies, numerical investigations were applied to evaluate 
the procedure, and the execution of the suggested proce-
dure in real studies was less considered. On the other hand, 
the modelling of SCLSC issues was not investigated in this 
group of studies, and there is a deficiency of investigation 
in this field. 

Therefore, according to the literature review, a group of 
studies focused on developing theoretical frameworks and 
mathematical models. In this group of studies, numerical 
examples were used to evaluate the proposed approach. 
There is a lack of implementing and using PFNs in actu-
al cases to consider uncertainty. On the other hand, in a 
group of literature on the field of using PFNs, new appli-
cations using PFNs were investigated, and PFNs have not 
been used to model uncertainty in SCLSC problems. PFNs 
have higher accuracy than triangular and trapezoidal fuzzy 
numbers for considering uncertainty due to DMs’ maxi-
mum subjectivity and ability to satisfy imprecise param-
eters. Therefore, there is a lack of research on using PFNs 
in sustainable CLSCND.

2.2. Robust optimization and stochastic-
possibilistic programming in CLSCND 

Serious environmental problems and economic benefits 
from reuse have made SCLSC the central issue of inter-
est to researchers (Zhang et al. 2022). Hybrid uncertainty 
is a severe barrier in designing SCLSC. Researchers have 
recommended RSP programming to investigate hybrid 
uncertainty in CLSCND problems (Yousefi Nejad Attari 
et al. 2021). In this section, the performed studies utilizing 
robust optimization and stochastic-possibilistic program-
ming are reviewed for the designing of SCLSC:

A category of research used robust optimization for 
CLSCND: Pishvaee et al. (2011) studied SC design under 
uncertainty. A robust optimization model under uncer-
tainty was proposed. Deterministic number generation was 
used based on the uniform distribution for calculations. 
Numerical examinations were utilized in this paper. Finally, 
the robustness of the obtained solutions was compared 
and analysed. Ma et al. (2016) investigated CLSCND under 
uncertainty. This study used robust mixed integer nonlin-

ear programming to design a closed-loop environmental 
SC network. Numerical examples were applied based on 
crisp numbers under different scenarios. Avakh Darestani 
& Hemmati (2019) conducted the design of SC of perish-
able goods under uncertainty. The robust optimization 
approach was used using deterministic numbers in this 
research. Hassanpour et al. (2019) focused on evaluating 
the impact of government policies on CLSCND to achieve 
optimal collection decisions. The effect of uncertainty was 
investigated in government regulations and SCLSC con-
figuration using robust optimization. Numerical examples 
were used based on the generation of deterministic num-
bers in the uniform distribution range. 

Nayeri et al. (2020) presented a mathematical proce-
dure for CLSCND of water tanks considering sustainable 
factors. This study used robust fuzzy optimization based on 
trapezoidal fuzzy numbers to deal with uncertainty. Then, 
the problem was solved using goal programming, and 
the outcomes confirmed the suitability of the approach. 
Abdolazimi et al. (2020) investigated the CLSCND problem 
using the robust optimization approach. Deterministic data 
was used in the uniform distribution range to account for 
uncertainty. An examination was conducted in tire facto-
ries. Pei et al. (2022) studied the design of multi-period du-
al-channel SC. In this study, robust optimization was used 
based on trapezoidal numbers. Numerical examples were 
used to evaluate the proposed approach. Rouhani & Amin 
(2022) dealt with the design of organ transplant SC. This 
study used the robust optimization approach to reduce 
time and costs. The optimal solutions of the models were 
calculated and analysed in a case study. Gao et al. (2024) 
investigated dual-channel CLSCND in uncertainty condi-
tions. This study used robust optimization to address the 
challenges of the appliance industry. The findings revealed 
that the increase in online consumers led to a decrease in 
warehouses and an increase in uncertain demand led to 
an increase in total costs. In this group of studies, only the 
robustness of the results was considered, and the cogni-
tive and random uncertainties of the parameters were not 
investigated.

Furthermore, in this field, a shortage of studies is seen. 
On the other hand, PFNs were not used to consider uncer-
tainty in this class of studies. Due to the consideration of 
the maximum subjectivity of DMs to consider uncertainty 
and increase accuracy in modelling SCLSC problems by 
PFNs, studies are deficient in this field.

Possibilistic programming and robust optimization 
were investigated in many studies: Pishvaee et al. (2012) 
discussed the design of SC social responsibility. The robust 
possibilistic approach was introduced based on the neces-
sity criterion for trapezoidal fuzzy numbers. The industrial 
case was presented to show the application of the proce-
dures. To procure raw materials for CLSCND, Ghahremani-
Nahr et al. (2019) presented a facility location procedure. 
The robust possibilistic approach was used using neces-
sity criteria and trapezoidal fuzzy numbers, and the results 
confirmed the procedure’s performance. The economic 
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and environmental performances of green SCLSC were 
modelled by Liu et al. (2021). Using credibility criteria for 
trapezoidal fuzzy numbers, they offered a robust possibil-
istic procedure. The results were analysed in the Coca-Cola 
factory in China. Habib et al. (2021) developed the SC of 
biodiesel based on animal fat. A possibilistic approach us-
ing robust optimization was presented with a credibility 
standard based on trapezoidal fuzzy numbers. The results 
showed the appropriateness of the procedure. Lahri et al. 
(2021) designed a sustainable SC network and used a pos-
sibilistic programming approach based on triangular fuzzy 
numbers to consider uncertainty, and numerical examples 
were utilized in this research. Gilani & Sahebi (2021) worked 
on the design of pistachio SC and its by-products. Based 
on the necessity and trapezoidal numbers, the robust pos-
sibilistic procedure was utilized to meet uncertainty. The 
efficient results of the suggested procedure were satisfac-
tory. Foroozesh et al. (2022) addressed the SC design of 
perishable products. Based on credibility criteria for trap-
ezoidal fuzzy, robust possibilistic programming was ap-
plied in this study. A case study in a food company verified 
the model’s performance. Baghizadeh et al. (2022) studied 
the CLSCND under uncertainty. The possibilistic approach 
using robust optimization focused on the Me-standard in 
trapezoidal fuzzy numbers. The proposed approach was 
implemented in the case of greenhouse production in a 
fruit production company. Ghahremani-Nahr et al. (2022) 
addressed the integrated design of blood SC, considering 
economic and environmental aspects. Robust possibilistic 
programming focused on the necessary criterion in this 
study with trapezoidal fuzzy numbers. The outcomes con-
firmed the effectiveness of the procedure. Ghasemi et al. 
(2022) designed blood SC, and the robust-possibilistic pro-
cedure was utilized for trapezoidal fuzzy numbers. A case 
study was used in this research. Habib et al. (2022) studied 
the design of waste management in the SC, focusing on 
sustainability goals. The robust-possibilistic procedure was 
utilized on the Me in trapezoidal fuzzy numbers. This study 
helped policymakers in developing tactical and strategic 
plans for waste management. Babaee Tirkolaee et al. (2023) 
studied the blood SC network. The possibilistic procedure 
was used to model the problem. Then, an examination of 
the blood SC was used to demonstrate the effectiveness of 
the suggested procedure. The outcomes showed that the 
method used was appropriate. Only cognitive uncertain-
ty was investigated in this group of studies, and random 
uncertainty was not considered in the modelling. On the 
other hand, triangular and trapezoidal fuzzy numbers were 
used for modelling in these studies, which have shortcom-
ings in using PFNs in SCLSC problems.

Scenario-based RSP approach was considered in a 
group of studies by researchers for SCLSC modelling: Tor-
abi et al. (2016) used the possibilistic-stochastic approach 
on the Me for CLSCND. In this study, triangular numbers 
were used for modelling. In a study, Dehghan et al. (2018) 
investigated CLSCND considering the RSP programming. 
This study used trapezoidal numbers to model the multi-

product and multi-period problems. Farrokh et al. (2018) 
investigated the CLSCND problem under cognitive and 
stochastic uncertainties. This study used trapezoidal fuzzy 
numbers and credibility criteria for modelling. Atabaki et al. 
(2020) designed SCLSC using robust optimization and pos-
sibilistic-stochastic programming methods. This research 
uses triangular numbers to consider ambiguous param-
eters in numerical examples. Yu & Solvang (2020) offered a 
stochastic-possibilistic mathematical procedure based on 
flexible constraints for SCLSC design. Ala et al. (2024) in-
vestigated blood CLSCND to reduce blood products’ total 
cost and delivery time. In this study, a robust possibilistic 
approach was considered for network design. The findings 
indicated improvements in overall delivery time and total 
cost. Guo et al. (2024) investigated the responsive CLSC-
ND problem based on scenario-based robust possibilistic 
model approaches. Economic aspects, delivery time, and 
reliability were examined as indicators of responsiveness. 
Numerical investigation confirmed the applicability and 
appropriateness of the proposed approach. This research 
utilized triangular numbers and numerical investigations to 
evaluate the proposed approach. In this category of stud-
ies, triangular and trapezoidal fuzzy numbers were used for 
CLSCND problems. Research using PFNs to model SCLSC 
with uncertainty is lacking. In the following, the studies in 
applying robust and stochastic-possibilistic programming 
approaches are compared in Table 1.

2.3. Research gaps 

Current literature on sustainable CLSCND indicates that 
PFNs have not been used for hybrid uncertainty. Therefore, 
there are research gaps in this area. Triangular and trap-
ezoidal fuzzy numbers have been widely used in SCLSC 
literature, while DMs are losing more information consid-
ering triangular and trapezoidal fuzzy numbers than PFNs. 
If DMs want to consider more uncertainty or lose less in-
formation, PFNs are suitable. On the other hand, in previ-
ous studies, one criterion has been used to consider DMs’ 
risk-taking level. The different perspectives of DMs, such 
as necessity, possibility, and credibility, have not been re-
viewed simultaneously. Also, the necessity, possibility, and 
credibility standards have not yet been developed in the 
robust possibilistic programming approach for PFNs. The 
literature showed that several studies utilized numerical 
examples to assess the effectiveness of the presented ap-
proach. This study proposes a new approach called RSP 
programming based on PFNs to address current research 
gaps. This approach for PFNs includes criteria for possibil-
ity, necessity, and credibility. A linear programming model 
based on PFNs solves the sustainable CLSCND problem 
and achieves global optimal solutions. A case study on 
stone paper SC is reviewed to assess the presented ap-
proach’s effectiveness and analyse the outcomes. The 
outcomes are analysed based on DMs’ risk-taking by the 
possibility, necessity, and credibility criteria.
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Table 1. Comparison of the studies in CLSCND 

Author(s)
Programming method

Measurement 
approach

Information form
Multi-

product
Multi-
period

Experiment

fuzzy robust possibilistic stochastic crisp triangular 
fuzzy 

trapezoidal 
fuzzy 

pentagonal 
fuzzy numerical real 

case
Pishvaee et al. 
(2011) P – P P

Pishvaee et al. 
(2012) P P P necessity P P P

Ma et al. 
(2016) P – P P P

Torabi et al. 
(2016) P P P P Me P P

Dehghan et al. 
(2018) P P P P Me P P P P

Farrokh et al. 
(2018) P P P P credibility P P P

Ghahremani-
Nahr et al. 
(2019)

P P P necessity P P P P

Avakh 
Darestani 
& Hemmati 
(2019)

P – P P P P

Hassanpour 
et al. (2019) P – P P P

Nayeri et al. 
(2020) P P – P P P

Atabaki et al. 
(2020) P P P P – P P

Abdolazimi 
et al. (2020) P – P P P P

Yu & Solvang 
(2020) P P P P – P P P

Liu et al. 
(2021) P P P credibility P P P

Habib et al. 
(2021) P P P credibility P P P

Lahri et al. 
(2021) P P – P P P

Gilani & 
Sahebi (2021) P P P necessity P P P P

Foroozesh 
et al. (2022) P P P credibility P P P P

Baghizadeh 
et al. (2022) P P P Me P P P

Ghahremani-
Nahr et al. 
(2022)

P P P necessity P P P P

Pei et al. 
(2022) P P – P P P

Rouhani & 
Amin (2022) P – P P P P

Ghasemi et al. 
(2022) P P P necessity P P P

Habib et al. 
(2022) P P P Me P P P

Babaee 
Tirkolaee et al. 
(2023)

P P – P P P P

Gao et al. 
(2024) P – P P P

Ala et al. 
(2024) P P P P – P P P

Guo et al. 
(2024) P P P P – P P P

This work P P P P
possibility;
necessity;
credibility

P P P P



S. J. Hosseini Dehshiri et al. Designing a sustainable closed-loop supply chain using robust possibilistic-stochastic programming ...330

3. Model formulation

This section suggests the multi-period and multi-product 
models considering the hybrid uncertainty for stone pa-
per sustainable CLSCND. The considered SC is a closed-
loop in this study and includes MCs, DCs, customer points, 
CCs, RCs, RSs, and secondary markets. The manufactured 
products are sent to the customers’ points through the 
DCs in the forward flow. Returned goods from customers 
are handled in collecting places before being delivered to 
places for recovery and recycling in the reverse flow. Re-
covered goods are transported from RCs to DCs for resale. 
Recycled goods are transmitted to the secondary market. 
Figure 1 shows the schematic of the proposed SCLSC.

This research proposes a stochastic procedure since 
many parameters are random, varying values through-
out time and scenarios. So, considering the cognitive and 
stochastic uncertainties based on the views of DMs in this 
model, the optimal number and location of different facili-
ties are specified for cost minimization and carbon emis-
sion goals in the proposed SC. In the considered SC, some 
assumptions are considered as follows:
 ■ different stone paper products are made based on dif-
ferent applications in MCs;

 ■ the capacity of MCs, DCs, CCs, RCs, and RSs is limited;
 ■ covered cities are fixed for customers’ points;
 ■ a certain percentage of returned products from custom-
ers’ points can be recovered and recycled;

 ■ recovered products are used again in SC;
 ■ recycled products are transferred to the secondary mar-
ket for sale;

 ■ uncertainty of parameters is considered as PFNs;
 ■ the processing costs, emissions, and demand values are 
estimated based on the fuzzy scenario.

Optimization model. According to the provided as-
sumptions, the sustainable CLSCND problem is formulated 
as follows:
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
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The objective Z1 deals with minimizing SC costs by 
minimizing the fixed and variable costs of processing, ex-
pressed in Equation (1). The objective Z2 minimizes total 
carbon emissions in SCLSC via Equation (2). Equations (3) 
and (4) refer to the related constraints to the customer’s 
demands and the secondary market. In constraint (5), it is 
mentioned that the returned goods of all customer places 
are collected. The number of returned customer goods is 
measured according to Constraint (6). In time 0, the de-
mand for the good type p in customer place c under sce-
nario s equals zero under Constraint (7). The transfer of 
products from places of production and recovery to places 
of distribution is outlined in Constraints (8). Constraint (9) 
provides the relationship between the transportation of 
items from CCs to RSs. Transferring goods between col-
lection and recovery places is addressed in Constraint (10). 
Constraint (11) specifies the relation between the amount 
of transported goods from RCs to DCs and the amount of 
transported goods from CCs to RCs. Constraint (12) states 
the relationship between transmitted goods from CCs to 
recycling locations and recycled items to secondary mar-
kets. Constraints (13)–(17), respectively, refer to the great-
est capacity of MCs, DCs, CCs and RCs, and RSs. Constraints 
(18) and (19) refer to binary and non-negative variables in 
the model, respectively.

Therefore, based on the proposed CLSCND structure to 
deal with hybrid uncertainty, a novel RSP programming ap-
proach is proposed based on PFN in this research. Criteria 
for possibility, necessity, and credibility are presented in 
the proposed approach based on PFN to consider different 
decision-risk situations. In the following, A linear program-
ming model based on PFNs is presented in the case of 
stone paper CLSCND to achieve global optimal solutions. 
The research steps and the proposed approach to consider 
hybrid uncertainty are presented in Figure 2.

4. The proposed possibilistic  
programming based on PFNs 

In this section, PFNs and their membership function are 
discussed 1st. Then, a novel possibilistic programming ap-
proach is described using PFNs. Possibilistic programming 
based on PFNs is explained and measured by possibility, 
necessity, and credibility measures.

4.1. Geometric representation and  
membership functions of PFNs

Accurate measurement of some data is impossible due to 
measurement errors and instrument defects. Assume that 
when measuring temperature and humidity simultaneous-
ly, the temperature is roughly 35 °C with ordinary humid-
ity. In this case, the temperature seems to be either more 
than or less than 35 °C, which impacts the ordinary humid-
ity. It was evident that temperature change also impacts 
humidity percentage, a common phenomenon (Panda, Pal 
2015). A new class of fuzzy numbers known as PFNs is cre-
ated due to this conceptual diversity. A PFN, as the name 
suggests, is a subset of a real number R with 5 parameters.

PFNs are used in situations that require more resolution 
than triangular or trapezoidal numbers. PFNs are capable 
of more realistic modelling than triangular and trapezoidal 
numbers. Language variables for triangular fuzzy numbers 
are low, medium, and high. Trapezoidal numbers have low, 
low, high, and very high linguistic variables. PFNs have very 
low, low, medium, high, and very high linguistic variables. 
The used PFNs were introduced by Sengupta et al. (2018). 
Suppose that the fuzzy number   pA  in Equation (20) is a 
PFN: 

 ( )1 2 3 4 5€ , € , € , € , €pA = .                                     (20)

Figure 1. The schematic of the proposed SCLSC

Manufacturing centre  Customer centreDistribution centre  

Collection centreRecovery centre
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forward flow

reverse flow 

oqmdts uqdcts

pqlgts

sqlntsvunvts

qqclts
hqmdts



S. J. Hosseini Dehshiri et al. Designing a sustainable closed-loop supply chain using robust possibilistic-stochastic programming ...332

In Equation (20), €3 is the central point and (€1, €2) and 
(€4, €5) are the left and right scopes of x3. 

This part examines PFNs in terms of geometric repre-
sentation and membership function and compares them 
with other fuzzy sets. The membership function of the 
PFNs is illustrated in Figure 3.

w is the membership degree coefficient of points 
€2 and €4 in symmetric PFNs. The function of PFNs is de-
fined by Equation (21) as indicated in Figure 3:
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Also, the average or expected value of PFNs is calcu-
lated according to Equation (21) as follows (Zohrehvandi 
et al. 2020):

( ) 1 2 3 4 5€ 4 € 6 € 4 € €
16

pM A + ⋅ + ⋅ + ⋅ +
= .  (22)

Suppose a PFN is defined in a general way, and accord-
ing to the values of the membership degree coefficient, 
2 specific fuzzy numbers, i.e., trapezoidal and triangular 
fuzzy numbers, are investigated. Based on the values of 
the membership degree coefficient, 2 states are reviewed:
 ■ State I: where w = 0, then the PFN becomes a triangular 
fuzzy number,  ( ) ( )1 2 3 4 5 2 3 4€ , € , € , € , € € , € , €pA = ≅ :
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 ■ State II: where w = 1, then the PFN becomes a trapezoidal 
fuzzy number,  ( ) ( )1 2 3 4 5 1 2 4 5€ , € , € , € , € € , € , € , €pA = ≅ :

Figure 2. The research steps and the proposed approach to consider 
hybrid uncertainty in CLSCND

Discussing and presenting practical 
and managerial insights in the field 
of CLSCND and considering different 
risk levels of DMs

Reviewing the related literature 
in the field of CLSCND and identifying 
the researeh gap

Modeling stone paper CLSCND based 
on 2 objectives:
1 – minimizing total costs;
2 – minimizes total carbon emissions

Considering the hybrid uncertainty 
including stochastic and cognitive 
uncertainties in CLSCND

Presenting a novel RSP 
programming based  on PFNs

Application of the presented 
approach in the case of stone 
paper SC

Comparison and numerical simulation 
of the proposed approaches based 
on PEN with other existing approaches

Examining trade-offs between cost 
reduction and carbon emission reduction 
goals and robustness analysis and 
sensitivity analysis of parameters

Proposing a robust stochastic 
possibilistic linear approach based 
on measures of possibility, necessity, 
and credibility

Calculating measures of possibility,
necessity, and credibility in PFNs

Presenting a novel possibilistic
programming based on PFNs
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Figure 4 compares the functions of fuzzy numbers.
PFNs are more comprehensive than triangular and 

trapezoidal fuzzy numbers, and they are converted into tri-
angular and trapezoidal fuzzy numbers based on different 
values of the membership degree coefficient. PFNs can be 
converted into 2 specific states: triangular and trapezoi-
dal fuzzy numbers. As a result, compared to triangular and 
trapezoidal fuzzy numbers, PFNs are more accurate and 
complete when considering uncertainty.

4.2. Possibilistic programming based on PFNs

In actual conditions, optimization problems are faced 
with uncertainty about many parameters. Fuzzy program-
ming can be divided into possibilistic and flexible (Hos-
seini Dehshiri et al. 2022). A type of fuzzy mathematical 
programming known as possibilistic programming derives 
from the probability theory and focuses on ambiguous and 
fuzzy coefficients of constraints and objective functions. 

Possibilistic programming responds to cognitive uncertain-
ties. In this method, DMs can meet the constraints by us-
ing the average value of fuzzy and considering the lowest 
degrees of confidence. This procedure has 2 types of pos-
sibility and necessity measures (Dehghan et al. 2018). The 
necessary criterion is towards the smallest probability of 
occurrence of the ambiguous parameter or the pessimistic 
condition; conversely, the probability criterion is towards 
the maximum probability of occurrence of the ambiguous 
parameter (Pishvaee et al. 2012).

The possibilistic programming approach has been used 
for triangular and trapezoidal fuzzy numbers. Still, possibil-
istic programming has not yet been developed for PFNs, 
as can be seen from the studies done in the field. This is 
even though PFNs are more comprehensive than triangu-
lar and trapezoidal fuzzy sets and can consider the maxi-
mum subjectivity of DMs compared to other fuzzy sets. 
Consequently, the approach of possibilistic programming 
is developed on the necessity, possibility, and credibility 
criteria for PFNs.

4.2.1. Calculating possibility measure

The possibility measure considers the optimistic state in 
evaluating DMs in possibilistic programming. According to 
Figure 3 and the membership function of PFNs in Equation 
(20), the possibility measure is calculated based on PFNs. 
In this regard, surveys are conducted in 6 areas. The mem-
bership function of the possibility measure is expressed in 
Equations (25) and (26):
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The possibility measure values are calculated using 
Equations (25) and (26). For 0 £ a £ 0.5, the possibility 
measure values are calculated as follows:
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Figure 3. Membership function of fuzzy number €

Figure 4. Comparison of functions of fuzzy numbers
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Next, the possibility measure values for 0.5 £ a £ 1 are 
calculated as follows:
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4.2.2. Calculating necessity measure

The necessity criterion was created to consider the nega-
tive viewpoints in possibilistic programming. The function 
of the necessity standard is as follows, according to Fig-
ure 3 and Equation (21):
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Next, the necessity measure values are calculated us-
ing Equations (31) and (32). For 0 £ a £ 0.5, the necessity 
measure values are calculated as follows:

( )Nec A x ≤ ≥ ⇔
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4 3
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The necessity measure values for 0.5 £ a £ 1 are calcu-
lated as follows:
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4.2.3. Calculating credibility measure

According to the literature, credibility is specified by the 
average of necessity and possibility. Credibility measures 
are as follows:
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Credibility measure values are calculated using Equa-
tions (38) and (39). The value of a is examined in 4 intervals 
to calculate the credibility measure.

For 0 £ a £ 0.25, credibility measure values are calcu-
lated as follows: 

( ) ( )1

2 1

€1 .
2 € €

x
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 
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 ( )1 2€ 2 2 €

x
  



− + ⋅ ⋅⋅ ⋅
≥ ;  (40)

( ) ( )4
5 4

1 . €
2 € €

Cr A x x
  

  −
≥ ≥ ⇔ + ⋅ − ≥ ⇔   −  
( )5 4€ 2 2 €

x
  



⋅ − ⋅ + ⋅ ⋅
≤ .  (41)

For 0.25 £ a £ 0.5, credibility measure values are calcu-
lated as follows:
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For 0.5 £ a £ 0.75, credibility measure values are calcu-
lated as follows:
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For 0.75 £ a £ 1 credibility measure values are calcu-
lated as follows:
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5. The novel RSP programming  
based on PFNs

Possibilistic programming has weaknesses such that us-
ing possibilistic programming leads to ignoring deviations, 
and decisions are typically made under moderate situa-
tions. Also, the minimum confidence level in possibilistic 
programming is not optimally determined and requires 
repeated examinations (Hosseini Dehshiri et al. 2022). In 
addition, in many SCLSC problems, some parameters have 
random uncertainty, with different values under different 
scenarios. Stochastic programming should be used in this 
situation (Farrokh et al. 2018). Therefore, the combined 
approach of the stochastic-possibilistic procedure is rec-
ommended to handle cognitive and random uncertainties.

On the other hand, in modelling SCLSC problems, un-
known and uncertain parameters should be robust; Other-
wise, the effect of parameter fluctuations will be excessive 
over time (Pishvaee et al. 2011). Robust programming was 
created to address this flaw in SPP. To address uncertainty 
difficulties, robust programming or risk-averse method 
optimization theory was developed (Pishvaee et al. 2012). 
If the solution has both feasibility and optimality, the solu-
tion is robust. The research literature suggests using robust 
optimization to address stochastic-possibilistic approach 
weaknesses (Dehghan et al. 2018; Hosseini Dehshiri et al. 
2022). Based on the weaknesses above, we developed a 
novel stochastic probabilistic programming framework 
based on PFNs in this study. The presented procedure con-
trols the possibility and scenario deviations, and the con-
fidence level is determined optimally. The model also pro-
vides robust solutions not sensitive to parameter changes 
regarding feasibility and optimality. The compact form of 
SCLSC modelling can be expressed as follows:

min s sE f y c x= ⋅ + ⋅ 

subject to:
ssA x d⋅ ≥  ;

0B x⋅ = ;
 ssS x N y⋅ ⋅≤ ;

1T y⋅ ≤ ;

{ }0, 1y ∈ ;
0x ≥ .                                                                        (48)

The vectors f and c in Equation (48) determine the fixed 
and variable costs. N indicates the facility’s maximum ca-
pacity, A, B, T, and S indicate the constraints’ coefficients, 
and d is demand. The variables x and y are categorized as 
continuous and binary, respectively. For the SCLSC prob-
lem, the coefficient matrix N and the vectors f, c, and d 
represent uncertain parameters in PFNs. The s index indi-
cates the random uncertainty in modelling. In the possibil-
istic programming approach, the expected value operator 
and the calculation of mathematical expectation are used 
for the crisp equivalent of the objective function (Hosseini 
Dehshiri et al. 2022). Additionally, possibility, necessity, and 
credibility criteria address chance constraints, including 
uncertain parameters.
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5.1. RSP programming model based  
on possibility measure

This section defines the RSP model based on possibility 
measures. The compact form of the possibility measure of 
the SCLSC problem is the following:

( ) ( ) ( )min s scE z E f y E x= ⋅ + ⋅

subject to:

{ }ssPos A x d ⋅ ≥ ≥ ;

0B x⋅ = ;
{ }ssPos S x N y ⋅⋅ ≤ ≥ ;

1T y⋅ ≤ ;

{ }0, 1y ∈ ;

0x ≥ .                                                                        (49)

The objective function is converted into a deterministic 
state using the mathematical expectation operator by av-
eraging the 1st and 2nd terms. Here is the mathematical 
expectation of PFNs’ objective function:

( )
1 2 3 4 54 6 4

16
f f f f fE z y

 + ⋅ + ⋅ + ⋅ +
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1 2 3 4 54 6 4
16s s

s

c c c c cP x
 + ⋅ + ⋅ + ⋅ +
⋅ ⋅  
 

∑ .  (50)

The robust stochastic probabilistic programming mod-
el based on possibility measure is investigated in 2 cases:
 ■ Case I: for 0 £ a, b £ 0.5, the RSP programming model 
is formulated for PFNs as follows according to Equations 
(27), (28), and (49):
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0x ≥ .                                                                        (51)

The 1st term reduces the mean, while the 2nd term 
regulates optimality by decreasing the difference be-
tween the maximum and minimum. In the 2nd term, 

max 5 5z f y c x= ⋅ + ⋅ , and min 1 1 z f y c x= ⋅ + ⋅ . The coef-
ficient ¥ determines the importance or weight of the 
2nd term. The scenario deviation is calculated in the 3rd 
term, and the coefficient F determines the importance 
or weight of the 3rd term. Feasibility robustness is guar-
anteed in the 4th and 5th terms. 

Since the Model (51) is non-linear, changing the vari-
able ( )1p y = ⋅  and using the methodology described 
by Yu & Li (2000) can alter it into a linear model. There-
fore, the linear model of the RSP approach for the pos-
sibility measure is as follows for 0 £ a, b £ 0.5:
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 ■ Case II: for 0.5 £ a, b £ 1, the RSP programming model 
is formulated for PFNs as follows according to Equations 
(29), (30), and (49):
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0B x⋅ = ;
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The Model (53) can be linearized by altering the 
variable 2p y = ⋅ . According to the expressed meth-
od, the absolute value will be eliminated, and the 
model becomes linear. The linear model of the RSP 
approach for the possibility measure is as follows for 
0 £ a, b £ 0.5:

( ) ( )max minmin ¥ E z z z+ ⋅ − +
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Equations (52) and (54) are the final linear models of 
the RSP programming of PFNs based on the possibility 
measure for 0 £ a, b £ 0.5, and 0.5 £ a, b £ 1, respectively.

5.2. RSP programming model based  
on necessity measure

The RSP approach based on necessity is described in this 
section. The compact form of the necessity measure of the 
SCLSC problem is the following: 

( ) ( ) ( )min s scE z xfE y E= ⋅ + ⋅ 

subject to:

{ }ssNec A x d ⋅ ≥ ≥ ;
0B x⋅ = ;

{ }ssNec S x N y ⋅⋅ ≤ ≥ ;
1T y⋅ ≤ ;

{ }0, 1y ∈ ; 
0x ≥ .                                                                         (55)

2 cases are considered to examine the RSP program-
ming model based on the necessity measure:
 ■ Case I: for 0 £ a, b £ 0.5, the RSP programming of PFNs 
is formulated based on PFNs as follows according to 
Equations (33), (34), and (55):
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  ⋅ − − + ⋅  ⋅ ⋅ − ⋅
  −  

∑
subject to:

( )3 4  1
1

s s
s

d d
A x

  



⋅ − − + ⋅
⋅ ≥

−
;

0B x⋅ = ;

( )3 21
1

s s
s

N N
S x y

  



 ⋅ − − + ⋅
 ⋅ ≤ ⋅
 − 

;

1T y⋅ ≤ ;
0 ≤ , 0.5 ≤ ;

{ }0, 1y ∈ ;
0x ≥ .                                                                        (56)

The Model (56) is non-linear and by variable chang-
ing 1n y = ⋅ , it was converted into a linear model. Ac-
cording to the expressed method, the absolute value will 
be eliminated, and the model becomes linear. Therefore, 
the linear model of the RSP programming is as follows 
for necessity measure and 0 £ a, b £ 0.5:

( ) ( )max minmin ¥ E z z z+ ⋅ − +

( ) ( )( )( )  2s s s
s

P E z E z ⋅ ⋅ − + ⋅ +∑
( )3 4

5
  1

1
s s

s s
s

d d
P d

  




  ⋅ − − + ⋅  ⋅ ⋅ − +
  −  

∑
( )3 2

1 1 1
1

s n n s
s s

s

N y y N
P N y

  




 ⋅ − ⋅ − +
 ⋅ − ⋅
  

 ⋅ ⋅



− 
∑

subject to:

( ) ( ) 0s sE z E z − + ≥ , s∀ ;

( )3 41
1

s s
s

d d
A x

  



⋅ − − + ⋅
⋅ ≥

−
;
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0B x⋅ = ;
( )3 2

1 1
1

s n n s
s

N y y N
S x

  



⋅ − ⋅ − ⋅+
⋅ ≤

−
;

1n M y ≤ ⋅ ;

( )1 1n M y ≥ ⋅ − + ;

1n ≤ ;

1 0n ≥ ;
1T y⋅ ≤

0 ≤ , 0.5 ≤ ;

{ }0, 1y ∈ ;
, 0sx  ≥ .                                                                   (57)

 ■ Case II: for 0.5 £ a, b £ 1, the RSP programming is for-
mulated as follows based on PFNs according to Equa-
tions (35), (36), and (55):

( ) ( )max minmin ¥ E z z z+ ⋅ − +

( ) ( )s s
s

P E z E z −⋅⋅ +∑
( ) ( )5 4

5
1 1

  s s
s s

s

d d
P d

  




  ⋅ + − + ⋅ −  ⋅ ⋅ − +
  

  
∑

( ) ( )1 2
1

1 1s s
s s

s

N N
P N y

  




 ⋅ + − + ⋅ −
 ⋅ − ⋅
 


 
 ⋅
 
 

∑
subject to:

( ) ( )5 41 1s s
s

d d
A x

  



⋅ + − + ⋅ −
⋅ ≥ ;

0B x⋅ = ;

( ) ( )1 21 1s s
s

N N
S x y

  



 ⋅ + − + ⋅ −
 ⋅ ≤ ⋅
 
 

;

1T y⋅ ≤ ;
0.5 ≤ , 1 ≤ ;

{ }0, 1y ∈ ;
0x ≥ .                                                                        (58)

Equation (58) is made into a linear model by alter-
ing the variable 2n y = ⋅ , and in the proposed linear 
model, M is a large number. The linear form of RSP 
programming is as follows for necessity measure and 
0.5 £ a, b £ 1:

( ) ( )max minmin ¥ E z z z+ ⋅ − +

( ) ( )( )( )  2s s s
s

P E z E z −⋅⋅ + ⋅ +∑
( ) ( )5 4

5
1 1s s

s s
s

d d
P d

  




 ⋅ + − + ⋅ −
 ⋅ − +


 



 

⋅
 


∑

( ) ( )1 2
2 2 1s n s n

s s
s

N y y N y
P N y

  




 
 ⋅
 

 ⋅ ⋅ + − + ⋅ −
 ⋅ − ⋅

  

∑

subject to:

( ) ( ) 0s sE z E z − + ≥ , s∀ ;

( ) ( )5 41 1s s
s

d d
A x

  



⋅ + − + ⋅ −
⋅ ≥ ;

0B x⋅ = ;
( ) ( )1 2

2 2s n s n
s

N y y N y
S x

  



⋅ ⋅ + − + ⋅ −
⋅ ≤ ;

2n M y ≤ ⋅ ;

( )2 1n M y ≥ ⋅ − + ;

2n ≤ ;

2 0n ≥ ;
1T y⋅ ≤ ;

0.5 ≤ , 1 ≤ ;

{ }0, 1y ∈ ;
, 0sx  ≥ .                                                                      (59)

Therefore, according to the presented models, 
Equations (57) and (59) are, respectively, the final linear 
models of the RSP programming of PFNs based on the 
necessity criterion for 0 £ a, b £ 0.5 and 0.5 £ a, b £ 1.

5.3. RSP programming model based  
on credibility measure

This section describes the RSP programming approach 
based on the credibility measure. The compact form of the 
credibility measure of the SCLSC problem is the following:

( ) ( ) ( )min s sE z E f y E c x= ⋅ + ⋅ 

subject to:

{ }ssCr Ax d ≥ ≥ ;
0B x⋅ = ;

{ }ssCr S x N y ⋅⋅ ≤ ≥ ;
1T y⋅ ≤ ;

{ }0, 1y ∈ ;
0x ≥ .                                                                       (60)

4 cases are considered to calculate the RSP program-
ming model based on credibility measures:
 ■ Case I: for 0 £ a £ 0.25, the RSP programming is formu-
lated based on PFNs as follows according to Equations 
(40), (41), and (60):

( ) ( )max minmin ¥ E z z z+ ⋅ − +

( ) ( )s s
s

P E z E z −⋅⋅ +∑
( )1 2

5
2 2s s

s s
s

d d
P d

  




  ⋅ − ⋅ + ⋅ ⋅  ⋅ ⋅ − +
  

  
∑

( )2 4
1

2 2s s
s s

s

N N
P N y

  




  ⋅ − ⋅ + ⋅ ⋅  ⋅ ⋅ − ⋅
  
  

∑
subject to:

( )1 22 2s s
s

d d
A x

  



⋅ − ⋅ + ⋅ ⋅
⋅ ≥ ;
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0B x⋅ = ;
( )5 42 2s s

s
N N

S x y
  



⋅ − ⋅ + ⋅ ⋅
⋅ ≤ ⋅ ;

1T y⋅ ≤ ;
0 ≤ , 0.25 ≤ ;

{ }0, 1y ∈ ;
0x ≥ .                                                                         (61)

The model (61) is non-linear and by variable chang-
ing 1c y = ⋅ , and using the expressed procedure, it can 
be converted into a linear model. Therefore, the linear 
model of the RSP programming is as follows based on 
credibility measure for 0 £ a, b £ 0.25:

( ) ( )max minmin ¥ E z z z+ − +

( ) ( )( )( )  2s s s
s

P E z E z ⋅ ⋅ − + ⋅ +∑
( )1 2

5
2 2s s

s s
s

d d
P d

  




 ⋅ − ⋅ + ⋅ ⋅
 ⋅ − +


 



 

⋅
 


∑

( )5 4
1 1 1

2 2  s c c s
s s

s

N y N
P N y

  




 ⋅ ⋅ − ⋅ + ⋅



⋅
 ⋅ − ⋅
 

 




⋅



∑

subject to:

( ) ( ) 0s sE z E z − + ≥ , s∀ ;

( )1 22 2s s
s

d d
A x

  



⋅ − ⋅ + ⋅ ⋅
⋅ ≥ ;

0B x⋅ = ;

( )5 4
1 12 2s c c s

s
N y N

S x
  



⋅ ⋅ − ⋅ + ⋅ ⋅
⋅ ≤ ;

1c M y ≤ ⋅ ;

( )1 1c M y ≥ ⋅ − + ;

1c ≤ ;

1 0c ≥ ;
1T y⋅ ≤

0 ≤ , 0.25 ≤ ;

{ }0, 1y ∈ ;
, 0sx  ≥ ;                                                                   (62)

 ■ Case II: for 0.25 £ a, b £ 0.5, the RSP programming is 
formulated as follows according to Equations (42), (43), 
and (60):

( ) ( )max minmin ¥ E z z z+ ⋅ − +

( ) ( )s s
s

P E z E z −⋅⋅ +∑
( ) ( )3 2

5
2 1 2

1
s s

s s
s

d d
P d

  




  ⋅ ⋅ − + ⋅ − ⋅  ⋅ ⋅ − +
  −  

∑
( ) ( )3 4

1
2 1 2

1
s s

s s
s

N N
P N y

  




  ⋅ ⋅ − + ⋅ − ⋅  ⋅ ⋅ − ⋅
  −  

∑

subject to:
( ) ( )3 22 1 2

1
s s

s
d d

A x
  



⋅ ⋅ − + ⋅ − ⋅
⋅ ≥

−
;

0B x⋅ = ;

( ) ( )3 42 1 2
1

s s
s

N N
S x y

  



⋅ ⋅ − + ⋅ − ⋅
⋅ ≤ ⋅

−
;

1T y⋅ ≤ ;
0.25 ≤ , 0.5 ≤ ;

{ }0, 1y ∈ ;
0x ≥ .                                                                        (63)

Considering that the Model (63) is non-linear, by 
changing the variable c2 y = ⋅ , the model can be made 
linear, and the absolute value is converted into a linear 
model according to the expressed approach. Therefore, 
the linear model of the RSP programming is as follows 
based on the credibility measure for 0.25 £ a, b £ 0.5:

( ) ( )max minmin ¥ E z z z+ ⋅ − +

( ) ( )( )( )  2s s s
s

P E z E z ⋅ ⋅ − + ⋅ +∑
( ) ( )3 2

5
2 1 2

1
s s

s s
s

d d
P d

  




  ⋅ ⋅ − + ⋅ − ⋅  ⋅ ⋅ − +
  −  

∑
( ) ( )3 4

2 2 1
2 2

1
s c s c

s s
s

N y N y
P N y

  




  ⋅ ⋅ − ⋅ + ⋅ − ⋅  ⋅ ⋅ − ⋅
  −  

∑
subject to:

( ) ( ) 0s sE z E z − + ≥ , s∀ ;

( ) ( )3 22 1 2
1

s s
s

d d
A x

  



⋅ ⋅ − + ⋅ − ⋅
⋅ ≥

−
;

0B x⋅ = ;

( ) ( )3 4
2 22 2

1
s c s c

s
N y N y

S x
  



⋅ ⋅ − ⋅ + ⋅ − ⋅
⋅ ≤

−
;

2c M y ≤ ⋅ ;

( )2 1c M y ≥ ⋅ − + ;

2c ≤ ;

2 0c ≥

1T y⋅ ≤

0.25 ≤ , 0.5 ≤ ;

{ }0, 1y ∈ ;
, 0sx  ≥ ;                                                                     (64)

 ■ Case III: for 0.5 £ a, b £ 0.75, the RSP programming is 
formulated as follows according to Equations (44), (45), 
and (60):

( ) ( )max minmin ¥ E z z z+ ⋅ − +

( ) ( )s s
s

P E z E z −⋅⋅ +∑
( ) ( )3 4

5
2 2 2 1

1
s s

s s
s

d d
P d

  




  ⋅ − ⋅ − + ⋅ ⋅ −  ⋅ ⋅ − +
  −  

∑
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( ) ( )3 2
1

2 2 2 1
1

s s
s s

s

N N
P N y

  




  ⋅ − ⋅ − + ⋅ ⋅ −  ⋅ ⋅ − ⋅
  −  

∑
subject to:

( ) ( )3 42 2 2 1
1

s s
s

d d
A x

  



⋅ − ⋅ − + ⋅ ⋅ −
⋅ ≥

−
;

0B x⋅ = ;
( ) ( )3 22 2 2 1

1
s s

s
N N

S x y
  



⋅ − ⋅ − + ⋅ ⋅ −
⋅ ≤ ⋅

−
;

1T y⋅ ≤ ;
0.5 ≤ , 0.75 ≤ ;

{ }0, 1y ∈ ;
0x ≥ .                                                                          (65)

The variable change 3c y = ⋅  is defined to linearize 
the Model (65), and the absolute value is converted into 
a linear model according to the expressed approach. 
Therefore, the linear model of the RSP programming is 
as follows for 0.5 £ a, b £ 0.75:

( ) ( )max minmin ¥  E z z z+ ⋅ − +

( ) ( )( )( )  2s s s
s

P E z E z ⋅ ⋅ − + ⋅ +∑
( ) ( )3 4

5
2 2 2 1

1
s s

s s
s

d d
P d

  




  ⋅ − ⋅ − + ⋅ ⋅ −  ⋅ ⋅ − +
  −  

∑
( ) ( )3 2

3 3 1
2 2 2

1
s c s c

s s
s

N y y N y
P N y

  




  ⋅ − ⋅ − ⋅ + ⋅ ⋅ −  ⋅ ⋅ − ⋅
  −  

∑
subject to:

( ) ( ) 0s sE z E z − + ≥ , s∀ ;

( ) ( )3 42 2 2 1
1

s s
s

d d
A x

  



⋅ − ⋅ − + ⋅ ⋅ −
⋅ ≥

−
;

0B x⋅ = ;

( ) ( )3 2
3 32 2 2

1
s c s c

s
N y y N y

S x
  



⋅ ⋅ − ⋅ − ⋅ + ⋅ ⋅ −
⋅ ≤

−
;

3c M y ≤ ⋅ ;

( )3 1c M y ≥ ⋅ − + ;

3c ≤ ;

3 0c ≥ ;
1T y⋅ ≤ ;

0.5 ≤ , 0.75 ≤ ;

{ }0, 1y ∈ ;
, 0sx  ≥ ;                                                                   (66)

 ■ Case IV: for 0.75 £ a, b £ 1, the RSP programming is 
formulated as follows according to Equations (46), (47), 
and (60):

( ) ( )max minmin ¥ E z z z+ ⋅ − +

( ) ( )s s
s

P E z E z −⋅⋅ +∑

( ) ( )5 4
5

  2 2 2 2s s
s s

s

d d
P d

  




  ⋅ + − + ⋅ − ⋅  ⋅ − +
  

⋅

 
∑

( ) ( )1 2
1

2 2 2 2s s
s s

s

N N
P N y

  




 ⋅ ⋅ + − + ⋅ − ⋅
 ⋅ −
 
 

 
 ⋅ ⋅
 
 

∑
subject to:

( ) ( )5 42 2 2 2s s
s

d d
A x

  



⋅ ⋅ + − + ⋅ − ⋅
⋅ ≥ ;

0B x⋅ = ;
( ) ( )1 22 2 2 2s s

s
N N

S x y
  



⋅ ⋅ + − + ⋅ − ⋅
⋅ ≤ ⋅ ;

1T y⋅ ≤ ;
0.75 ≤ , 1 ≤ ;

{ }0, 1y ∈ ;
0x ≥ .                                                                        (67)

In the following, to linearize the Model (67), the 
change of variable 4c y = ⋅  is used. Then, the abso-
lute value is converted into a linear model. Therefore, 
the linear model of the RSP programming is as follows 
for 0.75 £ a, b £ 1:

( ) ( )max minmin ¥ E z z z+ ⋅ − +

( ) ( )( )( )  2s s s
s

P E z E z −⋅⋅ + ⋅ +∑
( ) ( )5 4

5
2 2 2 2s s

s s
s

d d
P d

  




 + − + −
 ⋅ − +
 
 

 
 ⋅


 

∑

( ) ( )1 2
4 4 1

2 2 2 2s c s c
s s

s

N y y N y
P N y

  




  ⋅ ⋅ + ⋅ − ⋅ + ⋅ ⋅ − ⋅  ⋅ − ⋅
 

⋅


  

∑
subject to:

( ) ( ) 0s sE z E z − + ≥ , s∀ ;

( ) ( )5 42 2 2 2s s
s

d d
A x

  



⋅ ⋅ + − + ⋅ − ⋅
⋅ ≥ ;

0B x⋅ = ;

( ) ( )1 2
4 42 2 2 2s c s c

s
N y y N y

S x
  



⋅ ⋅ + ⋅ − ⋅ + ⋅ ⋅ − ⋅
⋅ ≤ ;

4c M y ≤ ⋅ ;

( )4 1c M y ≥ ⋅ − + ;

4c ≤ ;

4 0c ≥

1T y⋅ ≤ ;
0.75 ≤ , 1 ≤ ;

{ }0, 1y ∈ ;
, 0sx  ≥ .                                                                   (68)

Therefore, according to the presented models, Equa-
tions (62), (64), (66), and (68) are, respectively, the final 
linear models of the RSP programming based on the 
credibility measure in the intervals of 0 £ a, b £ 0.25; 
0.25 £ a, b £ 0.5; 0.5 £ a, b £ 0.75 and 0.75 £ a, b £ 1.
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6. Implementation and  
computational results

6.1. Case study description

The presented procedure is examined for the SCLSC is-
sue in a real case to produce stone paper in Iran. The 
potential for stone paper production is high due to iron 
ore resources in Iran. Additionally, water is not needed 
during stone paper production, making it ideal for regions 
like Iran that lack access to clean water. The production 
process of cellulose paper leads to environmental pollu-
tion and water resources as well as high water consump-
tion, but in the production process of this type of paper, 
there is no need to use water, and environmental pollution 
has been minimized. In addition, the high quality of print-
ing on stone paper has made this valuable paper in all 
printing matters, such as book printing, promotional gifts, 
and carton making. Therefore, stone paper is a suitable 
substitute for cellulose paper. Therefore, considering the 
advantages of stone paper, including many applications, 
as well as no need for water consumption and no harmful 
environmental effects, the development of stone paper SC 
is approved in Iran.

In the proposed SC in this study, 3 types of goods are 
considered. Forward SC includes MCs, DCs, and final cus-
tomer points. Reverse SC includes CCs, RCs, RSs, and sec-
ondary markets. In forward flow, manufacturing plants are 
considered in 2 locations that produce the goods. Then, 
the manufactured goods are sent from the factories to the 
DCs, which are considered in 8 locations to cover customer 
points, and goods are shipped to customers in eleven lo-
cations in the target markets. Returned customer goods 
are collected in CCs in 5 locations in the reverse flow. Re-
turned goods are processed in CCs and are divided into 2 
levels: recoverable goods and recyclable goods based on 
quality. Recoverable goods are sent from CCs to RCs in 2 
locations. Then, the recovered goods are sent from RCs to 
DCs for sale to customers. Recycled goods are transferred 
from CCs to RSs in 2 locations. The materials are sent to the 
secondary market, which consists of 2 centres. Therefore, 
in the proposed SC, due to the simultaneous considera-
tion of forward and reverse flow while achieving economic 
benefits, environmental damage is minimized, and recy-
cled items are used again.

6.2. Input parameters

The proposed SCLSC seeks to meet customer and second-
ary market demand by reducing costs and carbon emis-
sions. The capacity of MCs, DCs, CCs, RCs, and RSs is re-
sponsive to demand. 2 consumption periods in a year are 
considered for demand changes. As a result, the problem 
is a multi-product and multi-period SCLSC. This study con-
siders 4 states for random parameters to deal with random 
uncertainty. Similarly, low, normal, high, and very high 
conditions are related to states 1, 2, 3, and 4, respectively, 
with probability values of 0.2, 0.2, 0.3, and 0.3, respectively. 

In this study, for parameters with cognitive uncertainty, 
PFNs are used, which have a uniform distribution, in such 
a way that for each parameter, 5 numbers are randomly 
selected in the range of uniform distribution, and the PFN 
is identified for each parameter. The range of the uniform 
distribution of uncertain parameters is shown in Table 2.

In the Appendix, we describe the IFPS approach method 
for solving the bi-objective model. The suggested problem 
is solved by using GAMS 24.8 software (https://www.gams.
com/products/gams/gams-language) and the CPLEX solver 
(https://www.ibm.com/products/ilog-cplex-optimization-
studio/cplex-optimizer), and the performance of the model 
is examined in terms of its robustness and sensitivity. In the 
following, the model is assessed using simulation and the 
production of nominal data through the realization model.

6.3. Robustness analysis

This part performs the robustness analysis of the proposed 
RSP programming model. Analysis of robustness coeffi-
cients, including possibilistic deviation, scenario deviation, 
and un-fulfilment of demand and capacity, are investigat-
ed and analysed by changing coefficients ¥, F, q, and p. 

6.3.1. Possibilistic deviation

The RSP programming with a focus on credibility measures 
is examined in this analysis. Figure 5 indicates the impact 
of the coefficient ¥ on the possibilistic deviation. In the 
case where ¥ = 0, the risk is at the most heightened value, 
the possibilistic deviation value is at the maximum, and 
the mean cost is at the lowest value. By increasing the ¥  
coefficient, the decision risk and possibilistic deviation are 
reduced, and the mean cost will increase due to the ro-
bustness of the optimality.

The optimality robustness can be managed by chang-
ing the importance of the possibilistic deviation. Due to 
DMs’ preferences and level of risk-taking, the coefficient ¥  
can be changed to provide different answers according 
to different conditions and acceptable risk levels of DMs. 
Therefore, the proposed approach has the appropriate 
flexibility to determine solutions by changing the possibil-
istic deviation coefficient.

6.3.2. Scenario deviation

The findings of changing the coefficient F are illustrated in 
Figure 6. When F = 0, the mean of the objective functions 
is at its lowest point, and the risk and scenario deviations 
are at their maximum points. The mean of the objective 
functions rises when the coefficient F is increased during 
the decision risk and scenario deviation decrease.

As a result, altering the scenario deviation coefficient 
can be used to control the optimality robustness. In the 
proposed approach, by changing the F, it is possible to 
achieve flexibility solutions in different conditions and based 
on the level of risk of DMs. Based on this, it is possible to 
create a trade-off by changing the coefficient F, between 
the mean of the objective functions and the risk of DMs.

https://www.gams.com/products/gams/gams-language
https://www.gams.com/products/gams/gams-language
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
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Table 2. Range of uniform distribution for uncertain parameters

Parameter (unit)
Scenarios

UnitState 1 State 2 State 3 State 4
0.2 0.2 0.3 0.3

( )1qctsd q = ( )155 275U − ( )165 305U − ( )175 335U −
( )185 365U −

ton

( )  2qctsd q = ( )185 355U − ( )205 395U − ( )225 435U −
( )245 475U −

ton

( )  3qctsd q = ( )215 405U − ( )255 445U − ( )285 485U −
( )315 525U −

ton

uvtd ( )85 215U − ton


mpp ( )17000 28000U − ton


dpp ( )11000 20000U − ton


lpp ( )10000 19000U − ton


gpp ( )11000 20000U − ton


npp ( )9000 20000U − ton


qmdtsco ( )105 555U − ( )115 615U − ( )125 675U −
( )135 735U −

310⋅  toman


qdctscu ( )125 725U − ( )135 795U − ( )145 865U −
( )155 935U −

310⋅  toman


qcltscq ( )125 725U − ( )135 795U − ( )145 865U −
( )155 935U −

310⋅  toman


qlgtscp ( )105 555U − ( )115 615U − ( )125 675U −
( )135 735U −

310⋅  toman


qlntscs ( )105 555U − ( )115 615U − ( )125 675U −
( )135 735U −

310⋅  toman


qgdtsch ( )105 555U − ( )115 615U − ( )125 675U −
( )135 735U −

310⋅  toman


unvtscv ( )105 605U − ( )115 665U − ( )125 725U −
( )135 785U −

310⋅  toman

qmts
 ( )205 605U − ( )225 665U − ( )245 725U −

( )265 785U −
310⋅  toman

qdts ( )155 255U − ( )175 275U − ( )195 295U −
( )215 315U −

310⋅  toman

qlts∂ ( )155 255U − ( )175 275U − ( )195 295U −
( )215 315U −

310⋅  toman

qgts
 ( )205 405U − ( )245 445U − ( )285 485U −

( )325 525U −
310⋅  toman

unts
 ( )205 405U − ( )245 445U − ( )285 485U −

( )325 525U −
310⋅  toman



mfc ( )1800000 24000000U − 310⋅  toman


dfc ( )9000000 12000000U − 310⋅  toman


lfc ( )8000000 11000000U − 310⋅  toman


gfc ( )10000000 14000000U − 310⋅  toman


nfc ( )12000000 18000000U − 310⋅  toman

qmtse ( )14 26U − ( )20 37U − ( )26 38U −
( )32 49U −

g

qdtse ( )6.5 16.5U − ( )7.5 17.5U − ( )8.5 18.5U −
( )9.5 19.5U −

g

qltse ( )6.5 16.5U − ( )7.5 17.5U − ( )8.5 18.5U −
( )9.5 19.5U −

g

qgtse ( )6 19U − ( )7 20U − ( )8 21U −
( )9 22U −

g

untse ( )7 20U − ( )8 21U − ( )9 22U −
( )10 23U −

g

qmdtse ( )45 175U − ( )65 195U − ( )85 215U −
( )105 235U −

g

qdctse ( )60 210U − ( )80 230U − ( )100 250U −
( )125 270U −

g

qcltse ( )60 210U − ( )80 230U − ( )100 250U −
( )125 270U −

g

qlgtse ( )45 175U − ( )65 195U − ( )85 215U −
( )105 235U −

g

qlntse ( )45 175U − ( )65 195U − ( )85 215U −
( )105 235U −

g

qgdtse ( )45 175U − ( )65 195U − ( )85 215U −
( )105 235U −

g

unvtse ( )60 210U − ( )80 230U − ( )100 250U −
( )125 270U −

g
qcw ( )15 45U − %


qt ( )20 35U − %
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with the penalty coefficient q and p, and the risk decreases. 
Therefore, by changing the coefficients q and p, a trade-off 
is made according to the risk of DMs and the mean cost. 
The robustness of the feasibility of the solutions is handled 
by determining the coefficients regarding the priorities of 
DMs, and the presented method is suitable for selecting a 
set of solutions by varying the coefficients θ and π in the 
various conditions.

6.4. Sensitivity analysis

The sensitivity analysis of the facility opening cost, facil-
ity capacity, demand, and product failure rate is analysed, 
and the effects are analysed on the average of objective 
functions.

6.4.1. Facility opening costs

Facility opening costs impact the number of active facili-
ties. This study examines the influence of facility opening 
costs on average costs and carbon emission levels from 
a 20% drop to a 20% rise. Figure 9 shows the sensitivity 
analysis of the facility opening cost on the average objec-
tive functions. The average cost increases with the increase 
in the cost of opening the places, and the average cost 
decreases with the decrease in the opening cost. The rea-
son for this is the direct relationship between the mean of 
costs and the cost of opening the facility. Also, with the 
increase in the cost of opening the places, fewer places are 
utilized, and as a result, the distance among the places in-

Figure 7. Robustness analysis of un-fulfilment demand

Figure 8. Robustness analysis of un-fulfilment capacity
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Figure 5. Robustness analysis of possibilistic deviation

Figure 6. Robustness analysis of scenario deviation

6.3.3. Un-fulfilment of constraints

This section examines the impact of changing coefficients 
q and p on the mean cost in the RSP programming mod-
el based on credibility measures. In Figures 7 and 8, the 
robustness analysis of changing coefficients q and p are 
presented.

When the coefficients q and p are 0, the mean cost 
is at the lowest level. The feasibility robustness increases 
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creases, and the amount of carbon emission increases due 
to transportation. By reducing the cost of opening, more 
places are utilized, and as a result, the distance among 
locations is decreased, and carbon pollution is reduced 
due to transport. Therefore, at different levels of the costs 
of opening, it is possible to control and manage the total 
costs and the carbon emissions at an appropriate level.

Figure 9. Sensitivity analysis of facility opening cost

Figure 10. Sensitivity analysis of facility capacity
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6.4.2. Facility capacity

The influence of facility capacity on average cost and 
carbon emissions is examined in this section. In this in-
vestigation, the influence of facility capacity on average 
objective functions is investigated in the range of a 20% 
drop to a 20% rise, which the outcomes are shown in Fig-
ure 10. Increasing the facility capacity means fewer sites 
are activated, and the total costs decrease. By reducing 
the capacity to meet the demand, activating more facilities 
in the model is necessary, increasing the average costs. 
On the other hand, with the reduction of facility capacity, 
more sites are required to handle the demand, and as a 
result, the distance between different locations is reduced, 
which decreases the carbon emissions by transportation. 
Therefore, appropriately controlling and managing the to-
tal costs and carbon emissions is possible.

6.4.3. Demand

In the design of SC, demand is crucial. In the model, few-
er facilities are activated when demand is low, and more 
places are active when demand is high. Therefore, an in-
crease in demand leads to a growth in the number of ac-
tive facilities and, as a result, an increase in fixed costs and 
processing costs, which shows a growth in the mean cost, 
and with a decrease in demand, fewer facilities are need-
ed, which leads to a decrease in the average cost. Carbon 
emissions also rise when demand rises due to increasing 
processes at various sites and transit between sites. There-
fore, total costs and carbon emissions can be managed 
appropriately at different demand levels. Figure 11 indi-
cates the findings of the sensitivity analysis of demand.

6.4.4. Product return rate 

The sensitivity analysis of the product return rate is dis-
cussed in this part because it impacts processing and 
transportation in the facilities and is a critical parameter in 
the SC design. The product return rate’s sensitivity analysis 
is shown in Figure 12. According to the presented results, 
with the increase in the product return rate, more facili-
ties are required, and the transportation and processing 
of goods expands. As a result, an increase in the return 
rate should increase overall expenses and carbon emis-
sions from processing and transportation, and vice versa. 
Therefore, according to the presented results, costs and 
emissions can be handled at different levels of product 
return rates, and production quality can be controlled ap-
propriately. The appropriate cost and carbon emissions 
level are achieved based on DMs’ opinions.

6.5. Performance assessment of  
the proposed approaches
The results are simulated through nominal data to as-
sess the RSP programming procedure based on credibility 
measures. For per ambiguous parameter, random data is 
produced with a uniform distribution, and the realization 
model is then applied to validate the proposed models; by 
evenly producing ten random realizations, the proposed 
models are assessed.
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Assume the parameter ( )1 2 3 4 5£ £ , £ , £ , £ , £= is consid-
ered a PFN. A number is generated randomly per run in 
the range ( )1 5£ , £ . In the following, the obtained answers 
are examined under nominal data. At this stage, the ob-
tained answers from the presented models under the data 
( )* *,x y  are replaced in the model. The model can be ex-
pressed in the following compact form:

( )*

*

real  * real  *
1

1 PIS* 
1 1

max  €
NIS

real
NIS

z f y c x
Z

z z

− ⋅ + ⋅
= ⋅ +

−

( ) (
*

* *

*
2

2 1 2
2 2

€ )
NIS real

r r
d cNIS PIS

z em x
S S

z z
 

− ⋅
⋅ − ⋅ + ⋅

−
subject to:

* r real
dA x S d⋅ + ≥ ;

* 0B x⋅ = ;
* *real r

cS x N y S⋅ ≤ ⋅ + ;
* 1T y⋅ ≤ ;

r
dS , 0r

cS ≥ .                                                                (69)

 r
dS  and r

cS  indicate constraint violation degree, while 
z1 and z2 indicate the penalty for violations. The realization 
model calculates and compares the objective’s average 
and SD for the proposed models. Normalizing the penalty 
costs for chance constraints has resulted in a significantly 
lower average. So, the mean and SD of the chance con-
straints to compare and assess the presented model are 
used. The SPP and RSP approaches are compared based 
on credibility measures at different confidence levels. The 
numerical findings and evaluation of the suggested SPP 
and RSP approaches are presented in Table 3.

The performance evaluation results of the approaches 
showed that the values lowest of average and SD related to 
the RSP approach at the confidence level of 0 £ a, b £ 0.25, 
and the values highest of average and SD related to the 
SPP approach at the confidence level Confidence is a, b = 
0.8. RSP approaches have lower values of average and SD 
due to consideration of robustness and control of possibil-
istic and scenario deviations and un-fulfilment of demand 
and capacity compared to SPP approaches. Therefore, con-
sidering robustness increases the accuracy and improves 
the solutions in PFNs. Also, with the increase in confidence 
levels, the solutions get worse due to the shrinking of the 
justified space, and as a result, the average and SD increase 
with the increase of the confidence level. Therefore, for 
the confidence level of 0 £ a, b £ 0.25, the RSP approach 
has the best performance, and the solutions of the RSP 
approaches become worse as the confidence level values 
increase. In SPP approaches, the best answer was related 
to the confidence level of a, b = 0.2, which worsened the 
average and SD values with the increase of the confidence 
level. The outcomes of the numerical simulation demon-
strated that the RSP model performs better than the SPP 
model based on PFNs.

6.6. Discussion and managerial insights

This study provides a framework for managers to consider 
hybrid uncertainty in sustainable CLSCND, which can con-
sider both fuzzy and robust aspects. The proposed ap-
proach considers the maximum subjectivity of DMs com-
pared to triangular and trapezoidal fuzzy numbers. Using 
PFNs, SC managers can consider more uncertainty of non-
deterministic parameters, and DMs lose less information 
by using the proposed approach. In addition, decision-

Figure 11. Sensitivity analysis of demand

Figure 12. Sensitivity analysis of product return rate
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making is provided more accurately. Therefore, uncertainty 
is significantly considered by using PFNs in modelling, and 
the presented results for managers are accurate.

In addition, this study presents a novel RSP program-
ming based on PFNs to solve the SCLSC problems under 
hybrid uncertainty and improve the degree of ambiguity 
and lack of information for SC managers. The proposed 
robust approach presents different ranges of considera-
tion of DMs’ preferences and managers’ risk tolerance 
based on PFNs. In this study, the possibility measure was 
used to consider the risk-taking state, and the necessity 
criterion was used to consider the risk-aversion state in 
the preferences of DMs. Credibility measure was also used 
to eliminate the weaknesses of optimistic and pessimistic 
spectrums and to present the intermediate state of man-
agers’ risk-taking. The model uses the credibility measure 
to dynamically apply the risk-taking viewpoints of DMs. 
This benefit enables managers to make decisions in SCLSC 
modelling that are more flexible, and on the other hand, 
because of the model’s robustness, the minimum level of 
confidence is optimally determined through the model’s 
solution, and the drawback of SPP was corrected that ne-
cessitated frequent checks by DMs. In addition, the pro-
posed RSP programming model achieves a desirable sat-
isfaction degree, and manager judgments are more exact 
than earlier procedures using a range of pentagonal num-
bers for uncertain parameters.

A study was conducted to decrease costs and carbon 
pollution in the stone paper SC. The promotion and feasi-
bility of stone paper product development led to creating 
a perspective for managers and policymakers to produce 
these clean products due to diverse applications, no need 
for water, and no environmental pollution. The analysis’s 
findings demonstrated that SC managers could use the 
suggested method to alter the robustness coefficient to 
make trade-offs among the degree of risk and mean of 
objective functions. 

The proposed approach provides realistic and flexible 
solutions for managers under different conditions of un-

certainty based on pessimistic-optimistic preferences and 
at different risk tolerance levels for managers in the stone 
paper area. In addition, the outcomes of the sensitivity 
analysis of the parameters revealed that at different lev-
els of facility opening cost, facility capacity, demand, and 
product return rate in the studied SC, costs and carbon 
emissions can be controlled at an appropriate level based 
on the opinions of DMs. The simulation results showed 
that considering optimality and feasibility, robustness re-
duced risk and presented more reliable and accurate re-
sults than SPP models for sustainable CLSCND. Using ro-
bust approaches led to minimizing the sensitivity of chang-
ing parameters in conditions of uncertainty and risk and 
obtaining more realistic and accurate solutions.

7. Conclusions 

This study used a novel RSP programming approach to 
examine the SCLSC problem under hybrid uncertainty. The 
studies used triangular and trapezoidal fuzzy numbers to 
model SCLSC. PFNs had higher accuracy due to consider-
ing the maximum subjectivity of experts, providing greater 
freedom of action for DMs, considering higher uncertainty, 
and lacking less information. PFNs were more comprehen-
sive and accurate and could be converted to triangular 
and trapezoidal sets based on the values of the member-
ship degree coefficient. As a result, to solve the existing 
deficiencies, a novel stochastic possibilistic approach was 
developed based on PFNs. According to the weaknesses 
of SPP, a novel RSP programming approach was devel-
oped for PFNs based on the necessity, possibility, and 
credibility measures. In the proposed robust approach, 
solving the model determined the minimum confidence 
level, and repeated mental checks were eliminated to find 
the appropriate confidence level. A study was conducted 
to develop a stone paper SCLSC in Iran. The implemen-
tation results demonstrated that the proposed approach 
trades-offs between the mean of objectives and risk by 
modifying the robustness coefficients. Also, in the pro-

Table 3. The numerical findings of the SPP and RSP approaches

No
SPP approach RSP approach

a, b = 0.2 a, b = 0.4 a, b = 0.6 a, b = 0.8 0 £ a, b £ 0.25 0.25 £ a, b £ 0.5 0.5 £ a, b £ 0.75 0.75 £ a, b £ 1
1 5807 6778 7411 9316 4710 4696 4972 5107
2 5125 6894 8309 9071 4720 4699 4922 5296
3 5479 6392 8005 10816 4728 4842 4892 5118
4 5796 7392 8492 10022 4729 4842 4901 5115
5 4900 7199 10258 11522 4775 4916 4811 4941
6 5351 7533 8583 11378 4496 4854 5047 5641
7 5798 7467 9376 10534 4781 4892 5183 5030
8 5033 7600 9670 10190 4774 4880 5118 5469
9 5301 7934 9964 12846 4671 5049 5254 5107
10 5988 7668 8679 10503 4696 4857 5190 5246
Average 5458 7286 8875 10620 4708 4853 5029 5207
SD 357 446 864 1051 78 97 143 201
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posed approach, by considering the uncertainty through 
PFNs, realistic and flexible approaches can be provided 
in different conditions of uncertainty based on different 
levels of risk of DMs through necessity, possibility, and 
credibility measures. Considering robustness led to the 
achievement of solutions with low sensitivity to changing 
parameters, which reduced the risk of long-term decisions 
in conditions of hybrid uncertainty. The effectiveness of 
the suggested RSP approach was also confirmed through 
numerical simulation.

One of the limitations of the present study was consid-
ering only the cognitive and random uncertainties, while 
in some SC network configuration problems, some con-
straints are flexible. Flexible programming can be consid-
ered in the modelling based on PFNs as a future research 
field. In this research, robust linear programming was ex-
panded for the SC design problem, but for problems with 
large dimensions and non-linear problems, researchers 
can pay attention to the development of heuristic and me-
ta-heuristic approaches as a new research field.
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Appendix. IFPS 

The IFPS approach is considered because of its high flex-
ibility and ability to determine how well each objective 
functions. Based on the importance of each objective, this 
method enables DMs to choose the ideal option (Günay 
et al. 2021). The TH method is one of the methods of the 
IFPS approach; the phases of the approach are as follows 
(Torabi, Hassini 2008):
 ■ Phase 1: a NIS and a PIS were specified; 
 ■ Phase 2: then the membership function is computed:

1 1min  PISZ Z= ;

1 1  maxNISZ Z= ;

2 2minPISZ Z= ;

2 2maxNISZ Z= ;                                                          (70)
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 ■ Phase 3: in this phase, the aggregation function is de-
termined:

( ) ( ) ( )
2

0
1

max§ 1
h hZ Z

h

x x    
=

⋅ ⋅= ⋅ + − ∑

subject to: 

( )0 hZ x ≤ , h = 1, 2; 

( )x F x∈ ;

0 , 0, 1   ∈   ,                                                             (73)

where: ( ) F x  is the feasibility range of the deterministic 
multi-objective model; l0, ( )

hZ x  present the minimum 
and degree of satisfaction with the hth objective, re-
spectively; 

hZ  is the weight of the h th objective ac-
cording to the conditions   1

hZ
h

 =∑  and 0
hZ > . The 

compromise coefficient is determined through the pa-
rameter s, which regulates the degree of compensation 
between goals and the minor satisfaction grade;

 ■ Phase 4: the value of the parameter s and  
hZ  is de-

termined and replaced in the Model (73), and then the 
model is solved;

 ■ Phase 5: if the DMs are comfortable, the process is pre-
vented, and otherwise, the DMs modify the s and  

hZ  
and then the process is repeated from Phase 3.
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