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Highlights:
 ■ this article proposed to use SQL to mine the correlation between the bus card number and the travel time to infer the characteristics of passenger 
travel behaviour;

 ■ this article established a splitting–integrating prediction method that takes into account both passenger travel behaviour characteristics and time char-
acteristics;

 ■ this article confirmed that the subset of passenger flow data divided according to the characteristics of passenger travel behaviour is beneficial to im-
prove the prediction performance, but the size and characteristics of the subset will affect the prediction performance;

 ■ this article compared and confirmed the adaptability of SARIMA method and RBF method.

Article History: Abstract. Short-term passenger flow forecasting is the key to implement real-time dynamic dispatching of buses, 
which can meet the travel time requirement of passengers with different attributes. In practice, it is difficult to 
obtain passenger attribute information due to the restriction of bus information systems or other conditions. 
This article proposes a new perspective on identifying passenger attribute information, that is, the correlation 
between the bus card number and the travel time is used to analyse passenger travel behaviour. Then using 
the travel frequency as the splitting boundary, the passenger set is split into different types of subsets, which 
are predicted by different methods. The total forecast values are obtained by integration, so as to explore the 
effectiveness of the passenger attribute identification and splitting–integrating method. The result shows that: 
(1) compared with the forecasting method without considering the passenger travel behaviour, the performance 
of splitting–integrating method is better, and the passenger attribute identification method is effective; (2) the 
value of the splitting boundary will affect the size and consistency of the subset, and the optimal value can be 
sought according to forecast results; (3) different types of subsets should be treated by different forecasting 
models and combination paths.
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Notations 

Variables and functions:
goal – the mean square error target value;
mn – the maximum number of neurons;
R2 – coefficient of determination;

spreed – expansion speed of radial basis function;
TS – the boundary for extracting passengers.

Abbreviations:
AC – autocorrelation coefficient;

ADF – unit root value;

AIC – Akaike information criterion;
ARIMA – autoregressive integrated moving average;

BP – back propagation;
EMD – empirical mode decomposition;
KNN – k-nearest neighbour;

MAPE – mean absolute percentage error;
PAC – partial AC;

PP – Phillips–Perron;
RBF – radical basis function;

RF – random forest;
RMSE – root mean square error;

SARIMA – seasonal ARIMA;
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SC – Schwarz criterion;
SQL – structured query language;
SSA – singular spectrum analysis;

SVM – support vector machines.

1. Introduction

Intelligent bus is developing rapidly in many cities and 
has become a future development trend. In addition, the 
short-term passenger flow forecasting is the key to the 
development of intelligent bus. However, there is a con-
tradiction between the diversity of passenger travel de-
mand and the stabilization of bus service time, and dif-
ferent passengers have different requirements for travel 
time. Therefore, it is not enough to only consider the travel 
time of passenger flow to make short-term forecasting. If 
short-term forecasting can be made based on the passen-
ger travel behaviour and attributes, it can not only better 
respond to passengers demand for travel time, but also 
effectively alleviate the contradiction.

Short-term passenger flow forecasting is a non-linear 
and time-varying problem, which refers to forecast the 
passenger flow no more than 15 min ahead, and needs 
to be based on the feature of passenger flow (Qiu, Yang 
2013; Vlahogianni, Karlaftis 2011; Bai 2017). Influenced by 
many complicated factors, both natural and human, pas-
senger travel behaviour has markedly time-varying feature. 
Therefore, short-term forecasting is more difficult than the 
medium-term or long-term forecasting (Wang et al. 2015a; 
Teng, Chen 2015). Its essence lies in the randomness of 
passenger travel and the diversity of passenger attributes. 
In addition, it is theoretically considered that the feature 
of the data is descriptive indicator of object attribute. If 
the object attribute corresponding to the data, that is, the 
passenger attributes, can be effectively analysed, then the 
generation and distribution of the data can be essentially 
recognized, which is conducive to identifying the feature 
of the data.

In reality, it is very hard to obtain passenger attrib-
ute information due to the limitation of bus information 
systems or other application conditions (Haworth, Cheng 
2012). For the bus card data collected by the bus systems, 
it generally only includes the time and date data, and oc-
casionally includes the card number or the location data. 
However, most of the bus cards are not bound with the 
passenger’s name, so it is difficult to collect the passen-
ger’s personal information. Therefore, most of the collect-
ed passenger flow data is incomplete. In this context, how 
to identify passenger attribute information based on the 
collected data, so as to identify the feature of short-term 
passenger flow data more effectively, is a key problem.

The rest of this article is organized as follows: current 
Section 1 is introduction to the problem; in Section 2, it is 
the literature review; in Section 3, the splitting–integrating 
method is presented in detail; in Section 4, application of 
this method and results are elaborated; finally, conclusions 
are present at the Section 5.

2. Literature review

The attribute of passenger flow data is divided into 3 ba-
sic attributes: (1) classified, (2) ordinal, and (3) numerical 
attribute (Zuo 2016). Classified attribute is some names, 
symbols, such as bus card number, card type, or location. 
Ordinal attribute is ordered, like travel time, date, etc. Nu-
merical attribute data is expressed by actual values, such 
as the number of passengers, the times or frequency of 
travel. If there are errors or omissions in the collection and 
transmission of some attribute values, the collected data 
is incomplete data that is occasionally or skipped missing. 
If the relevant fields are not considered in the design of 
information system, and all values of this attribute cannot 
be collected, then the collected data is incomplete data 
with limited attribute.

The way to identify passenger attribute information 
from incomplete data depends on the incompleteness of 
the data. For occasional or skipped incomplete data, the 
passenger attribute information can be effectively identi-
fied after using the existing data to deduce and fill in. 
However, for incomplete data with limited attribute, es-
pecially when the information related to passenger at-
tribute is missing, the way to identify passenger attribute 
information is either to upgrade the system or to analyse 
the correlation between existing attribute information and 
passenger attribute information (Zhong et al. 2006).

At present, scholars usually perform appropriate cor-
relation analysis based on the feature of the existing data, 
analyse passenger travel behaviour, and identify passen-
ger attribute information. For example, Du & Aultman-Hall 
(2007) used a heuristic method to analyse the correlation 
between the location data, and inferred the boarding and 
alighting behaviour of each passenger. However, when the 
existing data is only indirectly related to passenger attrib-
ute, such as bus card number, some scholars have tried 
to analyse passenger travel behaviour, and identified pas-
senger attribute information by analysing the frequency 
of card number appearing within a certain period. For ex-
ample, Lu (2016) analysed the passenger travel behaviour 
based on the frequency of card number appearing, which 
appeared 20 times in a month, and regular passengers and 
random passengers were inferred. However, the statistical 
standard of the frequency of card number appearing will 
affect the analysis of passenger travel behaviour, thus af-
fect the quality of passenger attribute identification and 
forecast results.

It is worth noting that the time-varying feature of short-
term passenger flow is significant, and the travel behaviour 
of different passengers vary greatly (Wang et al. 2015a). 
These make the components of the forecast object com-
plicated, and sometimes using a single model to forecast 
the total passenger flow dataset may not achieve the satis-
fied results. If the passenger flow with different features is 
split and each subset is predicted by different models, it’s 
possible to improve the prediction effect. Therefore, the 
rationality of passenger attribute identification and split-
ting method can be judged by the forecast result.
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Clustering analysis that maximizes homogeneity within 
groups and heterogeneity among groups based on pre-
defined metrics is a typical classification method (Sfetsos, 
Siriopoulos 2004). Chen et al. (2019) used k-means cluster-
ing algorithm by setting multiple clustering values to split 
weekday passenger flow into the types of passenger flow 
of peak time, secondary peak time, flat peak time, second-
ary low peak time and low peak time, and found the best 
category number by comparing the test coefficients. In the 
same way, consider setting the statistical standard multiple 
times, the total passenger flow set is split into subsets of 
different sizes, and the best statistical standard and the 
best subset are found by forecast results.

The motivation of this article is to explore whether the 
forecasting method considering the passenger attribute 
information can improve the forecast performance. Com-
pared with the forecasting method that does not consider 
passenger travel behaviour and attribute information, the 
rationality of passenger attribute information identification 
and the effectiveness of the splitting–integrating method 
are verified.

3. Methodology

Methodology is the basis for passenger flow forecasting. 
1st-of-all, the principle of the splitting–integrating fore-
casting method is described in detail. Then the experimen-
tal data and its feature are analysed. In addition, an adap-
tive forecasting model is selected to pave the way for the 
application of the splitting–integrating method.

3.1. Splitting–integrating forecasting method
The splitting–integrating forecasting method based on in-
complete data has 3 steps, as shown in Figure 1.

Step 1. Data decomposition. For incomplete passenger 
flow, splitting it into different subsets {1, 2, ..., m} according 
to the correlation between data attributes.

Step 2. Establish forecasting model. The applicable 
models {N1, N2, ..., Nn} are selected to forecast each subset, 
and forecasting models { } { }( )= =1, 2, ..., ; 1, 2, ...,xyN x n y m  
are established.

Step 3. Integrate the forecast values of each subset, 
and obtain the optimal combination model. By adopting 
the fully combined path of forecasting model, the fore-
cast values of subsets are integrated. If the forecast perfor-
mance is not optimal, the combination path is reselected 
until the optimal forecast performance is obtained.

3.2. Data and feature analysis
This article takes the bus card consumption records of the 
No 104 bus in Changsha (China), as an example. Since 
the buses start and end at Changsha railway station and 
Jiufeng park station, which pass through densely popu-
lated areas such as schools, hospitals and subways. A large 
number of passengers swipe their card every day, thus the 
collected data has different features. This can be used to 

explore the feasibility of splitting–integrating forecasting 
method. 

The passenger flow information was collected through 
the bus system, which was collected by 20 buses in real 
time 3–30 June 2017, constituting 216749 records in all. 
Each record includes the number of passengers, bus car 
number, bus card number, boarding time and boarding 
date. In addition, each attribute has one-to-one correla-
tion. Among them, the boarding date is any day (3–30 
June 2017), and the boarding time is any time from 6:00 
to 22:15 daily. Table 1 is the total daily passenger flow 
volume on working day and on non-working day. It shows 
that the weekly passenger flow volume is basically main-
tained at about 54000, of which the passenger volume is 
about 14000 on non-working days and about 40000 on 
working days. It can be seen that the overall weekly pas-
senger flow volume is relatively stable.

The time-varying feature of the passenger flow data is 
the important basis for the selection of forecasting model. 
Taking 15 min as the statistical unit, the daily operation 
period (6:00…20:15) is divided into 66 periods. And the 
total passenger flow volume is allocated to each period 
to form original time series, which is shown in Figure 2. It 
can be seen that the time series shows a relatively stable 
and periodic time-varying features. As can be seen from 
Figure 3, the time-varying features of daily passenger flow 
are non-stationary and random.

Figure 1. The principle of the splitting–integrating forecasting 
method
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3.3. Forecasting models

A forecasting model refers to use mathematical language 
or formula to describe the quantitative relationship of his-
torical data. For the short-term passenger flow forecasting, 
scholars have proposed many models. As reviewed in Qiu 
& Yang (2013), Wang et al. (2015) and Bai (2016), time se-
ries modelling is roughly based on 2 types of techniques.

The 1st type is based on mathematical and physical 
statistics, including moving average (Meng et al. 2018), 
Kalman filtering (Zhang et al. 2011), ARIMA (Zuo 2016), 
SARIMA (Wang et al. 2015a) and so on. Among them, 
Kalman filter is applicable to linear and stable data (Wang 
et al. 2016). ARIMA and SARIMA are suitable for non-linear 
stationary data (Zhao 2018). What’s more, SARIMA is more 

applicable when the data has periodic feature (Williams, 
Hoel 2003).

The 2nd type is based on biological and computer 
simulation techniques, mainly including RF (Li et al. 2017), 
KNN (Dou 2011), SVM (Sun et al. 2015), BP neural network 
(Zhu 2017), RBF neural network (Feng et al. 2015) and so 
on. These models don’t take mathematical derivation as 
the core, but pay more attention to the fitting effect (Qiu 
et al. 2013). Among them, both RF and KNN can establish 
models based on the feature of data, but need to set cat-
egory parameters by experience. SVM, BP neural network 
and RBF neural network can be applied to data with any 
features (Tsai et al. 2009; Smith et al. 2002; Wang et al. 
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Figure 2. The original time series (3–30 June 2017): a  – represents 4 June 2017; b  – stands for 5 June 2017

Table 1. Descriptive statistics of the total passenger flow dataset

Week

On non-working days On working days Total

Date
Passenger 

flow 
[number]

Percentage of 
total passenger 

flow [%]
Date

Passenger 
flow 

[number]

Percentage of 
total passenger 

flow [%]

Passenger 
flow 

[number]

Percentage 
[%]

1st 3–4 June 14992 6.92 5–9 June 41365 19.08 56357 26.00
2nd 10–11 June 14070 6.49 12–16 June 40294 18.59 54364 25.08
3rd 17–18 June 14460 6.67 19–23 June 39554 18.25 54014 24.92
4th 24–25 June 12801 5.91 26–30 June 39213 18.09 52014 24.00
Total – 56323 25.99 – 160426 74.01 216749 100.00

Figure 3. The distribution of the original time series: a  – one non-working day; b  – one working day
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2015a). However, the algorithm of SVM is complex and 
time-consuming, especially in short-term passenger flow 
forecasting. BP neural network has the disadvantage that 
learning convergence takes a long time and can’t guar-
antee to reach the global optimum. RBF neural network 
has the ability of global approximation and can deal with 
complex non-linear problems without prior knowledge 
(Feng et al. 2015).

Research result shows that there is no one forecast-
ing model, which can predict all types of data well. It is 
necessary to choose an appropriate forecasting model ac-
cording to the data environment (Smith et al. 2002; Gao, 
Er 2005). The above analysis shows that the experimental 
data has periodic, non-linear, non-stationary, and random 
feature. In addition, according to the characteristics and 
application environment of the above forecasting models, 
the SARIMA model based on the 1st type of technique has 
good applicability to periodic and non-linear data. The RBF 
neural network model based on the 2nd type of technique 
can process data containing complex feature. In addition, 
both models can adopt dynamic and rolling mode to bet-
ter forecast short-term and small amounts of the data. In 
addition, in order to fully verify the effectiveness of the 
splitting–integrating method, the SARIMA model and RBF 
neural network model are selected as the representatives 
from the 2 types of techniques. The feasibility of the se-
lected model is judged by forecasting the experimental 
data.

3.3.1. SARIMA model

Sample data within the 1st to 3rd week is used to establish 
the SARIMA model, and sample data within the 4th week 
for out-of-sample testing. The SARIMA model requires the 
data to be stable. If not, the data needs to be smoothed 
(Wang et al. 2015b; Ma et al. 2016).

The stability of data is judged by the ADF, sequence di-
agram, and autocorrelation diagram. As shown in Table 2,  
for the ADF test, Prob > 0.05. The time series shown in Fig-
ure 2 shows a non-linear variation. The AC shown in Figure 
4 has no truncation, and s = 66. These indicate that the 
series is not stable, seasonal and non-seasonal differential 
processing are required.

The differenced series is obtained after 1st-order sea-
sonal and 1st-order non-seasonal differential processing. 
Then its stability is tested. As shown in Table 3, the ADF 
test rejects the null hypothesis at a significance level of 1%.  
As shown in Figure 5, the series fluctuates around zero 
without an increasing or decreasing trend. The AC shown 
in Figure 6 presents a 1st-order truncation. Therefore, the 
series is stable, and meets the requirements of the SA-
RIMA model.

The parameters of the model that need to be identified 
are the non-seasonal difference d, seasonal difference D, 
lag orders p, q, P and Q. The optimal values of parameters 
are judged using R2, AIC, and SC. d = 1 and D = 1 are 
obtained through the above differential processing. It can 

Figure 4. The original time series of autocorrelation diagram

Table 2. The original time series of ADF test

Method Statistic Prob
ADF–Fisher c2 30.3238 0.4492
PP–Fisher c2 32.3437 0.3517

Table 3. The differenced series of ADF test

t-statistic Prob
Extended Dickey–Fuller test statistics –13.97921 0.0000

ADF test
1% –3.437314 –
5% –2.864503 –
10% –2.568401 –

Autocorrelation Partialcorrelation AC PAC Q–stat Prob.

0.867 0.867 746.03 0.000

0.745 –0.027 1297.2 0.000

0.586 –0.216 1638.8 0.000

0.424 –0.127 1817.8 0.000

0.243 –0.180 1876.9 0.000

0.089 –0.034 1884.9 0.000

–0.041 –0.010 1886.5 0.000

–0.136 0.011 1905.1 0.000

–0.207 –0.021 1947.9 0.000

–0.251 –0.033 2010.9 0.000

0.826 0.079 7776.5 0.000

0.754 0.015 14946. 0.000

0.701 0.055 21518. 0.000
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be preliminarily judged from Figure 6 that the values of p 
and q are 1, 2, 3 and 1, 2, respectively, and the values of P 
and Q are 1, 2 and 1, 2, respectively. By combining p, q, P 
and Q, when p = 3, q = 2, P = 2 and Q = 1, the SARIMA(3, 
1, 2)(2, 1, 1)66 model is optimal. The test results are shown 
in Table 4, and the model is:

Figure 5. The differenced series of sequence diagram
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( )+ ⋅ + ⋅ + ⋅ ×2 31 0.615 0.049 0.131B B B

( )+ ⋅ + ⋅ ×⋅ ⋅6 11 0.125 6 0.151 32B B

( ) ( ) =− ⋅ ⋅⋅− 61 1 6 tB B y ( )+ ⋅ + ⋅ ×21 0.241 0.55B B

( )+ ⋅ ⋅ e +⋅61 0.906 6 0.0007tB ,                               (1)

where: yt is the forecast value; B is the backward shift op-

erator ( )−
 ⋅ 
 

=n
t t nB y y ; et is the residual sequence, which 

should be independent.
The correlation of the residuals is tested using the Q 

statistic and the results are shown in Figure 7. Both the AC 
and PAC are within the acceptable range, indicating that 
the SARIMA(3, 1, 2)(2, 1, 1)66 model is ideal.

3.3.2. RBF neural network model

The steps of establishing the RBF neural network model 
are divided into 3 steps.

Step 1. Determining training and testing data. 
Training data {= ∈|n n n ktX x x X , k is the date within 

the 1st to 3rd week, t is the period, { }}∈ …1, 2, , 990n .
Testing data {= ∈|n n n ktY y y Y , k is the date within the 

4th week, t is the period, { }}∈ …1, 2, , 330n .
Step 2. Training the network and determining the pa-

rameter.
The rolling training is that the output values are 

fed back into the network structure as part of the in-
put values (Feng et al. 2015; Xie et al. 2013). When the 
RMSE between the output values and the observed val-
ues reaches a minimum, then the optimal values of 
the goal, spread, mn can be obtained (Wang, Cheng 
2016). Rolling training is carried out: the input data 

{ }( )+ + += … ∈1 2 66, , ,h g g g nX x x x X , the expected output 
data ( { }+= 67j gT x , { }∈ … ⋅ −0, 1, 2, 3, , 66 67g m , and m is 
the number of the date) are input into the network, that 
is, ( )= , , , ,g jnet newrb X T goal spread mn . 

In order to determine the network parameters based 
on the sample data in the experiment, the initial range 
of parameters is firstly obtained by a pre-analysis: goal ∈ 
{0.0001, 0.001, 0.01, 0.1}, spread ∈ [0.9, 1.0], mn ∈ [30, 
70]. Then the network is repeatedly trained by trial in the 
parameter range of spread with a step size of 0.01 and 
mn with a step size of 1. Among them, the RMSE values 
obtained by the network with goal = 0.001, spread ∈ [0.9, 
1.0], and mn ∈ [30, 70] are shown in Table 5. Therefore, 
the optimal parameter values of RBF neural network are: 
goal = 0.001, spread = 0.92, mn = 50.

Step 3. Forecasting.
The testing data is input into the determined network 

for simulation forecast.
3 widely used performance measurement indicators 

are selected to evaluate the feasibility of forecasting meth-
od: RMSE, MAPE, and R2 (Bai et al. 2017; Sun et al. 2015; 
Tsai et al. 2009):

Figure 6. The differenced series of autocorrelation diagram

Figure 7. Q-test of residual sequence

Autocorrelation Partialcorrelation AC PAC Q–stat Prob.

–0.458 –0.458 194.61 0.000

–0.026 –0.299 195.24 0.000

–0.059 –0.295 198.49 0.000

0.091 –0.147 206.23 0.000

–0.041 –0.132 207.78 0.000

0.001 –0.111 207.78 0.000

–0.013 –0.105 207.95 0.000

–0.017 –0.139 208.21 0.000

0.028 –0.106 208.95 0.000

0.029 –0.041 209.73 0.000

–0.439 –0.112 564.53 0.000

–0.075 –0.128 717.32 0.000

0.059 –0.031 831.75 0.000

1
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Autocorrelation Partialcorrelation AC PAC Q–stat Prob.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.004 0.004 0.0112 0.916

0.004 0.004 0.0259 0.987

0.014 0.014 0.1717 0.982

0.034 0.034 1.0726 0.899

–0.007 –0.007 1.1124 0.953

–0.013 –0.014 1.2505 0.974

–0.014 –0.015 1.4034 0.985

–0.067 –0.068 5.0261 0.755

0.026 0.028 5.5757 0.782

0.023 0.025 6.0043 0.815

–0.004 –0.002 6.0172 0.872

–0.007 –0.003 6.0535 0.913

–0.052 –0.056 8.2411 0.828

0.019 0.016 8.5272 0.860

0.007 0.007 8.5628 0.899

Table 4. The test results of model

Variable Coefficient Std. error t-statistic Prob.

C 0.000696 0.015998 0.043490 0.9653
AR(1) –0.614902 0.178889 –3.437340 0.0006
AR(2) –0.049119 0.052769 –0.930821 0.3522
AR(3) –0.130888 0.041154 –3.180465 0.0015
SAR(66) –0.124864 0.035549 –3.512417 0.0005
SAR(132) –0.151270 0.034388 –4.398962 0.0000
MA(1) –0.241215 0.178741 –1.349521 0.1776
MA(2) –0.549884 0.163886 –3.355278 0.0008
SMA(66) –0.906308 0.010542 –85.97457 0.0000
R2 0.727938 AIC 8.490312
Adjusted R2 0.725144 SC 8.543643
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where:

= = =

 
 = ⋅ ⋅ − ⋅
 
 
∑ ∑ ∑

2

1
1 1 1

ˆ ˆ
n n n

i i i i
i i i

r n y y y y ;

= =

 
 = ⋅ −
 
 

∑ ∑
2

2
2

1 1

ˆ ˆ
n n

i i
i i

r n y y ;

= =

 
 = ⋅ −
 
 

∑ ∑
2

2
3

1 1
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yi is the observed value; ˆ iy  is the forecast value. 

Table 5. RMSE of the RBF neural network model with different parameters (goal = 0.001)

          spread
mn 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

30 22.548 22.411 22.847 21.892 21.988 22.030 21.794 22.694 22.173 21.826 21.536 
31 22.456 21.903 22.791 21.841 21.972 22.012 21.779 22.652 22.064 22.103 21.451 
32 22.447 21.885 22.694 21.972 21.946 21.815 21.885 22.240 22.028 22.125 21.608 
33 22.436 21.711 22.579 21.909 21.958 21.794 21.647 22.220 21.942 22.550 21.692 
34 22.427 21.712 22.294 21.752 21.858 21.900 21.950 22.140 21.775 22.727 21.674 
35 22.115 21.453 21.818 21.766 21.767 21.772 21.734 21.892 21.562 22.549 21.553 
36 21.997 21.316 21.709 22.034 21.253 21.599 21.736 21.873 21.470 22.487 21.556 
37 21.724 21.222 21.669 22.127 21.301 21.711 21.680 21.706 21.262 22.306 21.237 
38 21.607 21.050 21.662 22.107 21.223 21.798 21.935 21.649 21.300 22.238 21.023 
39 21.491 21.087 21.476 22.395 21.022 21.798 21.896 21.671 20.993 22.125 20.974 
40 21.581 21.116 21.046 22.724 21.054 22.159 22.006 21.682 20.977 22.135 20.899 
41 21.559 21.115 20.969 22.357 20.998 21.893 21.844 21.993 21.056 21.956 20.940 
42 21.715 20.914 21.036 22.563 21.095 21.761 21.847 21.874 21.039 22.012 21.103 
43 21.640 20.906 20.872 22.597 21.103 21.600 21.736 21.856 21.010 21.871 21.028 
44 21.646 21.044 20.696 22.337 21.107 21.514 21.685 21.878 21.067 21.574 20.678 
45 21.394 21.028 20.675 22.156 20.892 21.507 21.945 21.896 21.041 21.628 20.724 
46 21.303 20.989 20.357 22.171 20.908 21.359 21.914 21.927 21.152 21.622 20.692 
47 21.036 21.091 20.340 22.057 20.857 20.940 21.768 21.924 21.053 21.601 20.786 
48 20.918 21.188 20.332 21.994 20.880 20.567 21.740 21.685 21.179 21.603 20.830 
49 21.016 20.945 20.341 21.994 20.932 20.549 21.797 21.700 21.169 21.694 20.807 
50 21.244 20.991 20.255 21.820 20.806 20.594 21.654 21.805 21.136 21.727 20.651 
51 21.239 21.009 20.359 21.793 20.899 20.686 21.639 21.946 21.027 21.690 20.673 
52 21.280 20.846 20.399 21.738 20.979 20.866 21.638 21.987 21.043 21.692 20.931 
53 21.422 20.904 20.474 21.772 21.017 20.899 21.652 22.099 21.158 21.567 20.845 
54 21.355 20.761 20.395 21.810 20.921 21.007 21.664 22.134 21.174 21.570 20.935 
55 21.355 20.920 20.386 21.816 20.992 20.903 21.707 22.155 21.218 21.522 20.874 
56 21.343 20.923 20.373 21.817 21.160 20.983 21.738 22.122 21.231 21.610 20.860 
57 21.552 20.783 20.336 21.783 21.200 21.266 21.751 22.042 21.154 21.562 20.931 
58 21.556 20.811 20.319 21.886 21.134 21.247 21.768 22.040 21.071 21.617 20.921 
59 21.568 20.795 20.325 21.781 21.156 21.361 21.958 22.088 21.075 21.673 20.987 
60 21.489 20.805 20.317 21.858 21.127 21.341 21.818 22.085 21.149 21.752 21.014 
61 21.648 20.932 20.256 21.828 20.920 21.418 21.821 22.088 21.129 21.788 21.051 
62 21.623 21.181 20.288 21.952 20.958 21.459 21.839 22.153 21.301 21.786 20.899 
63 21.586 21.156 20.359 21.623 21.041 21.564 21.497 21.775 21.449 21.659 20.949 
64 21.547 21.153 20.453 21.586 20.998 21.438 21.420 21.649 21.556 21.521 21.075 
65 21.618 21.250 20.602 21.645 21.103 21.357 21.525 21.757 21.822 21.562 21.094 
66 21.598 21.185 20.894 21.635 21.153 21.332 21.530 21.769 21.866 21.305 21.034 
67 21.677 21.231 21.253 21.704 21.096 21.199 21.578 21.732 21.973 21.240 20.944 
68 21.688 21.177 21.439 21.752 21.224 21.092 21.838 21.711 21.858 21.150 20.973 
69 21.832 21.373 21.471 21.708 21.177 21.111 22.090 21.522 21.756 21.124 20.980 
70 21.767 21.457 21.481 21.685 21.281 21.070 22.126 21.522 21.956 21.071 21.038 
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Equations (2) and (3) calculate the average absolute 
and relative errors. Equation (4) measures the goodness 
of fit.

The total forecast values are substituted into the in-
dicators, the performance values are obtained, as shown 
in Table 6. The R2 values are close to 1, indicating that 
the models have a good fit. According to the definition of 
MAPE, when 20 < MAPE < 50%, the forecast results are 
reasonable, and when 10 < MAPE < 20%, the model can 
get good results (Cao, Liang 2015). It can be seen that the 2  
forecasting models are acceptable.

4. Application

4.1. Data decomposition

According to the theory of splitting–integrating method 
and experimental data, the card number data is used as 
the main index to analyse the passenger travel behaviour 
and identify passenger attribute information. The time 
and date data of the same card number are extracted by 
adopting SQL. By analysing the correlation of card num-
ber, time and date data, it is found that the more frequent 
the same card number appearing, the more similar the 
time it appears. On the whole, it presents the similarity 
variation weekly and daily. It can be concluded that the 
passengers with this kind of swiping records are likely 
to be commuters, which have obvious regularity. For the 
same card number that appears less frequently, the data 
shows random variation, and it is difficult to identify pas-
senger attribute information.

Taking 5 working days per week as the statistical stand-
ard, the number of days that each card number appears is 
used as the splitting boundary. The total passenger set is 
divided into regular passenger subset and irregular pas-
senger subset, the rationality of passenger attribute fea-
ture identification and the optimal splitting boundary are 
determined by the subset size and the forecast perfor-
mance.

Assume that the boundary for extracting the data is TS.  
When the number of days that each card number appears 
≥TS, the data is extracted. Logically, the possible values 
of TS are {2, 3, 4, 5}. When TS = 2, passengers who travel 
more than 2 days are extracted, and the rest are passen-
gers who travel one day. However, for TS = 2, the sta-
tistical standard is too low to judge the passenger travel 
features (Due to the fact that the bus card doesn’t have 
the real name). When TS = 3 and TS = 4, the proportion 
of passenger volume within the boundary to the total pas-
senger volume is 27.67% and 23.07% respectively, forming 
statistical feature and showing regular feature. Therefore, 

both TS = 3 and TS = 4 are considered as the splitting 
boundary of this article. When TS = 5, the proportion of 
passenger volume within the boundary to the total pas-
senger volume is only 8.34%. This percentage is too small 
to make meaningful.

For the passenger flow during non-working days, there 
is no subset with obvious statistical feature. Therefore, only 
the passenger flow during working days is predicted using 
the splitting–integrating forecasting method.

4.2. Forecasting
In this section, TS = 4 is taken as the splitting boundary, 
the SARIMA model and RBF neural network model are 
used to forecast subsets respectively. The path of the fully 
combined, namely the SARIMA–SARIMA, the RBF–RBF, 
the SARIMA–RBF and the RBF–SARIMA, are adopted. Ad-
ditionally, the modelling steps of SARIMA and RBF neural 
network are consistent for the data with different feature, 
and the parameters of the models are determined by the 
sample data.

According to the modelling steps above, the optimal 
model obtained for the regular passenger flow subset is 
SARIMA(1, 1, 1)(2, 1, 2)66 model and for the irregular pas-
senger flow subset, SARIMA(2, 1, 2)(2, 1, 3)66 model. Simi-
larly, the RBF neural network models are established, the 
optimal parameter values of the model for regular pas-
senger flow are: goal = 0.001, spread = 2.27, mn = 22, and 
the optimal parameter values of the model for irregular 
passenger are: goal = 0.001, spread = 1.14, mn = 30.

After subsets are predicted by different models, the 
forecast values are integrated to obtain the total forecast 
values. Combining the forecast values of regular passenger 
flow obtained by SARIMA(1, 1, 1)(2, 1, 2)66 model with the 
forecast values of irregular passenger flow obtained by 
SARIMA(2, 1, 2)(2, 1, 3)66 model, thus the total forecast val-
ues are obtained by SARIMA–SARIMA model. Similarly, the 
total forecast values of the RBF–RBF model, SARIMA–RBF 
model, and RBF–SARIMA model are obtained.

4.3. Results and analysis
The forecast values are substituted into the indicators to 
get the forecast performance values. In order to evaluate 
the performance of the models in multiple dimensions, 
the tests are partitioned into in-sample and out-of-sample 
test, which are listed in Table 7:
 ■ from the R2 values in Table 7, it can be seen that the 
fitting degree obtained by the 4 combined models are 
very high, up to 0.98. This shows that the SARIMA model 
and RBF neural network model can be used to forecast 
subsets and obtain high-quality forecast values;

Table 6. Performance values of direct forecasting method

Forecasting model
In-sample Out-of-sample

RMSE [%] MAPE [%] R2 RMSE [%] MAPE [%] R2

SARIMA 16.58 15.04 0.91 35.48 35.79 0.82
RBF 9.67 17.18 0.97 20.25 19.11 0.87
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 ■ compared the performance values obtained by the 
SARIMA model, the relative improvement of RMSE in-
sample and out-of-sample obtained by the SARIMA–SA-
RIMA model is 3.14 and 11.01%, respectively, and the 
relative improvement of MAPE is 3.26% and 17.68%, re-
spectively. Compared the performance values obtained 
by the RBF model, the relative improvement of RMSE 
in-sample and out-of-sample obtained by the RBF–RBF 
model is 3.01% and 0.81%, and the relative improvement 
of MAPE is 7.51% and 1.96%, respectively. This means 
that compared with the forecasting method that does 
not consider passenger travel behaviour, the splitting–
integrating forecasting method can effectively improve 
the prediction effect. In addition, the method of pas-
senger attribute information identification is reasonable;

 ■ since the SARIMA can’t forecast the random data well, 
the performance values of SARIMA–RBF model are bet-
ter than that of RBF–SARIMA model as a whole. There-
fore, the SARIMA is more suitable for predicting data 
with regularity. In addition, the performance values ob-
tained by 3 combined models composed of RBF neural 
network are better than those obtained by SARIMA–
SARIMA model, and the RBF–RBF model is the optimal 
model. This indicates that forecasting models have dif-

ferent adaptability to the data with different features. 
The RBF neural network model has better adaptability 
to data with regular and random features;

 ■ when TS = 4, the RMSE, MAPE and R2 out-of-sample 
obtained by the RBF–RBF model is 19.44%, 17.15% and 
0.88, respectively. When TS = 3, the RMSE, MAPE and 
R2 out-of-sample obtained by the RBF–RBF model is 
21.16%, 24.20% and 0.85, respectively. It can be seen 
that when the splitting boundary is TS = 4, all 3 indi-
cators are better. This indicates the boundary has an 
effect on the splitting–integrating method. The stricter 
the splitting boundary is, the more regular the data will 
be, and the better the adaptability of forecasting model 
will be.

Given that the smaller the evaluation period, the closer 
to real time, which is more practical for a smart public 
transport system. The above has compared the overall 
performance, but a better comparison would involve the 
daily forecast performance. Figure 8a and Figure 8c are 
a comparison of daily R2 values obtained by the SARIMA 
model and the SARIMA–SARIMA model. It can be seen 
that the performance values obtained by the splitting–in-
tegrating method are better. Figure 8b and Figure 8d show 
that the observed values are close to the forecast values. 

Figure 8. Forecast results of SARIMA model and SARIMA–SARIMA model: 
a  – the comparison of R2 in-sample; b  – the comparison of observed values and forecast values in-sample; 
c  – the comparison of R2 out-of-sample; d  – the comparison of observed values and forecast values out-of-sample
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This indicates that splitting the data does improve forecast 
performance. In addition, comparing the forecast results 
in-sample (Figure 8a and Figure 8b) and out-of-sample 
(Figure 8c and Figure 8d), it’s found that the former is 
better. This illustrates that passenger flows have uncertain 
variation in the future.

Similarly, the forecast results of the RBF model and 
the RBF–RBF model are shown in Figure 9. By comparing 
Figure 8 and Figure 9, it can be found that the RBF–RBF 
model is better than the SARIMA–SARIMA model, and the 
RBF model is better than the SARIMA model. This indicates 
that data with different features are better treated by dif-
ferent forecast models. Additionally, the forecast results 
in-sample are better than those out-of-sample, further 

indicating that the variation of passenger flow data is un-
certain. Therefore, the prediction should be updated by 
rolling to maintain the accuracy of the prediction.

5. Conclusions 

Main conclusions are:
 ■ passenger flow data with different features are selective 
for forecasting model and combined path. According to 
forecast performance, the SARIMA model is more suit-
able for data with regularity, while the RBF model can be 
used for data with randomness and complexity. In ad-
dition, the RBF-RBF model has the highest applicability; 

Figure 9. Forecast results of RBF model and RBF–RBF model: 
a  – the comparison of R2 in-sample; b  – the comparison of observed values and forecast values in-sample;  
c  – the comparison of R2 out-of-sample; d  – the comparison of observed values and forecast values out-of-sample
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Table 7. Performance values of splitting–integrating method (TS = 4)

Forecasting model
In-sample Out-of-sample

RMSE [%] MAPE [%] R2 RMSE [%] MAPE [%] R2

SARIMA–SARIMA 13.44 11.78 0.94 24.47 18.11 0.83
RBF–RBF 6.66 9.67 0.98 19.44 17.15 0.88
SARIMA–RBF 8.51 10.78 0.97 20.08 16.96 0.87
RBF–SARIMA 11.78 10.32 0.95 24.06 17.84 0.84
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 ■ the location of the splitting boundary (the value of TS) 
has an impact on forecast performance, and the optimal 
value can be sought based on forecast performance. The 
higher the value of TS, the smaller the subset extracted, 
and the greater the consistency of the subset. When the 
subset is too small or too large (TS = 2, respectively, 5),  
the forecast performance isn’t ideal. While the best fore-
cast performance appears at TS = 4, and the size and 
consistency are moderate;

 ■ analysing the attribute of data object, understanding the 
fact behind the data, and trying to adopt the splitting–
integrating forecasting path are conducive to improving 
the forecast performance. Compared with the forecast-
ing method that does not consider passenger travel be-
haviour and attribute information, the splitting–integrat-
ing method achieves better forecast performance. After 
the passenger flow data is split, the RMSE and MAPE of 
the SARIMA model is reduced by 11.01% and 17.68%, 
respectively, and those of the RBF neural network model 
is reduced by 0.81% and 1.96%, respectively;

 ■ uncertain variation of short-term passenger flow data 
will affect the prediction effect. All the results in-sample 
are better than those out-of-sample in the experiment, 
which show that although the time series follows certain 
rules, it also has time-varying feature. In applications, if 
the prediction accuracy needs to be guaranteed, rolling 
forecast is needed, so that the prediction period isn’t 
too long;

 ■ the short-term passenger flow forecasting considering 
passenger travel behaviour and attribute information 
can improve the forecast performance from the per-
spective of passenger demand, rather than only from 
the perspective of time of travel. In the context of miss-
ing passenger attribute information, this article uses the 
correlation of card number and the time data to analyse 
passenger travel behaviour and identify passenger at-
tribute. The results obtained by the SARIMA–SARIMA 
model and the RBF–RBF model show that the forecast-
ing method considering passenger attribute is better, 
and the method of passenger attribute identification is 
effective. This is the contribution of this article. In ad-
dition, this article also makes a certain contribution in 
exploring the adaptability of the data feature and fore-
casting model. However, the subset still contains differ-
ent vibration modes, even the regular passenger flow 
subset also contains high-frequency, low-frequency, 
non-stationary vibration, resulting in the forecast per-
formance value may not be the best. The EMD, Wavelet, 
SSA and other decomposition methods can separate the 
vibration, frequency and noise of the subset, which may 
further improve the prediction effect. This will be the 
direction of the next exploration.
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