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Abstract. Fleets of shared Autonomous Vehicles (AVs) could replace private cars by providing a taxi-like service but 
at a cost similar to driving a private car. On the one hand, large Autonomous Taxi (AT) fleets may result in increased 
road capacity and lower demand for parking spaces. On the other hand, an increase in vehicle trips is very likely, as 
travelling becomes more convenient and affordable, and additionally, ATs need to drive unoccupied between requests. 
This study evaluates the impact of a city-wide introduction of ATs on traffic congestion. The analysis is based on a 
multi-agent transport simulation (MATSim) of Berlin (Germany) and the neighbouring Brandenburg area. The central 
focus is on precise simulation of both real-time AT operation and mixed autonomous/conventional vehicle traffic flow. 
Different ratios of replacing private car trips with AT trips are used to estimate the possible effects at different stages of 
introducing such services. The obtained results suggest that large fleets operating in cities may have a positive effect on 
traffic if road capacity increases according to current predictions. ATs will practically eliminate traffic congestion, even 
in the city centre, despite the increase in traffic volume. However, given no flow capacity improvement, such services 
cannot be introduced on a large scale, since the induced additional traffic volume will intensify today’s congestion.
Keywords: autonomous vehicle, autonomous taxi, taxi dispatching, traffic flow, queue model, large-scale simulation, 
MATSim.

Introduction

Autonomous Vehicles (AVs) are often considered a so-
lution to the current problems of providing convenient, 
safe, efficient and still affordable ways of travelling. There 
is a lot of speculation of how AVs will change people’s 
travel behaviour and what will be the impact on today’s 
transport systems. Although numerous studies have 
tried to roughly estimate the possible effects of intro-
ducing AVs (Wadud et al. 2016; Litman 2015), we are 
still far from having clear answers. However, it is beyond 
question that the possibility of relocating empty AVs will 
ease sharing them among many people. Because sharing 
private AVs on a small scale, within families or small 
circles of people, imposes the need of synchronisation 
among users, only large-scale Autonomous Taxi (AT) 
services can eliminate such constraints and allow taking 
full advantage of the AV technology.

AT services are aimed at combining advantages of 
different modes of transport, such as private car, shared 
car and taxi. From the traveller’s point of view, they can 
be considered a taxi-like service but at a cost similar to 
driving a private car, hence the demand for AT trips is 

expected to be at a level of today’s car trips demand. On 
the fleet level, such services can help us greatly reduce 
the number of vehicles and parking spaces; nowadays 
private cars stay idle for almost the whole day. However, 
it remains unclear what impact AT fleets will have on 
traffic. Besides induced travel demand caused by higher 
accessibility and affordability, which is not dealt with in 
this study, large AT fleets may result in:

 – increased road capacity resulting from high share 
of AVs;

 – higher traffic volumes due to unoccupied drives 
between requests.

This study investigates how an increased capacity 
and higher volumes, both being direct effects of a city-
wide introduction of ATs, will impact overall traffic. The 
analysis is based on a Multi-Agent Transport Simula-
tion (MATSim) of Berlin, the 3.5 million capital city of 
Germany, and the neighbouring Brandenburg area. The 
central focus is on precise simulation of both real-time 
AT operation and mixed autonomous/conventional ve-
hicle traffic flow. We use MATSim (Horni et al. 2016b; 
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Kickhöfer et al. 2016) to simulate a complete workday 
in Berlin with a high-detail disaggregated demand (in-
dividual travellers and their trips) and a large AT fleet 
being dispatched in real time in response to incoming 
events (such as request submission or vehicle arrival). 
The study covers different stages of the AT introduction, 
ranging between 0 and 100% of private car trips being 
converted into AT ones. 

The study is built upon previous works on real-
time taxi dispatching simulation and the case study of 
AT services in Berlin, referenced later in the paper. The 
contribution of this paper is as follows: 

 – we extended the queue model available in MAT-
Sim with AV vehicles, so that mixed traffic, con-
sisting of autonomous and conventional vehicles 
can be simulated. This allowed us to run simu-
lations for different shares of ATs and different 
levels of road capacity increase;

 – we combined the standard user-optimum relaxa-
tion scheme available in MATSim with central-
ised AT dispatching. By using long-term travel 
time averages for AT dispatching, we were able 
to avoid day-to-day oscillations and relatively 
quickly achieve a dynamic equilibrium;

 – we ran large-scale simulations for different shares 
of AT trips and different road capacity increase 
levels and carried out a comprehensive com-
parison that included many different indicators 
measuring effects on congestion and the AT 
service itself. Even a moderate improvement of 
capacity turned out to be positive for both con-
gestion reduction and AT service performance.

1. State-of-the-art

Recent research in AV development has been going on 
in several fields of science. On one hand, there is ac-
tual vehicle-based research, focussing on e.g. building 
AVs and allowing them to collaborate via car-to-car and 
car2x communication, which plays a key role in improv-
ing overall traffic flow using AVs. On the other hand, 
there is plenty of research regarding the possible impli-
cations of AV availability on mobility patterns and habits 
of people.

In the first category, several studies suggest a signif-
icant improvement of traffic flow in many areas: During 
cruise, gaps between following vehicles may be as low 
as 0.3–0.5 s (Wagner 2015). Taking into account a high 
penetration rate of cooperative and adaptive cruise con-
trol mechanism, the efficiency of such systems in high 
traffic density has also been demonstrated (Van Arem 
et al. 2006). At intersections, the throughput of vehicles 
may be doubled using car2x technology. More precisely, 
a reservation system for intersections may significantly 
reduce waiting times (Fajardo et al. 2011). 

In the second category, due to the easiness of shar-
ing AVs, AT services are most likely to arise. Depending 
on the region and living circumstances, owning a vehicle 
may become far less attractive than it is today, or may 
even be restricted. In the US, operating costs for an AT 

system may be as low as 0.15$ per mile (Burns, Scarbor-
ough 2013). As to the question, how many Convention-
ally Driven Vehicles (CDVs) could be replaced by one 
AT, the numbers differ significantly depending on the 
operating scheme (shared/ non-shared rides), the region 
involved and whether public transport is also replaced. 
In Lisbon, for instance, a single AT can replace up to ten 
cars if rides are shared and only six otherwise (Martínez 
2015). However, when also public transport is converted 
into AT services and ride sharing is not available, much 
larger AT fleets are necessary, and consequently the re-
placement ratios are 1:4 for Lisbon (Martínez 2015) or 
even 1:3 for Singapore (Spieser et al. 2014). For the city 
of Berlin, the authors have conducted a study, which 
indicates that a fleet of 100000 vehicles is sufficient to 
serve the demand for private car trips during a weekday 
(Bischoff, Maciejewski 2016b). With the introduction of 
AT services, total vehicle mileage generally increases. 
For the Berlin case, the majority of extra traffic is gen-
erated in the outskirts of the city, leading to the overall 
conclusion that restricting AT services to densely popu-
lated city centre areas is more efficient (Bischoff, Macie-
jewski 2016a).

Research on AT services derives from previous 
studies on traditional taxi services, where with the ad-
vent of big data, GIS systems, and ICT technologies, the 
focus has moved from zone-based macroscopic models 
to large-scale microscopic simulations. In recent years, 
there have been many studies on multi-agent models of 
taxi services (Salanova et al. 2011; Salanova Grau 2013; 
Seow et  al. 2010), centralised on-line taxi dispatching 
algorithms (Maciejewski et  al. 2016; Zhan et  al. 2016; 
Kümmel et al. 2016), or postprocessing GPS traces to an-
alyse spatiotemporal characteristics of taxi demand and 
supply (Bischoff et al. 2015; Veloso et al. 2011; Li et al. 
2011) or estimate urban travel times (Zhan et al. 2013; 
Ehmke et al. 2010). While in the short term, small AT 
fleets will operate in a similar way as their conventional 
counterparts, in the long term, however, large-scale AT 
services will differ significantly from taxi services of to-
day. Because they are meant to replace private car traffic, 
the demand for AT services will be much different, in 
terms of both scale and spatiotemporal distribution, to 
that of today’s taxis. Nowadays, for instance, the major-
ity of rides starts and terminates within city centres and 
at airports (Bischoff et al. 2015; Salanova Grau, Estrada 
Romeu 2015) and the taxi demand also tends be the 
highest during weekend nights. Both cannot be expect-
ed for AT trips that focus on fulfilling everyday travel 
demand. Moreover, AT fleets made up of thousands of 
AVs will be managed fully automatically and in a cen-
tralised way, therefore instead of taxis waiting at ranks 
or roaming through the streets, we will observe reloca-
tion of empty taxis in anticipation of future demand and 
moving ATs outside the city centre in the off-peak hours. 
Although beyond the scope of this research, AT services 
may offer the option of sharing rides in order to reduce 
traffic, travel cost and/or the AT fleet size (Agatz et al. 
2011; Fagnant, Kockelman 2015).
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The interaction of ATs and CDVs has not yet been 
part of many research studies we are aware of. All of 
the aforementioned studies consider travel times and AT 
dynamics to be equal to those of CDV traffic and as-
sume similar congestion patterns. That approach, how-
ever, may be too simplistic, especially in scenarios where 
the whole public transport system is replaced, induc-
ing much higher traffic. A recent study by (Levin et al. 
2017) takes improved AV flow dynamics into account, 
however, the simulated scenario is limited in terms of 
size (only Austin’s city centre) and spatial resolution (no 
intra-zonal trips). The results suggest twice as fast travel 
times during a morning peak using personal AVs and 
massive fleet reductions when sharing rides. A related 
problem of routing AVs in a capacitated transport net-
work has recently been addressed in (Zhang et al. 2016). 
The study proposes an approach to real-time conges-
tion-aware routing and rebalancing based on a network 
flow model. The method has been validated on a road 
network model of Manhattan using, however, a simple 
volume-delay function for modelling travel times.

2. Methodology

2.1. MATSim
MATSim (Horni et al. 2016b; Kickhöfer et al. 2016) is 
used to realistically simulate a large AT fleet together 
with normal traffic in the 3.5-million city of Berlin, Ger-
many, where both types of participants try to optimise 
their performance given a limited flow capacity of the 
road network. MATSim combines a microscopic, disag-
gregated behavioural model of travellers with a meso-
scopic queue-based traffic flow model and is capable of 
running large-scale simulations with millions of agents, 
e.g. (Erath et al. 2012) for Singapore.

The simulation is based on agents, which are 
equipped with (typically) day-long plans consisting of 
activities, such as home or work, and legs, where the 
mode and the route is defined. At the end of a day, plans 
are scored and, up to a certain point, modified for the 
next day (Horni et al. 2016a).

MATSim’s traffic model is based on a queue mod-
el, which takes the flow capacity (throughput) and the 
storage capacity (equal to the length multiplied by the 
number of lanes) of a link in the network into account 
and moves vehicles according to the First-In First-Out 
(FIFO) scheme along the link: a car entering a network 
link is added to the tail of the link’s waiting queue, where 
it remains until the time required to drive along the link 
under free flow conditions has passed. It is then allowed 
to leave the link, if it is the first car in the waiting queue. 
The latter allows as many cars to leave a link per time 
step as the flow capacity of a link suggests. For example, 
a flow capacity of 1200 vehicles/hour would allow one 
car every 3 s to leave the link. Leaving a link is, however, 
only possible if the storage capacity of the next link al-
lows entering it (Rieser et al. 2016). Each vehicle uses 
the amount of flow and storage capacity, which corre-

sponds to its length measured in Passenger Car Units 
(PCUs).

The queue model allows the simulation of millions 
of agents at high computational speeds. However, for 
analysis of traffic flow it brings certain limitations com-
pared to more sophisticated, but also far slower mod-
els microscopic simulators (Maciejewski 2010), such as 
SUMO (Krajzewicz et al. 2012) or PTV VISSIM (Fellen-
dorf, Vortisch 2010). First-of-all, vehicles in traffic are 
only tracked when entering and leaving a link. Second-
ly, traffic flow at intersections is modelled indirectly by 
flow capacities of incoming links and storage capacities 
of outgoing links; during each time step, vehicles wait-
ing in front of the intersection are moved over it only if 
both constraints are not violated. In consequence, the 
only values that can be modified are aforementioned ca-
pacities. For this paper, the ability to compute large-scale 
scenarios was, however, found to be more important 
than the detail of the traffic flow simulation.

2.2. Simulation of mixed AV/CDV traffic
AVs are expected to increase road capacity; however, the 
actual improvement is hard to be precisely estimated. 
Recent studies suggest the improvement to be in the 
range of 1.5 and 2.0 for only-AV traffic, and in the case 
of mixed AV/CDV traffic, the relative improvement is 
expected to scale almost proportionally to the share of 
AVs (Wagner 2015; Levin et  al. 2017; Friedrich 2015; 
Levin, Boyles 2016). In other words, an AV consumes 1.5 
to 2.0 times less of the nominal flow capacity, measured 
in PCUs per hour, compared to a CDV of the same size, 
though they both occupy the same amount of space. To 
model that phenomenon, we have extended the vehicle 
model in MATSim with the flow capacity consumption 
coefficient so that flow and storage capacity consump-
tion can be specified independently at the vehicle level.

As a result, more flexible handling of a link’s flow 
capacity is possible: If, in the aforementioned example, 
1200 veh/h are allowed to leave a link and all of them 
are CDVs, everything remains the same. If AVs only re-
quire half the amount of flow capacity of a CDV, 800 
AVs travelling on the link during an hour would leave 
enough throughput for 800 additional CDVs. Thus, the 
actual flow capacity would be 1600. If only AVs travel 
the link during an hour, the capacity would increase to 
2400 vehicles. Figure  1 provides an illustration of the 
modified queue model and the increased throughput for 
mixed AV/CDV flow.

The capacity increase of a link can be written 
more formally. Let a mixed AV/CDV flow have a share 
s ∈  [0;1] of AVs, each of them consuming only a frac-
tion c ∈ (0;1] of the amount of flow capacity consumed 
by a single CDV. Such a flow requires only a fraction 
1 – s + sc of the amount of flow capacity required by an 
equally intense CDV-only flow. As a result, the flow ca-
pacity increase ratio equals 1/(1 – s + sc). The impact of 
both parameters on the effective flow capacity increase 
is illustrated in Figure 2.
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2.3. Simulation of AT services
Simulation of dynamic transport services in MATSim 
is handled by the Dynamic Vehicle Routing Problem 
(DVRP) module (Maciejewski 2016) that allows dy-
namic scheduling and routing of a fleet of vehicles in 
response to the current and anticipated demand. Quite 
recently, MATSim has been extended with a taxi module 
that offers many strategies for real-time dispatching of 
large taxi fleets (Maciejewski et al. 2016). The module 
has been already applied to simulate a 250000 strong AT 
fleet in Berlin (Bischoff, Maciejewski 2016b).

Typically, in MATSim, individuals (here people 
travelling by car or AT) pre-compute their daily plans 
and then they strictly follow the plan over the whole 
day (day-to-day re-planning). In order to simulate AT 
services, we modelled ATs as fully dynamic agents, who 
are managed centrally by the dispatching algorithm, and 
whose schedules can be changed at any moment in time 
(within-day re-planning).

In general, the dispatching algorithm reacts to in-
coming events (such as new request submissions, vehicle 
arrivals and departures) and dynamically re-optimises 
ATs’ routes and schedules in order to ensure possibly 
most efficient execution of taxi orders. In this study, we 
use a simple yet very efficient and scalable rule-based 
strategy that handles undersupply and oversupply differ-

ently in order to balance demand and supply. Typically, 
as long as there is at least one idle taxi, the nearest one is 
sent to each incoming request in order to minimise the 
passenger wait time. However, when all taxis are busy, 
all awaiting requests are stored, and once one of taxis 
becomes idle, it is sent to the nearest request, trying to 
maximize the system’s throughput, which in turn, leads 
to minimisation of the average wait time.

2.4. Simulation scenario
A multi-modal MATSim model for Berlin has been used 
in several case studies and real-world transport planning 
(Neumann 2014; Kaddoura 2015). Its synthetic popu-
lation depicts a typical workday in Berlin and the sur-
rounding state of Brandenburg. Besides the full (100%) 
scenario, which consists of roughly 6 million agents, 
other fractional (e.g. 10, 25%) scenarios are often used. 
In this study, we use the 10% scenario, which is the most 
widely used.

Because the study explores the influence of Berlin-
wide AT services on traffic flow, the scenario was adapt-
ed so that only private car trips that start and/or end 
within the city area are taken into account, which makes 
up 508670 trips, out of which 278507 take place en-
tirely within the city boundaries (Bischoff, Maciejewski 
2016b). Computational experiments were conducted for 
six different replacement rates (0, 20, …, 100%), where 
the rate defines the fraction of intra-city private car trips 
being converted into AT trips (cf. to Table 1). According 
to (Bischoff, Maciejewski 2016a), a fleet of 11000 AVs, 
each available 24 hours a day, is sufficient to serve all the 
private car trips while experiencing only a short period 
of undersupply during the afternoon peak. For smaller 
replacement rates, the fleet size is scaled down propor-
tionally, for example, 2200 AVs are used when only 20% 
of intra-city private car trips are converted into AT ones. 
The initial spatial distribution of ATs follows Berlin’s 
population distribution.

Each computational experiment consists of 51 it-
erations, each being a simulation of a weekday day. In 
iteration 0, all private car trips are routed (shortest path 
search) according to the link travel times obtained with 
the original (10%) scenario. In iterations 1–40, random 
10% of private car trips are re-routed based on the link 
travel times from the previous iteration, which is aimed 
at reaching a dynamic equilibrium. In the last 10 itera-
tion, private car routes are fixed. This is a standard ap-
proach in MATSim. However, during all 51 iterations, 

Figure 1. CDV and AV traffic dynamics in the adjusted queue 
model for two links at different times (the upper part shows 
only CDVs traversing the link, whereas the lower part includes 
both CDVs and AVs resulting in an increased throughput; in 
this example, an AV consumes only half the flow capacity a 

CDV does)
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Figure 2. Flow capacity increase ratio of a link as a function of the 
AV share s for selected AV flow capacity consumption factors c
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Table 1. Replacement rate of car trips by AT mode  
and corresponding fleet sizes

Replacement rate [%] AT trips AT fleet
0 0 0

20 55701 2200
40 111403 4400
60 167104 6,600
80 222806 8800

100 278507 11000
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ATs are dispatched always along the shortest path, which 
can lead to day-to-day oscillations when the link travel 
times are taken only from the previous day. In order to 
prevent that and reach an equilibrium, travel times used 
for AT dispatching are determined by applying an ex-
ponential moving average (over travel times observed 
over a series of iterations) with a relatively low degree of 
weighting decrease (α = 0.05). This approach could be 
extended with short-term on-line travel time prediction 
techniques proposed by (Hörl 2016).

Because traffic flow is simulated for the 10% sce-
nario, the link flow and storage capacities are multiplied 
by 0.15 and 0.3, respectively. The reasons behind not us-
ing 0.1 scaling factors are twofold: the travel demand is 
around 11% (not 10%) of that in the full scenario, and 
secondly, granularity of traffic flow prevents simple lin-
ear capacity downscaling, in particular for smaller links. 
Although AVs are expected to improve traffic flow, the 
scale of improvement still remains an open question. 
Therefore, computations were carried out for three lev-
els of capacity increase given an AV-only flow (s = 1), 
namely 1.0 (no improvement; c = 1), 1.5 (c = 2/3), and 
2.0 (twofold increase; c  =  1/2), all three presented in 
Figure  2. While referring to specific simulation cases 
(scenario variations), we often use abbreviations that 
combine the applied replacement rate and the capacity 
increase level, for example ‘0%’ (no ATs) or ‘100%, 1.0’ 
(all intra-city trips handled by ATs and no improvement 
in AV flow dynamics).

In order to speed up computations, the nearest 
open request or idle vehicles is found with multi-node 
Dijkstra search out of the 20 nearest (in a straight line) 
open request or idle vehicles, respectively. Each pickup 
takes 2 minutes and each drop-off 1 minute. 

Computations were run in parallel (one simula-
tion experiment per physical core) on a computer with 
a 6-core Intel Core i7-3930K Processor (12 logical cores) 
and 64GB RAM. Each iteration consisted mainly of the 
following two phases: re-planning (including re-routing 
of 10% private car trips; up to iteration 40), which took 
on average between 250 and 400 s, and simulation (of 
both traffic flow and AT dispatching), which required 
from 400 (the 0% case, when only traffic is simulated) 
to 2000 s (100%, 1.0).

3. Results

3.1. Traffic congestion
To assess the impact of the AT service on traffic con-
gestion, we calculated the average travel time for all in-
tra-city trips excluding empty drives made by ATs (i.e. 
occupied AT drives and private car trips) beginning in 
a given time period (e.g. hour or day). This indicator 
allows for comprehensive assessment of the total impact 
on intra-city travellers, regardless of the mode chosen. In 
order to compare the level of congestion at any hour, we 
also calculated delay ratios, defined as the average travel 
delay (the difference between the actual and free-flow 
travel times) to the average free-flow (uncongested) trav-
el time. Table 2 shows the indicator values obtained for 
the afternoon peak hour (3:00–4:00 pm) and the whole 
day. Figure 3a compares hourly delay ratios over the day 
for selected scenario variations, whereas Figure 3b illus-
trates the afternoon peak hour ratios for all variations.

The differences in delays between analysed cases 
are especially noticeable during peak hours and at high 
replacement rates. While the results for the 20% replace-
ment rate are close to the 0% case, regardless of the ca-
pacity increase level, the full replacement of private cars 
with ATs leads to significant changes in traffic. In the 
latter case, when there is no increase in road capacity, 
additional empty taxi trips induce significant conges-
tion. However, the capacity increase level of 1.5 more 
than compensates for unoccupied taxi travel. This level 
of flow improvement is enough to reduce traffic con-
gestion. Further increase of the factor does not bring 
substantial changes.

It should be noted that the calculated delay ratios 
are underestimated, and seem moderate even in the 
most extreme case (100%, 1.0). Firstly, in real life, vehi-
cles typically move faster in free flow than the allowed 
maximal speed, which is not taken into account in this 
study. Secondly, Berlin is not as heavily congested as 
other cities of similar size.

Another look at traffic situation is provided by daily 
profiles of the number of vehicles driving in the net-
work. Figure 4a shows profiles generated for all vehicles, 
whereas Figure 4b refers only to vehicles on intra-city 
trips (including both empty and occupied AT drives). 

Figure 3. Travel delay ratios: a – hourly averages for selected simulation cases; b – peak-hour averages extrapolated  
to the 0% replacement case (grey point)
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Figure 4. Number of vehicles driving in the network: a – all trips; b – intra-city trips (the dotted green curve is a re-scaled 100%, 
2.0 series, where each AV is counted as 0.5 CDVs to adjust for their reduced flow capacity consumption)

Table 2. Mean travel time and delay ratio for all intra-city trips (excluding empty taxi drives)

Replacement rate [%] Capacity increase level
3:00–4:00 pm All day

Travel time [s] Delay ratio [%] Travel time [s] Delay ratio [%]
Free flow 703 – 716 –

0 – 799 13.8 763 6.5

20
1.0 814 15.8 767 7.1
1.5 790 12.5 759 6.0
2.0 784 11.5 756 5.6

40
1.0 832 18.4 772 7.8
1.5 782 11.3 756 5.5
2.0 770 9.5 750 4.8

60
1.0 865 23.1 780 8.9
1.5 777 10.6 753 5.1
2.0 759 8.0 745 4.1

80
1.0 920 31.0 797 11.2
1.5 772 9.9 750 4.8
2.0 750 6.7 741 3.4

100
1.0 1056 50.3 828 15.7
1.5 771 9.7 749 4.5
2.0 741 5.4 736 2.8

Globally, there is not so much difference between the il-
lustrated scenario variations, as many trips incoming to 
and outgoing from Berlin are spread over a larger area, 
and thus, remain unaffected by the AT fleet. However, 
taking only vehicles on intra-city trips into account gives 
more insight into the places where traffic is most inten-
sive, such as the city centre. Serving all intra-city trips by 
AT increases the number of vehicles in the network by 
around two thousand because of empty drives between 
consecutive taxi requests. However, this effect is limited 
by the fleet size: around 3:00 pm up to ten thousands 
of ATs are driving in the network while the remaining 
one thousand is picking up and dropping off passengers.

Despite the additional mileage triggered by dis-
patch of empty taxis, the increase in flow capacity, par-
ticularly of those links which are often traversed by AVs, 

significantly lowers congestion. The dotted green curve 
in both charts represents the normalised number of ve-
hicles in the network, where each AT is counted as 0.5 
CDVs, which approximates the network-wide demand 
for flow capacity in the ‘100%, 2.0’ scenario variation. 
At the opposite extreme, serving all intra-city trips with 
ATs given no increase in road capacity, leads to severe 
traffic congestion resulting in the afternoon peak being 
extended by additional two hours.

Because AT operation is concentrated within the 
city centre, this is also the area which is impacted most 
by the introduction of ATs. A deeper insight into a spa-
tial effects is given in Figure 5 that shows differences in 
the peak-hour link speed ratios (defined as the ratio of 
peak-hour to free-flow speed) between the no AT (0%) 
case and the full replacement with no AV flow improve-

(re-scaled) (re-scaled)
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ment (100%, 1.0) case. A relative drop in speed of up to 
80% can be noticed on links in the city centre, marking a 
significant increase in congestion. This is mainly an issue 
on arterial roads and parts of the circular motorway. Be-
cause of stochasticity, some links are also less congested 
(marked in green).

3.2. AT service performance
Performance of the AT service can be assessed from 
different points of view. Passengers want a high quality 
service (e.g. low waiting times), but at the same time, the 

dispatcher wants to minimise operation costs (e.g. a low 
empty to total drive time ratio for short-term planning, or 
a small fleet size for long-term planning). Table 3 and Fig-
ures 6–8 show selected results obtained for the following 
three measures: the average passenger wait time for trips 
starting within a given period, the average AT utilisation 
rate in a given period, and the average vehicle-wise (as 
opposed to trip-wise) empty to total drive time ratio over 
a given period. Since the fleet size was fixed, the utilisa-
tion rate is used not as a service performance indicator, 
but only to assess the impact of traffic on AT operation.

Figure 5. Differences in the link speed ratios on links during the pm peak hour between the full replacement  
with no AV flow improvement (100%, 1.0) case and the no AT (0%) case (additional empty rides result  

in an overall decrease of network speed, marked in red)

–80%
–40%
0%
40%
80%

Peak-hour link 
speed ratio 
difference, 
100% 1.0 vs. 0%

Table 3. AT fleet performance

Replacement 
rate [%]

Capacity increase 
level

Passenger wait time [s] AT utilisation rate [%] AT empty drive ratio [%]
3:00–4:00 pm all day 3:00–4:00 pm all day 3:00–4:00 pm all day

20
1.0 334 190 95.5 31.6 22.6 18.8
1.5 281 183 92.6 31.2 20.4 18.6
2.0 286 182 92.5 31.2 21.8 18.7

40
1.0 285 186 93.9 31.5 16.7 17.7
1.5 230 174 89.4 30.9 16.9 17.8
2.0 218 172 88.0 30.8 16.8 17.8

60
1.0 314 185 96.7 31.5 16.9 17.0
1.5 214 166 89.3 30.6 16.6 17.1
2.0 191 161 86.7 30.4 16.1 17.1

80
1.0 374 195 98.5 32.0 17.6 16.9
1.5 196 163 88.4 30.5 15.9 16.9
2.0 167 156 84.8 30.1 15.3 16.9

100
1.0 483 212 99.9 33.1 15.9 16.8
1.5 194 163 89.1 30.4 16.9 16.9
2.0 153 153 83.9 29.9 15.0 16.7
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Analysis of taxi service performance during the af-
ternoon peak gives a clear view on the AT service under 
congestion. If the AV flow is assumed to be identical to 
the CDV flow (the capacity increase level of 1.0), the 
best peak-hour performance (the lowest passenger wait 
time and AT utilisation rate) is obtained for the 40% 
replacement rate, which is a trade-off between having 
a larger (effect of scale resulting in shortening empty 
drives) or smaller fleet (less congestion due to fewer 
empty drives). On the opposite pole, once AV flow dy-
namics is improved (the capacity increase levels of 1.5 
and 2.0), the overall traffic gets more fluid, which in 
turns significantly increases the AT service performance, 

becoming highest at the 100% replacement rate. All-in-
all, higher capacity more than compensates extra traffic 
generated by empty drives. 

The only performance measure that does not de-
pend so much on traffic condition and is mostly im-
pacted by the fleet size (effect of scale) is the empty 
drive ratio. Intuitively, one could expect higher empty 
trip ratios in congested scenarios because fewer vehi-
cles remain available for dispatch, causing them to travel 
longer distances to reach customers. However, when the 
systems runs into undersupply, the dispatching strategy 
actually starts minimising empty drive time, as opposed 
to minimising passenger wait time during oversupply.

Figure 6. Passenger wait times: a – hourly averages for selected simulation cases; b – peak-hour averages

Figure 7. AT utilisation rates: a – hourly averages for selected simulation cases; b – peak-hour averages

Figure 8. AT empty drive ratios: a – hourly averages for selected simulation cases; b – daily averages
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Conclusions

The obtained results suggest that operating large AT 
fleets in cities may have a positive effect on traffic. Even 
the moderate AV flow capacity increase of 1.5, which is a 
quite low estimate given the state-of-the-art predictions, 
reduces congestion at all replacement ratios, despite in-
creased traffic volumes caused by empty AT drives. A 
further capacity increase from 1.5 to 2.0 leads to practi-
cally uncongested traffic at the 100% replacement rate. 
AT operation is especially beneficial in the congested 
city centre, where empty mileage is relatively low due to 
high density of the AT demand and supply. While mov-
ing away from the centre, ATs generate more empty taxi 
traffic and the overall impact is less substantial, yet still 
positive. However, if AVs do not effect in higher road 
capacity, AT services cannot be introduced on a large 
scale, as that would lead to even heavier congestion in 
urban areas. Because the effects of capacity increase are 
variable in space and time, it is hard to approximate a 
borderline value of the capacity increase level that would 
balance out the negative impact of empty trips. This 
question requires further computational experiments. 
Also a possible improvement of CDVs, e.g. by (retro-)
fitting some of the features of AVs such as platooning, 
should be looked at closer. 

The transition phase, with only few ATs operative 
and a majority of CDVs remaining in the city, will not 
trigger significantly more congestion even if road capac-
ity remains at the same level. However, a smaller AT fleet 
will result in a poorer dispatch performance due to high-
er empty mileage. For that period, a smaller operation 
area, such as the city centre, may be worth considering.

Empty AT traffic results in the overall traffic vol-
ume increase. Ride sharing could be a way to reduce 
this effect, especially during high peak periods in the 
city centre. Another potential benefit of ride sharing is a 
smaller AT fleet, which is sized for the peak demand and 
remains rather idle for most of the day. Yet, it is unclear 
in how far ride sharing is accepted by current car users 
and it is certainly not a solution when AT demand is 
low, especially in sparsely populated areas and at night. 
In this case, combining public transport with ATs serv-
ing last-mile trips is likely an approach to follow. These 
two issues of sharing rides and integration with public 
transport, should be addressed in future studies.
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