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Abstract. The current international road standards, in order to give organization and safety, promote the classification 
of roads according to their technical and functional characteristics beyond their administrative membership, but the 
procedures are yet strongly based on the expertise’s judgment. In fact, although this activity has a great importance for 
the consequences that produces in terms of responsibility and allocation of economic resources, it is solely based on the 
quantification of some variables without specifying methods or analytical procedures. In this paper, after an instrumen-
tal survey of the road environment, we applied data mining techniques that consider the ‘vagueness’ of the analysed 
scenario. The type of algorithms used, therefore, permits to quantify a degree of membership (among 0 and 1) of a road 
to the groupings provided and to prepare any corrective action in order to direct the final result towards a specific class 
with greater precision. In addition, this method is very flexible and willing to contain new variables or observations at 
different times with great easiness. Moreover, the geographical location of the individual observations, as it was done 
also in this research, can be transferred to a GIS system, with a positive impact on maintenance programs.
Keywords: fuzzy; infrastructure; traffic safety; uncertainty; road.

Introduction

The functional classification of the roads consists of 
grouping them into homogeneous classes depending on 
the type of service they provide within a defined geo-
graphical area and within a road network. It takes a ma-
jor concern not only with regard to the creation of new 
infrastructures, but also to promote functional retrieval 
and/or the rehabilitation of existing routes instead of ex-
pensive new designs.

The international road standards, given the impor-
tance of the issue, lead analyst towards specific proce-
dures, very similar from country to country. Usually, 
in fact, it is necessary to identify certain factors as the 
following:

 – the type of movement (transit, distribution, pen-
etration, access);

 – the extent of travel;
 – the assumed function in the environmental con-
text;

 – the allowed components of traffic.
One of the objectives of the road standards is to 

identify the various functional levels (primary – connec-
tors, main – manifolds, secondary, local) in the network 
and match them to the roads, divided into several class-

es. In the Italian case, these are the following six groups: 
 – A – highways; 
 – B – main roads; 
 – C – secondary roads; 
 – D – urban roads; 
 – E – urban district roads; 
 – F – local roads.

In other countries the division into groups is very 
similar: 

 – in the United States and Canada – we find Free-
ways, Arterials, Collector and Local roads; 

 – in the UK  – Motorway; Primary A-road; Non-
primary A-road, B-road, C-road; Unclassified 
roads; 

 – in the France – Autoroutes, Route Nationale, Dé-
partmentales Routes, Routes Communales.

The selection of the class (from A to F, according 
to the Italian standard) derives from a complex pro-
cess which comprises surveys of the road context and 
the following analysis of the collected data: this pro-
cess, however, can also terminate with a judgment of 
un-classification, with the consequent necessity of ad-
justments in the road itself and the need to determine 
safety measures to be applied during the transition pe-

TRANSPORT
ISSN 1648-4142 / eISSN 1648-3480

2014 Volume 29(4): 419–430
doi:10.3846/16484142.2014.984329



riod. Although there are slight differences among the 
different countries (AASHTO 2011; Design Manual for 
Roads… 2002, FHWA 2004; Lamm et al. 1999; Italiano 
Strada Standard 2001; Bosurgi et al. 2011), the classes 
and performed functions always depend on the de-
mand for drivers’ mobility, safety conditions, territorial 
development expected, availability of different transport 
modes and environmental protection of the examined 
area (Kaptein, Claessens 1998; Jaarsma 1997; Giumma-
rra 2003; Chen et al. 2008). Among the most complex 
elements to evaluate we have the traffic generating sites 
(i.e. the presence of administrative, cultural, economic, 
commercial, industrial centers) to which is assigned a 
hierarchy usually depending only on the level of experi-
ence of the analyst.

The functional classification is, therefore, one of the 
tasks of the designer and it is essential in the case of 
existing roads. A misuse of the road, compared with its 
proper characteristics, in fact, worsen the users’ safety 
(Kockelman 2001; Karlaftis, Golias 2002; Forkenbrock, 
Foster 1997; Dickerson et al. 2000; Nowakowska 2010; 
Kashani, Mohaymany 2011) and most usually leads to 
an increase in social costs and possible inefficiencies 
in the programming of maintenance (Sohn, Lee 2003; 
Cafiso et al. 2011).

This activity is deceptively simple, because a road 
mutates easily its geometric and functional character-
istics along its length, making it necessary to properly 
investigate the importance of the collected data. In this 
regard, the modern digital instruments allow us to per-
form measurements almost continuously, managing in 
an optimal way the sampling frequency with relatively 
low computational costs and ensuring a good reliabil-
ity of the collected data. However, at the end of the on-
site survey, it is possible that the equipment gives us a 
database with redundant or hidden data, so that useful 
information can be obtained only after appropriate fil-
tering operations (Pellegrino 2011, 2012a, 2012b). It is 
necessary, therefore, to organize a procedure capable of 
acquiring knowledge from the detected data base, pre-
sumably from different sources (GPS, GPR, Speed Trap, 
image analysis, GIS, etc.) – in order to take into account 
the high degree of uncertainty of its variables (often cor-
related among them) – and reasonably quickly (Kuehnle, 
Burghout 1998; Mena 2003; Manduchi et al. 2005; Kang, 
Scott 2008; Paclík et al. 2000; Praticò, Giunta 2011). Fi-
nally, the evaluation of the collected data must be carried 
out using techniques that limit the analyst’s role, so far 
predominant in the procedures that are suggested by the 
regulations (D’Andrea, Pellegrino 2012).

We can find the means to resolve these issues by 
using soft computing or artificial intelligence techniques 
such as fuzzy logic, neural networks and genetic algo-
rithms (Dorsey, Coovert 2003; Cafiso et al. 2004). The 
soft computing approach, of course, is not always pref-
erable to other methods, but it produces more realistic 
results when the number of variables involved is con-
siderable and, especially, when their non linear depend-
ence would render other techniques not applicable (Jang 
1993; Güler, Übeyli 2005; Mon 2007; Gu, Oyadiji 2008; 
Tahmasebi, Hezarkhani 2010; Ravi, Zimmermann 2000; 

Shanahan et al. 2000; Dağdeviren et al. 2008). Soft Com-
puting techniques have been applied with profit also for 
functional classification of roads. Especially in the last 
10–15 years, researchers have used them to extract in-
formation from the road environment through image 
analysis, previously recorded with usual camcorders 
(Zhu et al. 1998). The concomitant development of the 
Intelligent Transportation System (ITS) has encouraged 
the preparation of fuzzy models or based on Genetic 
Algorithms (GA), able not only to recognize but also 
to understand the images with uncertainties controllable 
by analysis probabilistic (Shanahan et al. 2000; Lingras 
2001). More recently, soft computing techniques have 
been applied to evaluate details of the functional classifi-
cation as, for example, the recognition of the road align-
ment by means of Artificial Neural Networks (ANN) 
(García Balboa, Ariza López 2008) or to evaluate traffic 
flows (Toplak et al. 2010).

With this paper we propose the application of a 
data mining technique that, based on the knowledge of 
a data set previously collected, allows us to quantify the 
membership degree of a road to a given functional class, 
identifying the contribution of the structural, geometri-
cal and functional elements involved in the analysis.

The proposed model, furthermore, has the advan-
tage that it can be updated with additional variables 
without losing accuracy (but, rather, increasing it) in the 
calculation of final solutions. The achievement of this 
objective is fundamental because it would allow, both 
during the design of a new road and during the mainte-
nance of an existing road, to act on well-identified char-
acteristics of the scenario that often are not covered by 
the applied standard. 

In order to quantitatively assess the contribution of 
the proposal, we present a case study of a country road 
located in Sicily (Italy).

1. Method

The procedure suggested by the majority of the interna-
tional standards is very general and is based on the de-
termination of certain parameters, useful for the recog-
nition of the most opportune class. Amongst them, for 
example, there are type of movement, offered services, 
standards of construction, traffic components and route 
directions. Furthermore, these properties depend on 
other variables (flows, operating speeds and design, con-
sistency, visibility, planning tools, etc.), often with inter-
dependency between them, which makes this problem 
extremely complex to solve. Finally, a further element of 
difficulty is represented by the fact that some construc-
tive and functional characteristics can vary along the 
track, especially if this is sufficiently extended.

Therefore, taking into account the conditions here 
briefly introduced, we proposed a methodology based 
on the following steps:

 – survey of the following 25 variables for the defini-
tion of the expected class, recorded at appropriate 
points of the road axis: function in the network, 
served movement, transport capacity, design 
speed, operational speed, difference between de-
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sign speed and operational speed, stopping sight 
distance, available sight distance, degree of con-
ditioning between users, roughness of the pave-
ment, radius of the curve, length of the curve, 
lane width, width of the traffic island, width of 
shoulders right and left, vertical and horizontal 
signs, safety barriers, traffic flows (light and heavy 
vehicles), attractors of traffic, traffic components, 
admissions, presence of emergency lanes and 
parking areas, separation of lane directions;

 – the survey was performed with electronic equip-
ment and produced a data base in which the rows 
represent the variables and the columns represent 
the observation;

 – to the data base so formed a data mining tech-
nique has been applied, in order to obtain 
‘knowledge’ and delete information less useful. 

In particular, we have thought of applying an algo-
rithm of fuzzy type, in order to detect ‘borderline’ situ-
ations – in which the group assignment is controversial. 
Moreover, the possibility that all the variables may direct 
the analyst to a clear decision is essentially remote. Our 
proposal is based, therefore, on a fuzzy clustering algo-
rithm, which allowed to quantify the degree of member-
ship of the road to every scheduled class.

In Table 1 we reported all the 25 variables that will 
serve to further analysis and their values that, ideally, 
should belong to 5 different classes: the first 4 (A, B, C 
and F) refer to the typology prescribed by Italian legisla-
tion for the roads. The fifth class is, instead, a condition 
of un-classification. Even if the designation of classes 
varies from country to country, the procedure is, how-
ever, of very general use.

Further below we give some details on the deter-
mination of certain variables more complicated to de-
termine.

1.1. Visibility Distances and Design Speed
The effectively Available Sight Distance (ASD) was ob-
tained using a commercial software (Civil Design® by 
Digicorp, http://www.digicorpingegneria.com), through 
the preparatory reconstruction of horizontal and vertical 
alignment of the road, including the identification of all 
the obstacles in the three dimensions of the space able 
to influence the vision of the driver (Bosurgi et al. 2010). 
The 3D analysis, as it is well known, is more precise than 
the traditional 2D analysis, because it allows considera-
tions of the effective trajectory of the vision radius, fol-
lowing the altimetry of the road and the obstruction of 
the obstacles with their effective height. 

Table 1. Variables used to classify the roads and their recommended values for belonging to the A, B, C, F (rural roads only) groups

CATEGORY GROUP A B C F NO
1 FUNCTIONAL NETWORK CLASSIFICATION State-wide Regional Provincial Municipal 0
2 MOBILITY FUNCTION Connector Collector Penetration Local 0
3

OFFERED  
SERVICE

Capacity 7200 3600 1800 1200 400
4 V(design) 115 95 80 70 30
5 V85 135 115 95 80 60
6 Stopping sight distance (offered–demanded) 100 70 50 40 0
7 Interaction between drivers 100 75 50 25 1
8 Comfort – roughness 4 3 2 2 0
9

STANDARD 
CONSTRUCTION

V85–V(design) 10 15 20 25 40
10 Minimum radius 339 178 118 45 40
11 Minimum length 79.86 65.97 55.56 48.61 20.00
12 Lane – minimum width 3.75 3.75 3.75 3.50 2.50
13 Traffic island – minimum width 2.60 2.50 0.00 0.00 0.00
14 Left shoulder – minimum width 0.70 0.50 0.00 0.00 0.00
15 Right shoulder – minimum width 2.50 1.75 1.50 1.00 0.00
16 Horizontal sign 4 4 3 3 0
17 Vertical sign 4 4 4 4 0
18 Safety barriers 4 4 4 4 0
19 Light vehicular flow 1100 1000 600 450 100
20 Heavy vehicular flow 110 100 60 45 10
21 CATEGORY OF ATTRACTORS 1 2 3 4 0

22 TRAFFIC COMPONENTS Restrict Restrict All  
eligible All eligible All 

eligible

23 ACCESS Not 
allowable

Not 
allowable Allowable Allowable Allowable

24 EMERGENCY LANE AND STOPPING AREA No Separate 
areas

Stopping 
area

Stopping 
area No

25 SEPARATION OF DIRECTION Yes Yes No No No

Notes: the fifth class (NO) is a condition of un-classification; this table will constitute a term of comparison for all future observations.



The calculation of the Stopping Sight Distance 
(SSD), as required by Italian Road Standard (Italiano 
Strada Standard 2001), is carried out by solving the 
equation below, substantially similar to those contained 
in many international standard:

= + = ⋅ τ − ×0
1 2 2

1
3.6 3.6A
V

D D D

( ) ( ) ( ) ⋅ ± + + 
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R V
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m

,  (1)

where: D1 – distance covered over time t [m]; D2 – brak-
ing distance [m]; V0 – design speed of the vehicle at the 
beginning of braking, equal to the design speed obtained 
punctually from the design speed diagram [km/h]; V1 – 
final design speed of the vehicle, in which V1  = 0 in 
case of stopping [km/h]; i – longitudinal slope of road 
[%]; t – total reaction time (perception, reflection, re-
action and performance) [sec], Italian Road Standard 
(Italiano Strada Standard 2001) recommends to put this 
variable equal to 2.8–0.01⋅V0; g – gravitational accelera-
tion [m / sec2], equal to 9.8 m/sec2; m – mass of the vehi-
cle [kg], Italian Road Standard (Italiano Strada Standard 
2001) recommends to put this variable equal to 1250 kg; 
Ra  – aerodynamic resistance [N], Italian Road Stand-
ard (Italiano Strada Standard 2001) recommends to put 
this variable equal to (2.61·10–5·V0

2)·m; fl – longitudinal 
coefficient for braking. Italian standard recommends to 
infer this variable from literature; r0 – unitary resistance 
to rolling, generally negligible [N/kg].

Knowledge of the geometry of the road has also 
permitted the valuation of the design speed Vd, obtained 
by following the indications provided by Italian Road 
Standard (Italiano Strada Standard 2001) – greatly simi-
lar to those contained in other countries’ standards. In 
the case we studied, it is not important to report the 
course of Vd on the whole map, but only on the curves. 
The speed on these elements can be obtained from the 
following expression, that links the radius R [m], the 
inferred design speed Vd [km/h], the coefficient of lat-
eral friction (function of the Vd) and the cross-sectional 
slope of road q [%]:

( )= ⋅ ⋅ +127d tV R f q .  (2)

The previous formula is complicated by the fact 
that the variable ft, in turn, depends from Vd.

1.2. V85 Determination
The campaign of survey was carried out during daylight 
hours, with dry and regular paving and good meteoro-
logical conditions. Of course, according to the procedure 
for this type of measurements (Lamm et al. 1999), the 
conditioning factors due to the traffic were not consid-
ered, nor did motorcycles, commercial or heavy vehicles, 
or cars with time spacing between them less than 5 sec 
take part in the analysis. 

The speed was surveied by using a laser speed gun. 
This instrument, as it is known, measures the round-trip 

time for light to reach a vehicle and reflect back and 
shoots a very short burst of infrared laser light, then 
waiting for it to reflect off the vehicle. 

For every place, the speeds of over 250 vehicles 
were recorded, obtaining from the analysis a minimal 
number not beneath 100 isolated vehicles. In total, more 
than 9000 passages were therefore acquired and all the 
data collected were processed in order to obtain the 85th 
percentile of the values of the speeds (V85). The analy-
sis, as already stated, is based on the study of 45 cross 
sections.

For every analysed section, the main parameters of 
interest were assessed in order to reconstruct the distri-
bution of the speeds and, therefore, determine the V85. 

The density of relative frequency of the class fi was 
calculated with the well-known equation:

=
⋅
i

i
n

f
n A

.  (3)

From the relative frequency, we can then pass to the 
cumulated frequency through the equation:

= ⋅∑ .i iF A f   (4)

In which Fi is the frequency to which the vehicles 
travel at a lower or equal speed to the considered. In 
this way, it was possible to reconstruct the course of the 
distributions of the frequency in relation to the position 
of each section.

Referring to the Eqs (3) and (4) reported above:
 – ni is the absolute frequency, that is the number of 
elements pertaining to the class;

 – n is the total number of the elements in the series 
of data;

 – A is the amplitude of the class.
The information so collected allowed the recon-

struction of the distributions of the frequency in relation 
to the position of each section and the calculation of the 
representative value of the 85th percentile.

1.3. Classification of Other Characteristics  
of the Road Scenario
In order to complete the survey of the road environ-
ment, further variables (admissions, intersections, 
horizontal and vertical signs, barriers, roughness of the 
surface pavement, etc.) have been identified and classi-
fied in four categories, based on the analyst’s judgment. 
Although this is a subjective determination, however, it 
was simply found or not the presence or the degree of 
effectiveness of the element under consideration and, 
therefore, we think that the difference with what is per-
ceived by the user is negligible.

1.4. Brief Notes about Clustering
Generally, cluster analysis can be used to deal with a 
very wide range of problems, like classification, optimi-
zation, pattern recognition, prediction, decision support, 
especially when:

 – the system is non-linear, time-variant or ill de-
fined;

 – the variables are continuous;
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 – a mathematical model is either too difficult or 
expansive to organize;

 – there are too many or noisy inputs.
The objective of data mining or, more specifically, 

of cluster analysis in this paper is the classification of 
objects according to similarities among them, in order 
to organize data into groups. The main characteristic of 
these techniques is to detect the underlying structure in 
data, not only for classification and pattern recognition, 
but also for model reduction and optimization. In the 
recent past, some researchers (Jang 1993) have ascer-
tained the convenience to pair the methods previously 
seen in order to maximize their benefits. For example, 
one of the most effective procedures, that is the fuzzy 
clustering approach, consists of a structure that permits 
objects to belong to several clusters simultaneously, with 
different degrees of membership. In this way, the analyst 
should avoid to classify in a too much simplistic way 
certain phenomena within a single category when they 
have, instead, common characters to several classes, al-
beit with different degrees of membership.

Clustering techniques are generally used to classify 
similar objects and, especially, to organize data in prede-
termined groups by identifying hidden structures in the 
source data (Abonyi, Feil 2007). The data submitted for 
analysis originate from physical observations or surveys 
and each observation consists of n measured features, 
grouped into an n-dimensional vector:

 = ∈ 1 2, , ..., ,
T

n
k k k kn kx x x x x R .  (5)

Therefore, a set of N observations can be represent-
ed as a matrix N × n:

 
 
 =  
 
  

11 12 1

21 22 2

1 2

n

n

N N Nn

x x x
x x x

X

x x x





   



.  (6)

A cluster is representative of similar elements with 
respect to other belonging to another cluster. This char-
acteristic is measured in analytical way as the normal 
distance between the center of the cluster and the data 
that belong to it. In the traditional view of hard clus-
tering, an element of the data set belongs only to one 
cluster without no possibility to belong to another. In 
the last years, the growth of soft computer techniques, as 
fuzzy logic, has permitted to propose methods in which 
an object can belong to a number of clusters c simulta-
neously, with different membership degrees between 0 
and 1. Naturally, the sum of the different membership 
degrees related to the interested clusters must be equal 
to one. The structure of the partition matrix U = [N × c], 
then, is the following:

µ µ µ 
 µ µ µ =  
 
µ µ µ  

11 12 1

21 22 2

1 2

c

c

N N Nc

U





   



, (7)

where: c is the number of fuzzy subsets or of clusters. 

This matrix U=[µik] is subject to the following con-
ditions:

 µ ∈ ≤ ≤ ≤ ≤ 0,1 , 1 , 1ik i c k N;  (8)

=
µ = ≤ ≤∑

1
1, 1

c

ik
i

k N ;  (9)

=
< µ < ≤ ≤∑

1
0 , 1

N

ik
k

N i c .  (10)

With these premises, the fuzzy partitioning space 
for X is represented by the set:

×

= =

 µ ∈ ∀
 

= ∈ µ = ∀ < µ < ∀ 
 

∑ ∑
1 1

[0,1], , ;

1, ; 0 ,

ik
c N c N

ik ik
i k

i k
M U R

k N i
.   (11)

The ith column of U contains the values of the 
membership function of the ith fuzzy subset of X. With 
reference to the equation (5), the sum of each column 
is 1 and thus the total membership of each xk in X equals 
one.

Given the more realistic compliance with the un-
certain nature of the variables collected in this paper, we 
have used the algorithm called Fuzzy C-means instead 
of other methods referred to hard clustering. This proce-
dure regards the minimization of an objective function, 
termed C-means functional, defined as:

( )
= =

= µ −∑∑ 2

1 1
; , ( )

c N
m

ik k i A
i k

J X U V x v ,  (12)

where: V is the vector containing the centers of the clus-
ters and m is a weighting exponent >1 that influences 
the fuzziness of the results:

 = ∈ 1 2, , , , n
c iV v v v v R .  (13)

The minimization of the C-means functional J is 
a problem of nonlinear optimization, usually solved 
through a simple Picard iteration through the first-order 
conditions for stationary points of J equation.

The stationary points are obtained by applying ap-
propriate constraints (Eq. (5)) to J through the Lagrange 
multipliers and the setting of the gradients ( )J  respect 
to U, V and λ to zero:

( ) ( )
= =

λ = µ +∑∑ 2

1 1
; , ,

c N m
ik ikA

i k
J X U V D

= =

 
λ µ −  

 
∑ ∑

1 1
1

N c

k ik
k i

,  (14)

where the following expression is the squared inner-
product distance norm:

( ) ( )= − = − −22 T
k i k i k iikA AD x v x v A x v .  (15)

If

> ∀ >2 0, , and 1ikAD i k m ,  (16)

then:
( ) ×∈ ×, n cU V M R

                                         
 (17)
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can minimize J only if:

−
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1

1
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m

kik
k

i N
m
ik

k

x
v i c . (19)

The above equations can be easily automated within 
computing environments such as Matlab (http://www.
mathworks.com) or Mathematica (http://www.wolfram.
com/mathematica), greatly reducing the computational 
cost.

1.5. Feature Extraction
Successively, we have applied a features extraction tech-
nique to summarize the so classified data into a lower di-
mensional space, to remove second order dependencies 
and for displaying results in a more comfortable way. 
In order to map the high dimensional data point into 
a lower space, we have used the projection technique 
called Principal Component Analysis (PCA).

In particular, the PCA technique (Ravi et al. 2000) 
transforms a number of potential correlated variables 
into a predetermined number of uncorrelated variables 
(the principal components). The first component con-
tains information regarding the variability in the data, 
while the other components (in general only one) con-
sider the remaining variability as possible. The aim of 
this analysis is not only to find new significant variables 
but, furthermore, to reduce the dimensionality of the 
data set.

The algebraic solution is based on an important 
property of eigenvector decomposition. 

In particular, the first principal component presents 
the same direction of the associated eigenvector with the 
largest eigenvalue. The direction of the second principal 
component is identified by the associated eigenvector 
with the second largest eigenvalue.

In order to reduce the size of the data set, its covari-
ance matrix is defined in the following way:

( ) ( )
=

= − ⋅ −
− ∑

1

1
1

N T
k k

k
F x x x x

N
,  (20)

where: x  is the mean of the data:

=
= ∑

1

1 N

k
k

x x
N

  (21)

and N is equal to the number of objects in the data set.
The projection of the data onto a hyper-plane is 

based on the first few q nonzero eigenvalues and the 
corresponding eigenvectors of the following expression:

⋅ = ⋅ Λ,F U U   (22)

where: U is a n × n matrix that presents the unit lengths 
eigenvectors in its columns; L is the diagonal matrix 

with the corresponding eigenvalues λi, …, λn along the 
diagonal.

The variance of the data set is:

=
σ = λ∑2

1
.

n

i
i

  (23)

If the first 2 greatest eigenvalues are used to visual-
ize the original high dimensional data, the sum of the 
remainder eigenvalues is lost. The eigenvectors are the 
principal components and the eigenvalues are the rela-
tive variances. Therefore:

⋅T
k ky = U x   (24)

is the representation of the kth sample in the new basis 
and its approximation in the original space is:

=ˆ .T
k kx UU x   (25)

This procedure is useful to decrease the size of the 
data set but it causes the loss of the connection between 
the output and the input variables.

2. Results

In order to evaluate the proposed procedure we have 
studied a 22 km long rural road, called ‘SS 113’ that con-
nects Messina with Trapani (Italy). The infrastructure 
is old, antecedent to modern road standards and, for 
this reason, it is composed of a succession of straight 
stretches and circular curves, without the presence of 
transition elements.

The alignment is very winding, with short straight 
stretches interposed between the circular curves. The 
variability of the radii of the horizontal bends is really 
elevated and spans from a minimum of 24 m to a maxi-
mum of 3300 m. Longitudinal slope is modest for the 
entire development (0 ≤ i ≤ 5%). Moreover, the road is 
characterized by low volumes of traffic, the absence of 
intersections and a sufficient geometric consistency, that 
is such as not to induce abrupt manoeuvres by drivers. 
The main geometric characteristics were found by the 
authors through the examination of 3D-digital cartog-
raphy and with the aid of a differential GPS. In the next 
phase, after the reconstruction of the road geometry, we 
have computed the design and the V85 speed, the sight 
distances and the other variables, all in correspondence 
of the bisector of the circular curves. The final results are 
summarized in the Table 2.

At the macro level, we divided the procedure into 
two phases:

 – in the first phase we prepared a data set (Table 1) 
in which the values of the 25 variables have iden-
tified with precision 5 clusters representing the 
four groups A, B, C and F provided by Italian 
standard, plus a fifth group that acts as a pole 
of attraction for all those observations that could 
represent situations of un-classification of the 
road;

 – the second phase has assigned the observations 
recorded and reported in Table 2 to the 5 clusters 
previously identified (A, B, C, F and NO). 
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Table 2. The observations recorded in the center of the bends

The first 12 observations recorded in the center of the bends
Obs1 Obs2 Obs3 Obs4 Obs5 Obs6 Obs7 Obs8 Obs9 Obs10 Obs11 Obs12

1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2
3 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200
4 73 100 76 51 100 100 92 45 46 58 40 51
5 67 80 73 53 80 86 72 56 52 72 49 58
6 0.12 53.30 8.13 0.61 0.43 0.43 1.42 0.21 2.47 0.20 0.85 0.61
7 26 26 26 26 26 26 26 26 26 26 26 26
8 3 3 3 3 3 3 3 3 4 3 3 2
9 7 20 3 2 20 14 20 11 6 14 9 7

10 200 700 220 80 500 800 350 60 62 110 45 80
11 89 79 98 134 86 160 162 190 172 126 111 84
12 4.35 3.07 3.07 3.25 3.25 4.19 3.26 3.07 3.07 3.59 3.25 3.79
13 0.50 0.36 0.36 0.36 0.50 0.50 0.36 0.36 0.36 0.50 0.50 0.36
14 0.30 0.00 0.00 0.00 0.30 0.30 0.00 0.00 0.00 0.30 0.30 0.00
15 1.25 1.00 1.00 1.00 1.25 1.25 1.00 1.00 1.00 1.25 1.25 1.00
16 3 2 2 2 3 4 3 2 2 3 3 2
17 1 2 1 2 2 2 3 1 2 2 1 3
18 2 2 2 2 3 2 2 3 4 2 3 2
19 141 141 137 137 137 137 137 137 137 137 137 137
20 11 11 11 11 11 11 11 11 11 11 11 11
21 5 5 5 5 5 5 5 5 5 5 5 5
22 0 0 0 0 0 0 0 0 0 0 0 0
23 1 1 1 1 1 1 1 1 1 1 1 1
24 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0

The last 12 observations recorded in the center of the bends

Obs13 Obs14 Obs15 Obs16 Obs17 Obs18 Obs19 Obs20 Obs21 Obs22 Obs23 Obs24
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2
3 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200
4 45 37 45 37 44 40 56 62 66 73 100 73
5 57 48 57 50 48 53 57 68 73 71 94 68
6 5.96 34.23 2.41 0.63 0.57 0.85 0.88 2.39 0.69 0.12 0.43 43.27
7 26 26 26 26 26 26 26 26 26 29 29 29
8 3 3 4 3 3 3 3 3 3 3 3 3
9 12 11 12 13 5 13 1 6 7 2 6 5

10 60 37 60 38 55 45 100 130 150 200 1000 200
11 36 69 61 48 53 55 36 104 32 43 62 38
12 3.25 4.50 3.25 3.25 3.58 3.76 3.25 4.76 3.77 3.25 5.30 3.82
13 0.50 0.36 0.50 0.50 0.36 0.36 0.50 0.50 0.36 0.50 0.50 0.50
14 0.30 0.00 0.30 0.30 0.00 0.00 0.30 0.30 0.00 0.30 0.30 0.30
15 1.25 1.00 1.25 1.25 1.00 1.00 1.25 1.25 1.00 1.25 1.25 1.25
16 3 3 3 3 2 2 3 3 2 3 3 3
17 1 2 2 1 1 1 1 3 1 1 1 1
18 3 3 3 3 3 3 3 2 2 2 2 2
19 137 137 137 137 137 137 137 137 137 124 124 124
20 11 11 11 11 11 11 11 11 11 8 8 8
21 5 5 5 5 5 5 5 5 5 1 1 1
22 0 0 0 0 0 0 0 0 0 0 0 0
23 1 1 1 1 1 1 1 1 1 1 1 1
24 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0
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All the observations have a degree of membership 
(between 0 and 1) with respect to the five groups and 
the highest value suggests the predominant class. For ex-
ample, in the case of the Observation No 1, the highest 
value is 0.53 and is representative of the class F. It Means 
that the class F can be attributed (with some certainty) 
to the entire section subtended from that observation. 
On the contrary, this stretch of road cannot fall into 
classes A or B, since the values of membership of such 
clusters are negligible (0.00 and 0.02 respectively).

In details, the application of the fuzzy clustering 
procedure can be schematized in the following phases:

 – Collection of two data sets with N = 5 observa-
tions (first phase) and N’ = 24 observations (sec-
ond phase). Because of the heterogeneity of the 
units contained in the data sets, it was necessary 
to perform a normalization procedure not re-
ported here, given its banality;

 – Imposition of the number of clusters equal to 5;
 – Establishment of the termination tolerance e > 0 
(in this case e–= 110–6); 

 – Initialization of the partition matrix randomly, 
such that ( ) ∈ .0U M

 – Repetition for L = 1; 2; … of the following phases:
� Computation of the five cluster centers:
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� Computation of the distances:
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The shape of the clusters is determined by the choice 

of the particular A in the distance measure (A = I) that 
induces the standard Euclidean norm:

( ) ( )= − = − −22 T
k i k i k iikA AD x v x v x v .

The application of the Fuzzy C-Means algorithm 
returns the structure matrix representing the partition 
matrix U (c × N) (Table 3), the distance matrix contain-
ing the square distances between data points and cluster 
centers 2

ikD (c × N), the cluster centers vi (c × n) (Table 4); 
N  =  5 is the number of the initial observations; c  =  5 
is the clusters number; n = 25 is the number of input 
variables.

Finally, the insertion of new observations (Table 2) 
has allowed to evaluate the membership to the clusters 
without knowing the value of the density and to deter-

mine the partition matrix for the evaluated data set U* 
(c × N’) and the distance matrix representative of the dis-
tances between the evaluated data points and the cluster 
centers *2

ikD  (c × N’), with N’ = 24 number of new obser-
vations (Table 5).

Through the Tables 5, therefore, it is possible to 
identify the preponderant class to which report all the 
observations and, therefore, the entire road. Fig. 1 shows 
how the general infrastructure belongs to the class F but 
also evidences an attraction to the cluster representing 
situations of un-classification (red dashed line).

Finally, the reduction of the size of the matrix via 
the PCA procedure, allowed to represent the data in a 
more compact form and to highlight the closeness to the 
5 clusters (Fig. 2).

Table 3. Partition matrix U (it permits to assign the cluster 
number to a specific class; in this case A – cluster 2;  

B – cluster 3; C – cluster 1; F – cluster 4; NO – cluster 5)

A B C F NO
Cluster 1 1.1E–11 1.8E–11 1.0E+00 1.8E–10 1.6E–11
Cluster 2 1.0E+00 6.9E–11 1.1E–11 8.2E–12 4.5E–12
Cluster 3 6.9E–11 1.0E+00 1.8E–11 1.4E–11 6.5E–12
Cluster 4 8.2E–12 1.4E–11 1.8E–10 1.0E+00 1.9E–11
Cluster 5 4.5E–12 6.5E–12 1.6E–11 1.9E–11 1.0E+00

Table 4. Matrix containing the vi cluster centers respect  
to every variable

A B C F NO
1 0.500 1.000 0.750 0.250 0.001
2 0.500 1.000 0.750 0.250 0.001
3 0.210 1.000 0.470 0.120 0.001
4 0.590 1.000 0.760 0.470 0.001
5 0.620 1.000 0.810 0.480 0.001
6 0.500 1.000 0.700 0.400 0.001
7 0.490 1.000 0.750 0.240 0.001
8 0.500 1.000 0.750 0.500 0.001
9 0.500 0.000 0.380 0.630 1.000

10 0.260 1.000 0.460 0.020 0.001
11 0.210 0.350 0.270 0.170 0.001
12 0.450 0.450 0.450 0.360 0.001
13 0.001 1.000 0.960 0.001 0.001
14 0.000 1.000 0.710 0.001 0.001
15 0.600 1.000 0.700 0.400 0.001
16 0.750 1.000 1.000 0.750 0.001
17 0.750 1.000 1.000 0.750 0.001
18 1.000 1.000 1.000 1.000 0.001
19 0.500 1.000 0.900 0.350 0.001
20 0.550 1.000 0.910 0.410 0.001
21 0.600 0.200 0.400 1.000 0.001
22 0.000 1.000 1.000 0.000 0.001
23 1.000 0.000 0.000 1.000 1.000
24 0.500 1.000 0.750 0.500 0.001
25 0.001 1.000 1.000 0.001 0.001
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the full membership to an expected class would permit 
to predict and organize the most correct maintenance 
operations in order to improve the functional character-
istics of the infrastructure up to the desired level.

The uncertainty and the extreme subjectivity of 
the traditional methodologies regarding these issues are 
exceeded by the procedure proposed here. In particu-
lar, we have quantified the degree of membership to a 
predetermined class (cluster) of each road section. This 
information is already sufficient for the stakeholder of 
the infrastructure: for example, if the degree of member-
ship to the group C is limited by an insufficient avail-
able sight distance, he can act on the obstacles (barriers, 
walls, trees, etc.), or on the other parameters involved, to 
bring the section close to the desired cluster.

Table 5. Partition matrix (the sum of the values in every column is equal to 1)

The membership grade compared to the 5 clusters of the first 12 observations recorded in the center of the bend
Obs1 Obs2 Obs3 Obs4 Obs5 Obs6 Obs7 Obs8 Obs9 Obs10 Obs11 Obs12

A 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
B 0.02 0.04 0.02 0.02 0.03 0.05 0.03 0.02 0.02 0.02 0.02 0.02
C 0.18 0.24 0.19 0.18 0.22 0.24 0.20 0.18 0.18 0.18 0.18 0.18
F 0.53 0.43 0.53 0.55 0.47 0.41 0.50 0.54 0.54 0.54 0.55 0.55

NO 0.25 0.29 0.26 0.25 0.28 0.29 0.27 0.25 0.25 0.25 0.25 0.25
The membership grade compared to the 5 clusters of the last 12 observations recorded in the center of the bend
Obs13 Obs14 Obs15 Obs16 Obs17 Obs18 Obs19 Obs20 Obs21 Obs22 Obs23 Obs24

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
B 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.02
C 0.18 0.18 0.18 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.25 0.18
F 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.54 0.54 0.53 0.38 0.53

NO 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.26 0.30 0.26

Fig. 1. Graphical representation of the membership grade 
in every section. It is clear the predominance of the F class 

except in 2, 6 and 23 sections Fig. 2. Reduction of the n-dimensional matrix in 
2-dimensional matrix and visualization of the two clusters 
centres and the observations. The separation in two cluster 

was also evident from the examination of the results  
in n-dimensions (Tables 4 and 5)
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3. Discussion

An examination of the tables and figures included in the 
Results section allows us to highlight some advantages 
of the proposed procedure. As it is well known, the clas-
sification of a road is hardly ever an easy operation. This 
eventuality represents a rare and desirable case, but actu-
ally, the analyst has to manage a multiplicity of param-
eters whose values are often contradictory to each other. 
That is the great weakness of all the manual procedures: 
none legislation, in fact, specifies the way in which we 
can carry out the analytical process. For example, a road 
may have geometrical and constructive characteristics 
adequate to be classified as C, but, at the same time, the 
traffic flows would address it towards the group F. Situa-
tions like this are highly conflictive and can compromise 
the quality of the analysis. In fact, the analyst would need 
to know in quantitative terms the conformity of the road 
against all groups, in order to take the subsequent deci-
sion with due prudence and knowledge. Furthermore, 
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The examination of the Fig.  1 allows to evaluate 
synthetically the content of the Table 5. In particular, the 
graph shows the sections 2, 6 and 23 in which there is a 
strong inconsistency compared to adjacent portions of 
the road. In fact, while all the other sections have a high 
prevalence of the group F (black solid line around the 
value 0.53), these three ones have a relatively low degree 
of membership to it (black solid line around the value 
0.40), though still prevalent than other classes. The same 
graph shows that, at the same time, there is a certain ten-
dency of these sections to acquire characteristics of the 
group C and, therefore, better functional characteristics. 
To inspect the reasons for these results it is sufficient to 
examine the Table 2, where we can see how the three 
sections have abnormal values of the following variables:

 – design speed very high (100 km/h) and, therefore, 
very large radiuses.

 – V85 speed high enough (80, 86 and 94 km/h re-
spectively for sections 2, 6 and 23).

 – remarkable sight stopping distance (but only in 
section 2).

Since the outcome of the analysis cannot be seen as 
positive (it is, in fact, an obvious lack of homogeneity), 
the stakeholder should introduce solutions to mitigate 
the speed, in order to make the route more uniform.

The response of the model to the fuzzy clustering 
analysis also highlights a certain affinity (between 0.25 
and 0.30) towards the NO cluster. This time the exami-
nation of the Table 2 allows us to see how some variables 
do not respect the nominal limits of the four standard 
classes (A, B, C and F): among the most evident there 
are the V85, the stopping sight distance and the available 
sight distance, the presence of emergency lanes and park-
ing areas. It is clear, therefore, that this procedure does 
not diminish the role of the analyst, but rather makes 
him capable to take more rational decisions.

At the end, the Fig.  2 summarizes a procedure 
(PCA) to decrease the size of the sample. In this case, 
it has been used to reduce it to a two-dimensional ma-
trix and appreciate the disposition of the observations 
compared to the 5 clusters. It would be interesting to 
perform the analysis only with the more important and 
delete the others, in order to make the subsequent sur-
vey less expansive. However, in this phase of the research 
this additional step has been avoided to focus on the 
actual validity of the presented procedure.

We solved our problem with the clustering tech-
nique called Fuzzy C-Means. Only later, the results have 
been simplified in two dimensions through the PCA 
procedure, solely for arrange them in a more comfort-
able way. Although there are many other techniques ap-
plicable to this type of problem, we believe that the FCM 
is the most suitable one for its simplicity and because the 
analytical structure returns the final result accompany-
ing it to a degree of uncertainty.

Conclusions

The functional classification of a road is an obligatory 
step for the designer or for the stakeholder of a new or 
an existing road. In fact, this operation establishes the 

geometrical standard, orientates future maintenance 
operations (usually characterized by limited budgets), 
identifies the right constructive elements to ensure or 
improve drivers’ safety, follows the development of the 
territory as required by the planning instruments. In 
general, however, the analyst accomplishes this task by 
determining only few synthetic indices, often of a quali-
tative nature, without any analytical detail and so pro-
viding a result strongly based on his own experience.

This approach causes not only an approximation of 
the final outcome, but also a real incapability to identify 
the contribution of each variable involved in the ana-
lysed scenario.

In this paper, we wanted to propose a procedure 
based on a fuzzy clustering technique in order to make 
some improvements to the analysis required by the road 
rules. 

First, the choice of a clustering technique of this 
type takes into account the vagueness of the survey, even 
in the final results. If, instead, we had applied a hard 
type technique (K-means clustering, K-medoids, etc.) we 
would have had a very sharp classification, so inducing 
the analyst’s thought towards a false sense of accuracy 
of the final result.

Secondly, the vagueness of the outcome of the 
analysis, when it occurs, allows the analyst to operate 
through two different ways, both desirable: 

 – acceptance of a condition quite critical but in 
the awareness of the distance with the theoreti-
cal class of the road (in essence, the difference 
between 1 and the calculated degree of member-
ship); 

 – improvement of the so determined scenario with 
appropriate measures on the variables identified 
as the most vulnerable. In both cases, the analyst 
always has a very significant role, but may base 
his choice on the support of a sufficiently evolved 
analysis.

This procedure can be applied with profit by the 
manager of the road and can be further developed to 
refine some problems of little scientific interest, but of 
considerable practical importance. It is possible, for 
example, to increase significantly both the number of 
variables and the observations, achieving improved reli-
ability of the final results. It is also desirable to imple-
ment this technique in a Geographic Information Sys-
tem in order to use the data typically found in these 
instruments and offer an additional instrument for the 
knowledge of the road context.

From the scientific point of view, a sufficiently 
simple development to perform is to study the variables 
that most affect the studied phenomenon with feature 
selection techniques. In this way, it is possible to limit 
the cost of the survey and, above all, the analyst turns 
his attention only to the parameters that really count for 
the quantification of the final result. As mentioned, at 
this stage this step has not been deepened, also because 
it requires database with a very significant number of 
observations with respect to the number of the input 
variables.
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