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Abstract. Transport systems exist within at least two types of space. One is the apparent geographic space, but equally 
important is the time–space implied by the travel time relations created by the system. Differences between the geo-
graphic and time–spaces are properties induced by the transport system. Methods for time–space transformations of 
geographic space to explore visualize and analyse transport systems were initially developed in the 1960s and 1970s but 
due to the low computational capacity not evolved yet. However, these methods have not been pursued beyond this ini-
tial flurry of research activity, most likely due to the difficulties associated with handling and processing huge amount 
of digital geographic data. This paper presents a case study of the transformation possibilities and particularly the usage 
of non-affine transformations of maps – Rubber-Sheet Method (RSM) – using a typical GIS software called ArcView in 
order to analyse the current status and development possibilities of the Hungarian railway system.
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Introduction

It is very common to build distorted graphics in order to 
highlight relevant information in different cases, for ex-
ample the CO2 emission on Earth by country (Fig. 1). The 
higher the CO2 emission the larger the distortions are.

Authors have investigated of usage of distorted 
geographical maps in order to reveal the distortion of 
travel time. Understanding the travel time relationships 
induced by a transport system can be crucial for as-
sessing its performance. Transport systems attempt to 
improve the efficiency of trading time for space when 
moving between geographic locations. Greater time 
efficiency for movement can enhance individuals’ ac-
cessibilities to activities and resources by freeing more 
time for travel and activity participation. Conversely, less 
time efficiency in geographic movement can reduce ac-
cessibility through the consumption of scarce temporal 
resources that could otherwise be used for travel and 
activity participation (Hägerstrand 1970). Spatial varia-
tions and patterns in these travel time relationships can 
help transport analysts and planners understand relative 
differences in system performance, guiding the plan-

ning, design and deployment of transport infrastructure 
and services towards efficient and equitable outcomes. 
The travel time relationships induced by a transport sys-
tem imply a time–space connection where relative loca-
tions and proximity relationships can differ from those 
in geographic space. As with geographic space, mapping 
and spatial analysis of time–spaces can be illuminating. 
Time–space maps can provide a synoptic visual sum-
mary of the travel time relationships in a given envi-
ronment, indicating areas where the transport system is 

Fig. 1. Total CO2 emissions (Bournay 2008)
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performing well and other areas where it is inefficient. 
Also, since induced travel time relations are central to 
transport systems, spatial analysis of time–space can be 
more meaningful than analysis of geographic space in 
understanding transport system performance (Ahmed, 
Miller 2007). Several attempts were done even in Hun-
gary for travel time based maps (Fig. 2).

The aim of authors was to build up a distorted 
map that significantly shows the changes in travel time 
compared to geographical map. Authors have investi-
gated the different kind of transformations of railway 
infrastructure maps in order to gain new information 
on infrastructure (e.g. rate of centralisation, missing 
links, etc.). The basic Hungarian railway infrastructure 
has been examined but the described method can be 
adapted to other transport modes and other countries 
as well. Nowadays railway reaches its second ‘golden-
age’, at European level more and more funds are available 
for railway investments in order to increase efficient us-
age of railroad (Gašparík, Zitrický 2010). A method had 
been investigated which is able not only to analyse the 

reduction of travel time as a social benefit for the current 
system but is capable of estimating the social benefits of 
future investments as well.

1. Methodology

Mapping time–spaces has a long history in spatial analy-
sis. Research dates back to pioneering work in the 1960s 
by Bunge (1960) and Tobler (1961). Cartographic trans-
formations to generate time–spaces reached a peak in 
the 1970s with the work of researchers such as March-
and (1973), Forer (1974, 1978), Ewing, Wolfe (1977), 
Clark (1977), Muller (1978). Despite the efforts of these 
and subsequent researchers, key issues surrounding 
time–space mapping remain unresolved. Inconclusive 
results regarding the nature of time–spaces and their 
structure probably result from the state of key transfor-
mation techniques such as Multi–Dimensional Scaling 
(MDS) and map comparison techniques. There are dif-
ferent ways to establish the connection between the two, 
different type of maps (the travel time and the geograph-
ical map) such as in case of Berta and Török (2010). The 
easiest and most accurate way was to find some control 
points (significant points, which can be easily find on 
both of the two maps) to determine the mathematical 
relationship. In our case 34 different points were given 
in the transformations (all county seats and mayor bor-
der crossing points for passenger train transport). The 
corresponding travel time data were collected between 
them and two different matrices were built in Microsoft 
Excel spreadsheet (Figs 3 and 4).

The travel time can act as distance in a mathemati-
cal sense, and a symmetric ‘travel’ time distance matrix 
between m points can be developed:

{ }= ijD d , =, 1...i j n ,  (1)

where: D is the overall distance matrix (symmetric, 
square matrix); dij is the travel time distance between 
city i and j.

Fig. 2. Accessibility of highways (source: KTI – Institute 
for Transport Sciences, http://www.kti.hu/uploads/images/

Trends6/Masodik/2-150.jpg)
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Fig. 3. Travel time [min] between the 34 cities – part of the travel time matrix (source: own research based on timetables)

Fig. 4. Distance [km] between the 34 cities – part of the distance matrix (source: own research)
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This matrix is a symmetric one, because it is as-
sumed that dAB = dBA and if A = B then dAB = 0. Authors 
are assumed that in railway transport the distances are 
similar there and back. Mathematically travel time is be-
having like a distance function so it can also be a basis 
of a graph. In order to visualise the two different graphs 
from the distances (geographical and time distances) 
the matrices were converted to SPSS (Statistical Packa ge 
for Social Sciences, http://www.ibm.com/software/analy-
tics/spss) statistical analysing software. In the Euclidean 
space, the distance between two points is given by the 
Euclidean distance (2-norm distance). In 2 dimensions, 
the minimum distance between two points is the length 
of the line segment between them. This gives us the 
shortest straight distance between the two points. Au-
thors had to face the fact that the 2-norm ‘Cartesian’ 
distance is not describing correctly the situation, because 
the railway tracks are not on the ‘shortest’ path. That 
is the reason why authors have changed the ‘Cartesian’ 
distance to ‘travel’ distance. ‘Travel’ distance describes 
the distance between city A and B, by the route between 
them. To build up a graph from distances (geographi-
cal and time based) the necessary relative coordinates 
of the cities were calculated as vertices of the graphs.
MDS were used in SPSS which is a set of related statisti-
cal techniques often used in data visualization. An MDS 
algorithm starts with a matrix (matrix of distances in 
this case), and then assigns a ‘location’ of each vertice 
suitable for graphing:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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(2)
As it can be seen there is direct bijective relation 

between Eq. (1) and Eq. (3) so relation (3) describes 
the matrix of Euclidean distances, based on the relative 

coordinates of cities (vertices) in the graph. This is the 
method how the computer calculates the place of ver-
tices or cities compared to other vertices or cities. The 
output of the MDS method in SPSS are the relative co-
ordinates of cities in case of travel time distances (see 
Fig. 5, 2nd and 3rd columns). The graphs were visual-
ized in Microsoft Excel spreadsheet (Fig. 5).

Similar method had been used by Dusek (2010) but 
at the end the calculations and graphical representation 
was conducted by Darcy 2.0 software. Therefore only Rub-
ber-Sheet Method (RSM) was used for 23 nods by Dusek. 
Since then the development of computational science 
made it possible to run the RSM with 34 nodes. Authors 
have investigated the possibilities of linear and quadratic 
transformation. Finally in this method the graphs (geo-
graphical and travel time based) were saved in graphical 
(jpeg) format in order to be able to import in ArcView 
10 to perform geographical information analysis. It is a 
typical GIS software, distributed by ESRI (http://www.
esri.com). The software gave three possible ways to cre-
ate the mathematical connection between the two point 
clouds. The first and most commonly used is the affine 
transformation. With an affine transformation the trans-
formed coordinates can be derived as a linear function of 
the original coordinates. It is a transformation that pre-
serves angles and changes all distances in the same ratio, 
called the ratio of magnification. That is a typical linear 
transformation, which means that after transformation 
linear is to remain linear as it was before (Detrekői, 
Szabó 1995). The main equation can be found here:

= + +11 12  t a a a
xX P A X A Y ;

= + +21 22
t a a a

yY P A X A Y ,  (3)

where: ( ), t tT X Y   – transformed coordinates (based 
on geographical distances); ( ),C X Y  – original coordi-

nates (based on travel time); 
 
 
  

11 12

21 22

a a

a a

A A

A A
 – transforma-

tion matrix of affine; { }a a
x yP P  – vector of shifting.

Fig. 5. Relative coordinates and visualisation of travel time graph (source: own research based on timetables)
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Increasing the power of the transformation might 
give better result between the two databases, so the sec-
ond way became the quadratic transformation. The main 
connections are the following:

= + + + + +2 2
11 12 13 14 15    q q q q q qt

xX P A X A Y A X A XY A Y ;

= + + + + +2 2
21 22 23 24 25    q q q q q qt

yY P A X A Y A X A XY A Y
 
,  (4)

where: ( ),t tT X Y  – transformed coordinates (based on 
geographical distances); ( ),C X Y  – original coordinates 

(based on travel time); 
 
 
  

11 12 13 14 15

21 22 23 24 25

q q q q q

q q q q q

A A A A A

A A A A A
  – 

transformation matrix of affine; { }a a
x yP P  – vector of 

shifting.
The third one is the rubber-sheet transformation. 

It is based on a ‘flexible surface’ in which the original 
map points are not uniformly transformed. The rubber-
sheet transformations can be implemented partly as 
well – they are usually called patch – so the map can be 
divided into regions and every part can have of its own 
transformation equation. The equations need to satisfy 
the continuity condition of parts, namely the first and 
second derivates supposed to be the same in the con-
necting points. Therefore the residuals are always zero. 
The main equation cannot be described in a closed form, 
it vary locally. On Fig. 6 the summary of the technologi-
cal steps can be seen.

The described method cannot be inverted as it 
makes no sense from time-map to build up a spatial 
map and it is independent from the method of trans-
formation.

2. Results

The transformation matrices were used to modify the 
geographical map in order to investigate the railway 
travel time in Hungary (Fig.  7). The input dataset of 
travel time can vary through time (summer/winter pe-
riod or day/night). The input dataset were based on the 
average travel time from schedule.

The three different transformations require a differ-
ent amount of significant points the first two are easier 
because the affine needs at least 3 the quadratic needs 
at least 6 control points. Due to the local solutions of 
rubber-sheet transformation it is not possible to give 
an exact amount of significant points. In our case 34 
different points were given in the transformations (all 
county seats and mayor border crossing points for pas-
senger train transport), which at the first two cases are 
more than the minimum, so these methods are easy to 
analyse. ArcView has a built in Least Square Algorithm 
(LSA) to determine the elements of the different trans-
formation matrixes and the Root Mean Square (RMS), 
which refers to a total distance of residual vectors, is 
also computable. Preliminary results of this model had 
already been published, but since then the model and 
the statistical analysis are developed (Ficzer et al. 2011). 
The main equation of the Total RMS Errors (TRMSE) is 
the following:

=

= ∑
34

2

1
TRMSE  i

i
r ,  (5)

where:

( ) ( )( )= − + −
22 )  (t t

i i i i ir A X X A Y Y ,

where: ( ), t tT X Y  – transformed coordinates (based on 
geographical distances); ( ),C X Y  – original coordinates 

(based on travel time); 
( )
( )

 
 
  

A X
A Y

 – transformation mat-

rix (determined using the LSA).

Fig. 6. Description of method (source: own research)

Fig. 7. Railway tracks (a) at original unmodified geographical 
map and residual vectors (b) (source: own research)

a)

b)
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The meaning of the RMS is illustrated on the Fig. 8.
As it can be seen from Fig.  9 only rotation was 

used as linear transformation to get the control points 
covered. The statistical results shows that the TRMSE is 
quite high therefore it needs to be decreased. For this 
reason authors have increased the power of transforma-
tion in order to get more suitable covering and lower 
error.

As it can be seen from Fig. 10 linear elements were 
distorted due to the quadratic transformation to paral-
lelogrammic elements. The statistical result shows that 
the TRMSE is smaller in the quadratic case as compared 
to the linear but it is still significant and therefore it 
needs to be decreased.

Further on authors have not increased the power 
of the transformation for better approximation but have 
chosen another way of approximation: the transforma-
tion called RSM, which provides zero TRMSE by defini-
tion as using different distortion matrices for different 
locations. 34 particular locations had been established 
by the computer around the 34 cities and made perfect 
covering with 0 error. The rubber-sheeting based on 
planar affine transformation (White, Griffin 1985; Saal-
feld 1985) has been very popular as a possible and ef-
fective map conflation technique (Doytsher 2000). This 
techniques were used as the rubber-sheeting of histori-
cal maps (Fuse et al. 1998; Shimizu et al. 1999). More 
recently its implementations have been reported by 
Niederoest (2002). The result of rubber-sheet transfor-
mation in this case can be seen in Fig. 11.

Conclusions

The result of investigation (Fig.  11) clearly shows the 
centralised situation of the capital Budapest and the 
travel time distortion.

You can see on Fig. 12 that dark grey background 
nowadays is located in our neighbourhood countries. 
The remaining topology is evidently centralised: the 

Fig. 8. Representation of residual vectors  
(source: own research)
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Fig. 9. Linear transformation of railway tracks  
by travel time and the stress vectors (total sum of  

residual vectors = 91.84895) (source: own research)

Fig. 10. Quadratic transformation of railway tracks and stress 
vectors (total sum of residual vectors = 72.93283)  

(source: own research)

Fig. 11. Rubber-sheet transformation of railway tracks  
by travel time (source: own research)
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core is Budapest. The time map reveals the missing links 
since nowadays they belong to the neighbourhood coun-
tries. Mostly radial directions were found in Hungary. 
Authors have found that radial track should be devel-
oped and should be extended by side lanes. This results 
only based on travel times not on passenger counts. The 
linear and the quadratic models had huge errors there-
fore the results that were gained from these models were 
not used for the investigation which cover the whole 
country. But these methods could give a good base for 
local investigations and optimalisations (e.g. local bus 
route planning).

As a result it can be stated that map distortion is 
fully functioning as a tool of railway infrastructure in-
vestigation. New and additional information can be de-
rived from time maps as analytic tool of visualization. 
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