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Abstract. This study proposes a multi-objective optimization model for an Aircraft Flight Scheduling Problem
(AFSP) for assigning a set of aircraft located at different airports to conduct all flight trips. The proposed model
features each flight trip with its own special aircraft type and fuzzy flight time. Moreover, a flight trip with a
small aircraft being covered by a larger one is fully accounted for in the model. The model can effectively reduce

the number of aircraft and achieve the minimum total idle time for adjacent flight trips covered by an aircraft. A
novel heuristic algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA-II) is further designed
to yield meta-optimal solutions efficiently for such a Non-deterministic Polynomial (NP) problem. Finally, a real
airline scheduling example in China is conducted using CPLEX and the proposed heuristic algorithm to evaluate
the difference between the proposed and traditional models. The results show that the given scheduling prob-
lem effectively enhances the operational efficiency of the aircraft fleet.

Keywords: aircraft flight scheduling, fuzzy flight time, heuristic algorithm, multiple aircraft type, multi-objective.
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Notations

AFSP — aircraft flight scheduling problem;
CNY - Chinese yuan;

CPLEX — IBM ILOG CPLEX Optimization Studio (https://
www.ibm.com/products/ilog-cplex-optimization-
studio);

GA - genetic algorithm;
MAT — multiple aircraft type;
NP — nondeterministic polynomial;
NSGA-II — non-dominated sorting GA;
SAT - single aircraft type;
TSPM — 2-stage stochastic programming model;
VRP — vehicle routing problem.

1. Introduction

An AFSP, which assigns a set of aircraft located at different
airports to conduct all flight trips, is one of the core as-
pects of daily airline management. If the scheduling plan is
not reasonable, the fleet size would not only be increased,
but the total idle time for all aircraft trips is also very high,
which may increase the operating costs of airline compa-
nies. At present, AFSPs have gradually drawn the wide-
spread attention of domestic and foreign scholars (Badi,
Abdulshahed 2019; Bardenhagen, Rakov 2019; Petrovié¢
et al. 2018). On the one hand, many variations of AFSPs
have been studied due to many factors affecting the prob-
lem, such as fleet assignment, flight timetabling, and crew
scheduling with consideration of delays and maintenance
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requirements, etc. (Kenan et al. 2018a, 2018b). On the oth-
er hand, since AFSP is an extension of the VRP, which is
an NP-hard problem, it is without a polynomial-time algo-
rithm. Therefore, several intelligent, heuristic, or approxi-
mate algorithms have been designed for this to quickly
find a good solution in a short time (Lalla-Ruiz, VoB 2020).

In an AFSP, each flight trip has its own special aircraft
type, mainly depending on the number of passengers and
the mileage. Existing research, i.e., an AFSP with a SAT (AF-
SP-SAT), divides all trips into multiple groups on the basis
of special aircraft types, and some trips in a group with
the same aircraft type are only assigned to an aircraft with
the corresponding type (Huang et al. 2011; Listes, Dekker
2005). In reality, the supply and demand of different types
of aircraft may not be balanced in time and space, i.e.,
some small planes might be missing at one point while
larger ones are redundant over some time period. In this
case, AFSPs with a MAT (AFSP-MAT), by allowing a flight
trip with a small aircraft to be covered by a larger one,
can dramatically reduce the aircraft fleet and improve the
operational efficiency compared with AFSP-SAT. Further,
various perspectives in passengers and airline companies
of the optimization process for AFSPs typically involve 2
or more conflicting objectives, including fleet size, idle
time, operating cost, and so forth. How to make a trade-
off between them to obtain a set of Pareto solutions is
also very important (Sherali et al. 2013; Salazar-Gonzalez
2014). However, multi-objective AFSP-MAT has received
much less attention in the literature.

Another purpose of this study is to present an AFSP
with uncertain flight times. When adjacent flight trips are
covered by an aircraft, some delays, caused by a traffic ac-
cident and weather, should be considered in the process
of designing the scheduling scheme. These disturbances
may lead to the failure of the scheduling scheme (Jamili
2017; Lan et al. 2006). They can be quantified by using
stochastic approaches, fuzzy sets, grey sets and language,
etc. Each has its own advantages and disadvantages. Com-
pared with other uncertain techniques, fuzzy sets can be
used to describe uncertainty more accurately by drawing
on the advice and expertise of experts and stakeholders,
in the absence of statistical data (Yang et al 2011; Wei
et al. 2015). Hence, it is very important to investigate the
optimal relationship between the robustness and reliability
of aircraft scheduling and the fuzzy flight time so as not to
negatively affect operational efficiency.

The main contribution of this study is the development
of a multi-objective fuzzy optimization framework for AF-
SP-MAT. It focuses on 2 key tasks: (1) the coordination of
the aircraft route and its construction to meet the require-
ments of all trips with their own special aircraft types and
fuzzy flight times, and (2) the development of the NSGA-II-
based heuristic algorithm to yield a set of Pareto solutions
efficiently for such a large-scale problem. In this study, the
fuzzy flight time is modelled by a triangular fuzzy number,
including the expected value, optimistic value and pes-
simistic value; this is one of the most used approaches to
fuzzy numbers. Based on this, a fuzzy expected model of
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AFSP-MAT is built and converted to an equivalent deter-

ministic model (Wei et al. 2015). NSGA-II, an intelligent

algorithm for solving multi-objective problems, is used

to resolve the model (Kaucic et al. 2019). The proposed

NSGA-II algorithm with fuzzy measures is more realistic

and practical by taking vague and imprecise data into con-

sideration. Finally, a real-world case study is used to prove

the validity and correctness of the proposed methodology.

The rest of the manuscript is as follows:

= the introduction is provided in the current Section 1;

= the research status of AFSPs is summarized in Section 2;

= the framework of the proposed methodology and its
mathematical model are described in Section 3;

= the Section 4 gives the details for a multi-objective heu-
ristic algorithm based on NSGA-II;

= a numerical example is used to illustrate the validity of
the proposed model and algorithm, which is discussed
in Section 5;

= future work and concluding remarks are given in Sec-
tion 6.

2. Literature review

In general, flight scheduling, fleet assignment, aircraft
routing, and crew scheduling are 4 main planning pro-
cesses that airline companies should accurately implement
in reducing the operating cost. Although these 4 decision
problems are typically solved sequentially and indepen-
dently, an integration of some of these decisions in airline
planning, which attracts the attention of many researchers,
can further improve efficiency (Kenan et al. 2018a, 2018b).
The main objective of this study is to present an approach
that solves the integrated fleet assignment and aircraft
routing problems as these are the key factors to impact
profits.

A flight schedule is the input to airline fleet assignment
and aircraft routing. Abara (1989) presented a fleet assign-
ment model based on a connection-based network struc-
ture, in which some constraints, such as cover and flow
balance and the number of available aircraft, were con-
sidered. Hane et al. (1995) 1st used a time-space network
structure to build a large-scale integer program model for
fleet assignment to reduce the problem complexity. Clarke
et al. (1996) further extended this work by considering
aircraft maintenance and crew considerations. Rushmeier
& Kontogiorgis (1997) proposed a mixed-integer multi-
commodity flow model for the fleet assignment problem
to maximize the profit and minimize violations from the
preplanned schedule. Faust et al. (2017) presented an inte-
grated model for a flight schedule and maintenance rout-
ing problem with a homogeneous fleet. Salazar-Gonzalez
(2014) also presented an integrated model for fleet assign-
ment, aircraft routing, and crew-pairing problems. These
works were extended by Cacchiani & Salazar-Gonzalez
(2017) to include 2 enhanced models: the path—path mod-
el and the arc—path model.

The premise of the fleet assignment problem is an as-
sumption of a deterministic demand. The output regard-
ing fleet assignment is the input of crew scheduling. The
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assignment is generally made 10...12 weeks in advance,
and, therefore, the demand is highly uncertain at the time.
Hence, the fleet assignment problem with an itinerary-
based demand is closer to more detailed and reliable
demand information. A demand-driven fleet assignment
model, 1st proposed by Berge & Hopperstad (1993) and
extended by Fry (2015) and Sherali et al. (2005), attempted
to use a predicted demand to dynamically reassign air-
craft to cover trips. Jiang & Barnhart (2009) also further
integrated these fleet assignment models with dynamic
scheduling by considering flight retiming. Sherali et al
(2013) presented an integrated model for flight schedul-
ing, fleet assignment, and aircraft routing. Jamili (2017)
presented an integrated model for flight scheduling, fleet
assignment, and aircraft routing with uncertain traveling
time. However, the demand-driven models only consid-
ered the deterministic demand. A TSPM is generally used
to deal with demand uncertainty for fleet assignment. In
this case, the aircraft family and aircraft type are assigned
to each flight leg respectively (Kenan et al. 2018a; Sher-
ali, Zhu 2008; Cadarso, De Celis, 2017). Listes and Dekker
(2005) 1st studied a TSPM model for the fleet assignment
problem with an uncertain demand. Cadarso & De Celis
(2017) proposed a nonlinear TSPM to solve such uncertain
fleet assignment problems. Kenan et al. (2018a) further
proposed a TSPM for the integrated flight scheduling and
fleet assignment problem.

The algorithms for solving AFSPs can be divided into
exact methods and heuristic algorithms (Jamil 2017),
where the former can be further classified into Lagrange
relaxation-based methods (Lan et al. 2006; Cacchiani,
Salazar-Gonzalez 2017), column generation (Cacchiani,
Salazar-Gonzalez 2017; Faust et al. 2017), and dynamic
programming (Sherali et al. 2005). The latter can also be
further classified into route-building heuristics and me-
taheuristics. Since this problem belongs to the class of NP-
hard problems, exact methods often perform very poorly
in terms of computational efficiency and are unable to
solve large-scale instances (Jamil 2017; Sherali, Zhu 2008;
Kenan et al. 2018a). Heuristic algorithms are therefore
more appropriate. In route-building methods, a set of fea-
sible routes is generated initially and then there is further
search and fine-tuning of initial solutions according to the
proposed constraints at a reasonable computational cost.
For meta-heuristic methods, simulated annealing (Jamil
2017), tabu search (Gui et al. 2024; Lahooti Eshkevari et al.
2025), GAs (Deb et al. 2002; Kaucic et al. 2019; Abualigah,
Hanandeh 2015), and ant colony algorithm approaches
(Wei et al. 2015; Zhou et al. 2020) are widely used.

Although existing research has successfully handled a
variety of AFSPs, 3 issues deserve further study:
= traditional AFSPs consider only a specified type of

scheduling plan in the implementation of the specific
aircraft for each flight trip. Most studies have neglected
the integrated operation of aircraft routing (a set of trips
covered by an aircraft) and aircraft type guidance (type
determination of each aircraft). Since each flight trip
with its own special aircraft type can be covered by a
larger aircraft (Huang et al. 2011), the ignorance of this

integrated model can easily increase the operating cost;

= most existing studies have used definite flight times
as the basic assumption in the methodology of AFSPs.
However, the flight time changes dramatically under dif-
ferent conditions, such as the weather. This can be quan-
tified by the use of uncertain data techniques with their
own advantages and disadvantages. In the absence of
statistical data, AFSPs with fuzzy flight times have been
widely regarded as having a vital role in the reliability of
the result (Jamili 2017; Lan et al. 2006; Wei et al. 2015);

= AFSPs involve some conflicting objectives, such as the
number of aircraft, operating cost, and idle time. In this
case, building a multi-objective programming model to
find a set of Pareto solutions to balance them is impor-
tant (Kenan et al. 2018a; Jiang, Barnhart 2009; Sherali,
Zhu 2008). Hence, it is necessary to apply NSGA-II to
solve this problem efficiently.

3. Methodology

3.1. Research framework

This study explores a multi-type AFSP that assigns a set
of various types of aircraft located at different airports to
conduct all flight trips with their special aircraft types. Each
flight trip is covered by an aircraft from the departure air-
port at the start time to the arrival airport at the end time.
A flight trip with a small aircraft can be covered by a larger
one. If adjacent flight trips are covered by an aircraft, the
arrival time of the 1st flight trip plus the aircraft's main-
tenance time should not be greater than the departure
time of the 2nd flight trip, except for the arrival airport of
the former being the same as the departure airport of the
latter. A special aircraft type 1st leaves the docked airport
to begin working, perform a sequence of flight trips, and
return to the original one in the end. Obviously, the un-
certain flight time of each trip, caused by traffic accidents
and weather, also plays an important role in the process of
designing a scheduling plan. Triangular fuzzy numbers are
used to characterize the changes in flight time due to the
lack of data. To reveal the optimal relationship between
operational costs, multiple types of aircraft, and uncertain
flight times to maximize the efficiency in the AFSP, a fuzzy
multi-objective mixed-integer programming model is for-
mulated to find a set of Pareto solutions so as to balance
the number of aircraft and the total idle time.

Figure 1 provides a simple explanation of the proposed
methodology. This includes 3 airports (A1...A3) and 6 flight
trips (F1...F6) with their arrival and departure times. The
aircraft type for F1 and F2 is T1, while that for F3, F4, F5,
and F6 is T2. In such a small example, the optimization
process yielded 2 aircraft routes as follows. A T1 aircraft is
illustrated with a solid line (F1-F2—-F4—F6) and a T2 air-
craft with a solid line (F3—F5). For example, aircraft 2 de-
parts from D2 to perform F3 at 7:00 and arrives at D3
to complete the task at 9:30. After waiting for 20 min-
utes, it starts to cover F5 and finally returns back to D2 at
11:30. Obviously, an AFSP with a SAT needs more than one
T2 aircraft, which further proves the validity of the model.
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Time

Figure 1. Graphical representation of the AFSP

The objective of the present study is to find an aircraft

flight scheduling plan that simultaneously minimizes the

operational costs of different types of aircraft performing

all trips and the penalty costs of the total idle time for ad-

jacent flight trips covered by these aircraft. To ensure that

the proposed methodology can be applied to real-world

situations, the present study is based on the following as-

sumptions:

= each flight trip cannot be cancelled and must be cov-
ered by an aircraft;

= the fuzzy flight time of each trip can be estimated
through civil aviation big data analysis;

= the fixed and operating costs of each aircraft type for a
trip can be obtained in advance.

3.2. Model formulation
3.2.1. Notation

To facilitate the development of the AFSP, Table 1 sum-
marizes all definitions and notations used throughout this
work.

3.2.2. Formulation

Definition 1. For a discourse domain T, let P(I') be a
power set of I. If a set function Pos in P(I') satisfies the
following conditions:

= Pos(¢)=0, Pos(r)=1;
" POS(U_ IAi):supiE,Pos(Ai), then Pos is a possibility

le
measure.
Definition 2. For a possibility space of the triple

{I’, P(F), Pos}, let the set function:

cr(A)= O.5-(1+Pos(A)—Pos(AC))
be the credibility measure of the event A, in which A de-
notes the complementary set of A.

Definition 3. For a credibility space of the triple
{F, P(F), Cr}, the expected value of the fuzzy variable § is
denoted as:

E(E) :TCr{E Zr}dr— _]l Cr{E, Sr}dr.

Table 1. Parameters and variables in the mathematical
model

Indices

flight trip index

<

virtual flight

aircraft index

aircraft type index

Q|| x| o

airport index

Sets

set of trips

-

set of aircraft types

set of airports

gt |set of aircraft belonging to the special type t located at
4 |airport d

Parameters

sp; |starting airport of trip i

dp; | ending airport of trip {

st; | departure time of trip {

T; | fuzzy flight time of trip i

b; | capacity related to special aircraft type for trip i

B; | capacity related to aircraft type t

s | minimum safe time

¢; |fixed cost of aircraft type t

cost of idle time of aircraft type t

¢} | operational cost of aircraft type t

H | a constant

Decision variables

Xg— whether trip { precedes trip j on aircraft k or not

whether trip i is covered by aircraft k or not

Uy | an auxiliary (real) variable for the sub-tour elimination
constraint in aircraft k

Because of the lack of data to analyse changes in flight
time, a triangular fuzzy variable T, = (TIJ, T2, 7'[3) is used to
describe the uncertain flight time, in which T}, T2, and T3
are the minimum value, the most probable value, and the
maximum value, respectively. Since the fuzzy flight time
could not be directly handled by a computer, its expected
value E(Tl) = O.25-(Ti1 +2T7 +Ti3§, as shown in Figure 2, is
obtained based on definitions 1-3.

The proposed problem is formulated as follows:

minf, =

DI INDIE B R e AR 10

VdeD VteT VkeK}; Vi, jeF

m

minf, =

22 2 (CHZV,-GFTI'%”C?) , @

VdeD VteTl Vkng

m

which is subject to:

D oyk=1,

VieF
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Vkng, YdeD, VteT,; (3)

b <(1-yk)-H<B,

Vkekk, vdeD, VteT; )

2‘x5£yf+y§,

V[,jeF,VkeKk,VdeD,VteT; (5)
g X et

vjeFu{o} vjeFu{o}

V[eF,VkeK’g,VdeD, VteT; (6)

Uik—Ujk+‘Fu{O}‘~x§Z‘FU{O}‘—L

Vi, jeF, VkeKk, vdeD, VteT; @

eti+E(7})+(1—x5)'H+TS£stj,

Vi, jeF, VkeKkk,K vdeD, vteT, @)

dpi+(1—x§)~H:spj,

Vi,jeF,VkeK’g,VdeD,VteT, Vk eK; 9)

d+(1—x§i)-H=spj,
V[,jeF,VkeK’é,VdeD, VteT, VkeK; (10)
d+(1—x§))-H:dpj,
VieF, VkeKkk, vdeD, vteT, VkeK. (11

The primary Objective function (1) is used to minimize
the cost of the total idle time for adjacent flight trips cov-
ered by an aircraft. The secondary Objective function (2)
is used to minimize the fixed cost of the flight fleet and
operational cost, which is the total travel time of the de-
signed aircraft routes. Constraint (3) indicates that each
flight trip must be assigned to an aircraft. Constraint (4)
guarantees that a flight trip with a small aircraft is covered
by a larger one. Constraints (5) and (6) set all flight trips
served by the aircraft to have the same incoming and out-
going arcs. Constraint (7) is used for the sub-tour elimina-
tion in aircraft routing. Constraint (8) guarantees that the
arrival time of the 1st flight trip plus the aircraft's mainte-
nance time should not be greater than the departure time
of the 2nd flight trip, if adjacent flight trips are covered
by an aircraft. Constraint (9) guarantees the arrival airport
of the former being the same as the departure airport of
the latter, if adjacent flight trips are covered by an aircraft.

T 7 T?

Figure 2. Triangular fuzzy numbers for uncertain flight time
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Constraints (10) and (11) guarantee that a special type of
aircraft 1st leaves the docked airport to begin working,
perform a sequence of flight trips, and return to the origi-
nal airport at the end.

Theorem. Let § and n be 2 fuzzy variables in:
{r.P(r). Pos};
E(a~£+b-r]) :avE(E)+b~E(n)

holds true for any arbitrary real numbers a and b.

As stated earlier, since Equations (1), (2), and (8) in-
clude fuzzy parameters, the fuzzy expected value model is
transformed into the following equivalent linear regression
model with certainty:

minf, =

PIDNDINPIE L

VdeD VteT VkeKé Vi, jeF

(st —et;~025-(T1 +272 +T2)-T, ) -2 (12)

minf, =

3 Z[c$+2025x

VdeD VteT VkeK}; VieF

(E1+2-E2+Ti3)~yik-ct3]r (13)
which is subject to:

et +025-(T1+2-T2 + T3 )+ (1-xk ) H+ T, < st,

Vi, jeF, Vkekk, vdeD, VteT. (14)

The other constraint conditions remain unchanged.

4. A heuristic algorithm based
on NSGA-II for resolving an AFSP

NSGA-II is a kind of rapid and dominant multi-objective
optimization algorithm with an elite retention strategy to
find a set of Pareto-optimal solutions. NSGA-II has been
successfully applied to solve multi-objective problems
such as logistics distribution and site selection (Deb et al.
2002; Abualigah, Hanandeh 2015; Li et al. 2019; Roy et al.
2019). As an extension of the VRP, NSGA-Il was designed
to yield acceptable solutions efficiently in a reasonable
amount of time because the exact algorithm could not
solve efficiently large-scale problems (Pamucar, Cirovi¢
2018; Barma et al. 2019). The detailed process of the NS-
GA-Il algorithm is discussed next.

4.1. Chromosome coding and fitness function

Efficient coding of GA chromosomes, which can capture
the characteristics of the solution structure, plays a key
role in the process of GA search. In the present study, y¥
determines xlf Once the value of y¥ is determined, trip
preceding trip j for an aircraft (i.e., xg-) is easily obtained

after sorting the departure time of trip { for aircraft k.



Therefore, if vectors U:(u1,u2,...,uF) are adopted to
represent solutions for this model, in which the element
u; (the vector of integer variables) is used to assign trip i to
different aircraft vk e Kfl(vd eD,Vte T), then u; ranges
from 1t0 Uygep, veerKY- For example, a chromosome vec-
tor U= {1 12212} of 2 aircraft and 6 trips could be coded
as follows: aircraft 1 covers trips 1, 2, and 5; aircraft 2 cov-
ers trips 3, 4, and 6.

During the process of chromosome decoding, a ran-
domly generated solution might violate Constraint (8), ex-
cept for the arrival airport of the previous trip being the
same as the departure airport of the next one, and the
departure airport of the 1st trip being the same as the
arrival airport of the last trip. To evaluate solutions, this
constraint was taken as a penalty term into the objective
function, given as follows:

F =f+M,x
Z Z Z Z max(eti+E(Ti)+(1—x5)x
VdeD VieT vkek!, Vi, jeF

H+T5—stj,0); (15)
F, :f2 + M, x

PIDNPI

VdeD VteT ngK‘; Vi, jeF

Z max(etl.+E(Tl.)+(1—x§)x

H+Ts—stj,0), (16)

where: f; and f, are the objective functions (Equations (1)
and (2)) of the proposed model; F; and F, are the func-
tions used in fitness evaluation; M, is a large, positive pen-
alty coefficient.

4.2. Fast non-dominant rule for
Pareto-optimal solutions

4.2.1. Fast non-dominant sorting operators

The core of solving a multi-objective optimization problem
is to find a set of Pareto-optimal solutions. In this section,
a fast non-dominant sorting operator is used to classify
the population according to the non-inferior solution level
of the individual, so as to guide the search in the direction
of finding a Pareto-optimal solution:
fast-non-dominated-sort P

for each peP

S <@ and n_<« 0 initialize individual dominated
and the number of dominating

for each g € P update set of solutions dominated
if(p =< q) then S, <5, u{q}
else if (g < p) then n
if n,=0 then
Pranic <1 and F < F u{p}

p<—np+1
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while F, #@ and (<« i+1
Q«o
for each p e F; rank assignment of individuals
for each g € Sy

nq<—nq—1
if n, =0 then g, < i+1 and QeQu{q}

FeQ

4.2.2. An individual crowding distance
calculating operator

To converge to Pareto-optimal solutions, the crowding dis-
tance, which denotes the sum of the 2 front and rear solu-
tions in the direction of each objective function, is used to
maintain the diversity of solutions:
crowding-distance-assignment /
for each i, set /[l:|di$tance «0

for each objective m
I<—sort(l, m) and l[ﬂ

for i=2to (M—1)

) ) Hi+1|-m=1li-1|-m
/|:l:|distance (_I[[:|distance+ |: ] |: ]

fmax _ fmin
m m

initialize distance

=/ [1 J «0
distance distance

4.2.3. A crowded comparison operator

Individuals are selected based on the non-dominant com-
parison operation area. In this case, after the non-dom-
ination rank i, and the crowding distance (... are
obtained, a partial order < is found by satisfying one of
the 3 conditions as follows:

=l '<n J if lrankUrank;

" lank = Jrank'

" lgistance >j distance*

4.3. Implementation of NSGA-II

2 new populations are 1st generated by performing selec-
tion (roulette and elite strategy), crossover (single-point
strategy), and mutation (single-point strategy) operations
on their parent populations. As can be seen in Figure 3,
these genetic operators do not break the solution struc-
ture of the proposed model. These 2 populations are
merged and ordered based on the fast non-dominant rule.
In this case, good individuals are selected to enter the
next-generation population from large to small accord-

Parent! 112212
L

Children! 112112

Single-point mutation operator

Single-point crossover operator

Figure 3. Crossover and mutation operators in the proposed
NSGA-II
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ing to the crowding distance, and a set of Pareto-optimal
solutions are found:
main loop
Ry <R VG,
F« fast—non—dominated—sort(Rt)
P12 and i« 1
until |Pt+1|+|Fl| <N
crowding-distance-assignment(Fi)
P

t+1(_P

t+1 Fl
[« i+1
sort(ﬁ, <n)
P P VR 1:(N =[P}
Qg < make-new-pop(Pm) use selection, crossover, and
mutation

tt+1

5. Numerical example

5.1. Example description

To illustrate the validity and the wide applicability of the
proposed models in designing an aircraft flight scheduling
plan for an airline, 22 flight (F1...F22) trips between 11 air-
ports (D1..D11) in China were selected for a case study.
2 types of aircraft were used for these trips (T1 and T2), as
well as a certain number of different types of aircraft (A1...
A6) initially located at 2 base airports, that is, Xian (D1) and

Table 2. Basic information regarding flight trips
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Yinchuan (D8), as shown in Table 2. Moreover, the depar-

ture and arrival times, the starting and ending airports, and

aircraft type of each flight trip are shown in Table 3. The

key parameters used in this study are described as follow:

= fixed cost of aircraft type t: ¢y, = 10000 CNY/aircraft and
cl, = 11000 CNY/aircraft;

= idle time cost of aircraft type t: ¢2,= 1.7 and CNY/min
g, = 2.5 CNY/min;

= operational cost of aircraft type t: ¢, = 1.9 and CNY/
min ¢3, = 3 CNY/min;

= minimum safe time: 7, = 30 min.

5.2. Results

As explained previously, the proposed model could yield
12 feasible Pareto-optimal solutions in 2 dimensions, in-
cluding the assignment of the flight trip to the aircraft and
the order of tasks for each aircraft. Figure 4 shows changes
in the 2 goals. The upper and lower bounds of objective
function 1 are 75083 CNY and 74980 CNY, and the upper
and lower bounds of objective function 2 are 1683 CNY
and 1617.5 CNY, respectively. As the value of objective
function 1 becomes larger, that of objective function 2
becomes smaller. This was because the reduction in the
total idle time inevitably led to the need for more aircraft
or larger aircraft covering flight trips for a smaller one,
thus increasing operating costs.

Take the Pareto-optimal solution (74, 995, 1669) as an
example. Table 3 summarizes the assignment results, which
include departure and arrival times of the aircraft at the

Flight trip No Origin airport Destination airport Departure time Fuzzy flight time Aircraft type
F1 Xian (D1) Sanya (D2) 07:00 (300, 310, 320) T1
F2 Sanya (D2) Xian (D1) 13:00 (260, 275, 290) T1
F3 Xian (D1) Sanya (D2) 07:00 (305, 310, 315) T1
F4 Sanya (D2) Xian (D1) 13:00 (270, 275, 280) T1
F5 Xian (D1) Zhuhai (D3) 18:35 (165, 175, 185) T2
F6 Zhuhai (D3) Xian (D1) 22:20 (145, 155, 165) T2
F7 Xian (D1) Dunhuang (D4) 06:15 (160, 165, 170) T2
F8 Dunhuang (D4) Xian (D1) 09:50 (125, 135, 145) T2
F9 Xian (D1) Guilin (D5) 06:15 (130, 135, 140) T2
F10 Guilin (D5) Xian (D1) 10:05 (110, 120, 130) T2
F11 Xian (D1) Xiamen (D6) 13:15 (310, 320, 330) T1
F12 Xiamen (D6) Xian (D1) 19:35 (250, 260, 270) T1
F13 Xian (D1) Songyuan (D7) 13:15 (270, 280, 290) T1
F14 Songyuan (D7) Xian (D1) 18:50 (295, 305, 315) T1
F15 Yinchuan (D8) Nanchang (D9) 07:00 (120, 130, 140) T2
F16 Nanchang (D9) Yinchuan (D8) 10:05 (145, 160, 175) T2
F17 Yinchuan (D8) Dalian (D10) 17:10 (120, 130, 140) T1
F18 Dalian (D10) Yinchuan (D8) 20:15 (140, 145, 150) T1
F19 Yinchuan (D8) Yantai (D11) 08:00 (130, 140, 150) T2
F20 Yantai (D11) Yinchuan (D8) 11:20 (145, 150, 155) T2
F21 Yinchuan (D8) Nanchang (D9) 16:55 (125, 135, 150) T1
F22 Nanchang (D9) Yinchuan (D8) 20:00 (140, 155, 170) T1
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starting airport of each flight trip and the compatibility
between the trip's special aircraft type and the type of
assigned aircraft. Taking a larger aircraft A2 visiting the
flight trip of F1 as an example, the aircraft leaves the origin

Table 3. Assignment result of the flight trip covered by the
aircraft

. . Expected idle . .
Flight trip No time [min] Aircraft Aircraft type
F9 95
F10 70
F11 60 Al T2
F12 -
F7 50
F
8 70 A2 T2
F13 55
F14 -
F1 50
F4 60
A3 T2
F5 50
F6 -
F2 50
A4 T1
F3 -
F15 55
F1 2
6 65 A5 T2
F17 55
F18 -
F19 60
F20 185
F21 50 A6 T2
F22 -

Table 4. Routing and scheduling plan for all aircrafts

. . Running | Idle time
Aircraft | Flights taken by the plane time [min] | [min]
Al D1-F9-F10-F11-F12-D1 835 225
A2 D1-F7-F8—-F13-F14-D1 885 175
A3 D1-F1-F4-F5-F6-D1 915 160
Ad D1-F3-F2-D1 585 50
A5 D8-F15-F16—-F17—-F18-D8 565 375
A6 D8—-F19-F20—F21-F22-D8 580 295

1690

]
1680 | o
o

1670 | °,
~ 1660 |
E 1650 | o
© 1640 |

o
(-}
1630 | a
1620 |
o
1610 . . . t . ‘
74980 75000 75020 75040 75060 75080 75100

Objective 1

Figure 4. Pareto-optimal solutions for an AFSP

airport D1 at 07:00 and arrives at the destination airport
D2 between 12:00 and 12:20. The expected running time
of F1 covered by an aircraft is about 310 minutes. Be-
fore conducting the flight trip F4, it stays at the airport for
about an expected idle time of 20 minutes. Table 4 shows
the routing plans of all aircraft, in which the 2 base airports
D1 and D8 are selected for one T1 aircraft and 5 T2 air-
craft, and their total idle and work times are also obtained.
Taking the route of A1 as an example, the aircraft leaves
the base airport of D1, covers trips F9, F10, F11, and F12,
and terminates at the base airport D1.

Furthermore, the proposed method (AFSP-MAT) has
unique features compared with an AFSP-SAT. Figure 5
shows the difference between AFSP-SAT and AFSP-MAT.
The cost of the fleet of the proposed model is reduced
by 43.5%. However, the total idle time and operational
cost for running flight trips for the proposed model are
increased by 50.5% and 0.9%, respectively, compared with
those for AFSP-SAT. This was due to a flight trip with a
small aircraft being covered by a large one, which reduced
the number of needed aircraft and increased operating
costs for running flight trips using a more expensive air-
craft type. The increase in the number of flight trips per
aircraft also increased the total idle time for 2 adjacent
flight trips covered by the same aircraft. As shown earlier,
the increase in the operating cost was far less than the
decrease in the fixed cost for fleets, confirming that AFSP-
MAT is better than AFSP-SAT.

Figure 5 Comparison of results of the proposed and
traditional models Moreover, the solutions for NSGA-II are
compared with CPLEX to analyse the robustness, solution
quality and calculation time of the proposed algorithm.
The results are shown in Table 5. As the number of trips
became larger, CPLEX can always find the best solution,
but the time taken is larger. With increases in the number
of the trips, the quality of the solutions of NSGA-II wors-
ened and this may not find the best solution. The differ-
ence in optimal solutions between the heuristic algorithm
and the use of CPLEX is acceptable, but the proposed al-
gorithm requires less computational time.

Runtime cost

Idle time cost

Fixed fleet cost 115000

0 20000 40000 60000 80000 100000 120000 140000

Fixed fleet cost Idle time cost Runtime cost
W AFSP-MAT 65000 1669 9995
I AFSP-SAT 115000 1109 9905

Figure 5. Comparison of results of the proposed and tradi-
tional models
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Table 5. Comparison of the different algorithms

Scale of NSGA-II
problem Best solution Worst solution Average solution
22 76664 76722 76679
30 116400 116500 116452
50 172000 172170 172129
100 246000 246250 246178
150 377000 377490 377230

6. Conclusions

This study presented a multi-objective optimization model
for AFSP-MAT. The significance of this model lies in reveal-
ing the relationship between temporal and spatial distri-
butions of flight trips, uncertain trip times, and schedul-
ing schemes. Once the path of an aircraft taking a set of
flight trips is determined, a specific type for each aircraft is
known by taking each flight trip covered by itself or a larg-
er one into account. Since a commercial solver like CPLEX
fails to solve large instances, a novel heuristic algorithm is
necessary. NSGA-Il is superior to CPLEX by solving differ-
ent scales of problem instances with an optimality gap of
less than 6% in less than one hour. A real-world case study
validated the feasibility and applicability of the proposed
framework. The results showed that the cost for the fleets
of the proposed model was reduced by 43.5%; while the
total idle time and operational cost for running the flight
trips of the proposed model were increased by 50.5% and
0.9%, respectively, compared with those for AFSP-SAT. This
proved that the proposed framework could be used as an
effective tool for transit authorities to design flight sched-
uling plans. Further, a sensitivity analysis between the total
idle time and operating costs was performed. A reduction
in total idle time would have a positive influence on the
operating costs. This is mainly due to having more aircraft
or larger ones being needed to cover flight trips.
However, the proposed model and algorithm can be
used by small and medium-sized airline companies. This
work should be extended to resolve AFSP-MAT for large
companies. There are many factors that affect AFSP. Note
that this study neglected the integration of crew sched-
uling with consideration of delays and maintenance re-
quirements. Another limitation is not having an interac-
tive operational process of aircraft flight timetabling and
scheduling. As a result, extending the possibilities of a fully
integrated AFSP in different ways is worthy of further in-
vestigation. Although this full integration may reduce air-
craft fleets and improve operational efficiency significantly,
it makes models more complex, and sophisticated solution
methods are needed to solve large-scale problems.
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