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Abstract. One of the most important issues in Transhipment Container Terminal (TCT) management is to have fairly 
reliable and affordable predictions about vessel arrival. Terminal operators need to estimate the actual time of arrival 
in port in order to determine the daily demand for each work shift with greater accuracy. In this way, the resources re-
quired (human resources, equipment as well as spatial resources) can be allocated more efficiently. Despite contractual 
obligations to notify the Estimated Time of Arrival (ETA) 24 hours before arrival, ship operators often have to revise it 
due to unexpected events like weather conditions, delay in a previous port and so on. For planners the decision-making 
processes related to this topic can sometimes be so complex without the support of suitable methodological tools. Spe-
cific models should be adopted, in a daily planning scenario, to provide a useful support tool in TCTs. In this study, 
we discuss an exploratory analysis of the data affecting delays registered at a Mediterranean TCT. We present some 
preliminary results obtained using data mining techniques and propose a Classification and Regression Trees (CART) 
model to reduce the range of uncertainty of ship arrivals in port. This approach is compulsory to manage vast amounts 
of unstructured data involved in estimating of vessel arrivals.
Keywords: container terminal; vessels delay; data mining; CART; decision trees.
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Introduction 

The vessel arrival uncertainty problem, characteristic of 
all logistics systems, is a constraint to planning effective-
ness in container terminals where the decision-making 
processes need to be constantly adapted and updated. 
To estimate with good approximation, the effective time 
of ship arrival in port is decisive in improving terminal 
organization, especially in the short term. 

On a daily basis, the information regarding ships’ 
loads to be handled is often known while the actual time 
of arrival remains uncertain. Despite the contractual ob-
ligations to send the Estimated Time of Arrival (ETA) 24 
hours in advance the arrival, ports are often forced to make 
last minute changes due to unexpected events (weath-
er and sea conditions, delays in previous ports, etc.).

Reliable estimation of delay would make it possible 
to determine the actual time of arrival of ships in port 
with greater accuracy, hence the workload for each work 
shift. This would facilitate allocation of the resources 

(human, mechanical and spatial) required to satisfy the 
expected demand, which are often overestimated at the 
planning stage. Up to now, this task has been delegated 
to the planners, professionals who operate chiefly on 
the basis of hands-on experience. The decision-making 
processes involved are often so complex as to be unman-
ageable without the support of adequate methodologi-
cal tools. The problem solution approach is extremely 
complex, considering the large number of variables and 
constraints influencing the process, in particular:

 – vessel structure (length, draft, gross tonnage, ca-
pacity, etc.);

 – service (sailing direction, port rotation, etc.);
 – loading plan and type of containers;
 – organization/availability of previous port;
 – external factors (weather/sea conditions, strikes, 
etc.);

 – human resources management (contractual obli-
gations, labour regulations, etc.);



 – equipment management (repairs, out of service 
for maintenance, etc.);

 – space management (berth space and relative dis-
tance from container stacked).

These key issues form the basis of the present re-
search line. The main objective being to identify those 
scientific approaches that best lend themselves to ad-
dressing the problem, along with suitable tools for pro-
viding an analytical answer to the problem.

The need to handle the large number of unstruc-
tured data involved in estimating ship arrival times calls 
for the application of specific data mining techniques. 
In particular, in this paper we propose a Classification 
and Regression Trees (CART) model. As known, this is 
a non-parametric method, that abandoning any assump-
tion about data distribution shape, is based on the self-
learning concept, such that experience forms the knowl-
edge base for generating and calibrating predictions.

Using this methodology it has been possible to de-
velop and implement a specific algorithm for forecasting 
ship arrival times providing an important decision sup-
port tool for port operators.

The model has been tested in the Transhipment 
Container Terminal (TCT) of Cagliari (we are grateful 
to the people for their availability and valuable research 
support). This kind of tool is essential for enabling a 
rapid re-planning of the resources required to meet the 
expected demand, following the occurrence of unex-
pected events.

1. Literature Review 

The analysis of scientific literature confirmed that nu-
merous complex problems of different nature coexist in 
a container terminal system, most of which need inte-
grated solutions. Thus, the solution to one problem often 
becomes decisive for the other problems related thereto 
(Murty et al. 2005; Salido et al. 2012; Won, Kim 2009).

Vis and De Koster (2003), Stahlbock and Voß 
(2008) provide an interesting overview of the classifica-
tion of decision problems in a container terminal on the 
basis of the five main logistic processes: arrival of the 
vessel, loading/unloading, moving the containers from 
quayside to yard and vice versa, stacking containers in 
the yard and transport of containers outside the terminal 
with other vehicles. Therefore, the whole process starts 
with the vessel arrival. Providing an analytical solution 
to the uncertainty of ship arrivals is thus essential for 
improving availability and functionality of the handling 
systems as a whole. In the event of a ship’s delay, its berth 
space has to be re-allocated and the containers, that are 
already stacked in the yard on the basis of the original 
space assigned, have to be re-located as quickly as pos-
sible to minimize the berthing time (Berth Allocation 
Problem) (Zhen et al. 2011; Salido et al. 2012). Moreo-
ver, to optimize resources (personnel and equipment) 
management for handling operations and for establish-
ing maintenance schedules it is important to know the 
effective arrival time of vessels (Fancello et  al. 2011; 
Gambardella et al. 1998).

These aspects are essential for ensuring the avail-
ability and perfect functionality of the handling systems 
used and for avoiding under-manning or equipment be-
ing out of service.

The diagram (Fig. 1) shows the main planning and 
scheduling problems in container terminals (Salido et al. 
2012). It highlights the central role of the arrival of ves-
sels.

The state-of-the-art study showed that notwith-
standing unprecedented technological innovation, the 
uncertainty and variation in daily demand forecasting 
still remain a challenge for port operators. Moreover, the 
specific applications are strongly limited. The most ap-
propriate contributions concern container flow predic-
tion in and out of container terminals over a daily time 
horizon. Here again, the problem is addressed along 
with the other spheres of the terminal’s activities.

The Hong Kong container terminal is equipped 
with information systems that indicate in real time con-
tainer flows and the resources necessary for their han-
dling. This information, in addition to being essential for 
the safety of the terminal, provides reliable input data 
for correctly scheduling handling operations (Murty 
et  al. 2005; Fung 2002). Sideris et  al. (2002) have de-
veloped a tool, using on-line data, for predicting daily 
demand variations in terms of the number of containers 
moved through a terminal. The purpose of being able 
to predict these variations is to improve allocation of 
the handling equipment and manpower required, so as 
to improve work scheduling. Lastly, Gambardella et al. 
(1996) proposed a forecasting module for estimating the 
daily container flow in and out of a terminal, combining 
two different estimators. The first predicts the number 
of containers to be loaded onto a ship due to arrive in 
port, based on past data. The second calculates the per-
centage of the total number of containers that should 
be transported by truck to the terminal, as a function 
of the ship’s ETA. In particular, the only model capa-
ble of predicting ship arrival times has been calibrated 
by Fancello et al. (2011). The decision support system 
presented here reduces the interval of uncertainty on ar-

Fig. 1. Main planning and scheduling problems  
in container terminals
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rival time in port to around 6 hours, employing a neural 
network model. By so doing, the terminal in question 
is able to plan resources around just two work shifts, 
instead of 3 or 4.

From the literature review conducted, it has also 
emerged that developing advanced vessel arrival time 
prediction tools for a transhipment container terminals 
is closely related with the problem of managing and 
elaborating large amount of data. 

The increasing complexity of the data to be pro-
cessed and the need to conduct ever more sophisticated 
analyses has made essential to develop specific data min-
ing techniques (Dunham 2002). On the other hand, a 
blind application of data mining would be detrimental as 
it could lead to discovering meaningless patterns (Fayy-
ad et al. 1996). To extract useful information therefore it 
requires referring to data mining within the Knowledge 
Discovery in Databases (KDD) process, defined as the 
extraction of useful and not known information from 
data (Frawley et al. 1992; Fayyad et al. 1996). The other 
steps in the KDD process, like data preparation, data se-
lection, data cleaning, and correct interpretation of the 
results, are mandatory to be able to extract information 
from data (Fayyad et al. 1996).

Numerous data mining techniques can be used for 
predictive purposes.

Analysis of the scientific literature showed CART 
decision trees to outperform Neural Networks (NNs) 
for this specific case. CART patterns can be applied 
to larger data problems and are able to handle smaller 
data sets than NNs (Markham et  al. 2000). Moreover, 
CART performs better than NNs models when data sets 
are smaller with large numbers of irrelevant attributes 
(Brown et  al. 1993). Decision trees are used either as 
prediction tools or as exploratory tools. They aim to de-
tect to which class of a response variable belong data 
records, knowing the values or the categories of one or 
more explanatory variables. The recursive algorithm 
splits data applying a depth-first approach (Hunt et al. 
1966) or a breadth-first approach (Shafer et al. 1996) un-
til all records are classified. At each step data are split us-
ing impurity measures (Quinlan 1992). The decision tree 
structure consists of a root, no terminal and terminal 
nodes (leaves). The model obtained enables one to clas-
sify new unknown records. The decision tree algorithm 
consists of two main tasks: tree growing and tree prun-
ing. Tree growing follows a top-down approach. Here 
the data set is recursively partitioned until all records 
belong to the same class label (Hunt et al. 1966). On the 
other hand, tree pruning follows a bottom-up approach. 
In this phase the algorithm minimizes over-fitting im-
proving prediction accuracy (Mehta et al. 1996).

A multitude of decision tree models have been de-
veloped since the 1960s. The first to appear was the Au-
tomatic Interaction Detection (AID), in which the out-
come variable is quantitative (Morgan, Sonquist 1963). 
Several other algorithms followed such as Exploration 
of Links and Interaction through Segmentation of an 
Experimental Ensemble (ELISEE) (Cellard et al. 1967) 
and THeta AID (THAID) (Morgan, Messenger 1973) for 

categorical response variable, and MAID (Gillo 1972) 
for quantitative response variable. Numerous algorithms 
were later developed such as CHi-square Automatic In-
teraction Detection (CHAID) (Kass 1980), CART (Brei-
man et al. 1984), ID3 (Quinlan 1986) and C4.5 (Quin-
lan 1992). Some authors have proposed variations to the 
CART method that develop non-binary trees (Loh, Van-
ichsetakul 1988) or that reduce computation time (Mola, 
Siciliano 1997). Of these decision trees the most relevant 
statistical contribution was provided by the CART meth-
od, because it distinguishes between a classification tree 
in which the response variable is categorical and regres-
sion tree in which the response variable is quantitative. 

Over the last few years decision trees algorithms 
have been improved and new models developed em-
bodying this approach. Many hybrid approaches have 
also been developed. Conversano (2002) proposed the 
Generalized Additive Multi-Mixture Models (GAM-
MM) using the decision trees approach for regression 
smoothing. Other authors have pursued the same path, 
for example Chan and Loh (2004), Su et al. (2004), Choi 
et al. (2005) and Hothorn et al. (2006). To improve the 
accuracy of traditional decision tree methods, they have 
been combined to produce, for example, the tree av-
eraging approach. Another approach is the Ensemble 
methods: Freund and Schapire (1996) introduced an 
Ensemble method called Adaptive Boosting, while Brei-
man (1996) developed the Bootstrap Aggregating, and 
Random Forest (Breiman 2001).

2. How TCT of Cagliari Works

This investigation has concerned the TCT of Cagliari. 
A six-month period of observation at the terminal was 
required for investigating the phenomenon and for 
building the database, essential aspects for the choice 
of methodology adopted. During this period terminal 
operations were closely observed, making it possible to: 

 – observe the main causes of delays in ship arrivals 
in real conditions; 

 – analyse the main critical aspects and frequent op-
erational issues in a container terminal associated 
with late arrivals;

 – analyse impacts of ship delays on the other termi-
nal areas (space, human resources and equipment 
planning, maintenance scheduling);

 – analyse the dynamic response of the terminal, in 
terms of supply of port services, in reacting to 
the delay.

The work day in the terminal is divided up into 
four 6-hour shifts. Resources scheduling is performed 
at two main sublevels that differ in the type of decision 
and time horizon. The purpose of the first level is to 
plan handling operations and activities in the different 
sectors (ship, quayside and yard) over an annual time 
horizon. The second level, object of the present paper, 
addresses the specific allocation of resources (personnel, 
equipment and space) for maximizing productivity and 
minimizing costs. In this case the time horizon is about 
24 hours.
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Both levels are characterized by fragmentation of 
time and information uncertainty: the information ar-
rive at different and undefined times and are repeatedly 
updated, hence their content is uncertain. 

Furthermore, the planning processes were observed 
to depend strongly on the flow of incoming information, 
especially over short time horizons, hence the dynamic-
ity of the process.

The database includes all arrivals at the container 
terminal over a period of 12 months (year 2010). Con-
sidering the 779 statistical units collected (correspond-
ing to arrivals of both mother and feeder ships) only 
29% of ships actually arrived at the time indicated, the 
remaining 71% were delayed or arrived early. The time 
series of arrivals, divided into mother and feeder ships, 
is shown below (Fig. 2).

As can be seen in Fig. 2, the time series of arrivals 
at the TCT of Cagliari is complex and irregular, espe-
cially for the feeder vessels, which appear to be more 
prone to early or late arrivals.

From a preliminary descriptive analysis other im-
portant aspects came out about the terminal operations 
over the period examined. Fig. 3 shows the distribution 
of vessel arrivals, respectively, during the hours of the 
day, the days of the week and the months of 2010. It is 
possible to make interesting considerations (Fig. 3): 

 – 64% of vessel arrive during the first two work 
shifts (from 1:00 to 13:00);

 – 37% of arrivals are at weekends;
 – ship arrivals are regularly distributed over the  
12 months.

The data analysis also gave other important infor-
mation, in particular the average vessel turnaround time 
around 21 hour. Moreover:

 – the average waiting time for a berth is around  
2 hours;

 – the average waiting time in berth before load-
ing/unloading operations is around 2 hours and  
30 minutes; 

 – once loading/unloading has been completed, the 
average time before unberthing is 1 hour and  
50 minutes.

It is an essential aim for the terminal to minimize 
mentioned times.

3. Methodology

3.1. Decision Trees Overview
Decision trees are considered as powerful tools for ex-
tracting meaningful patterns from data sets with records 
characterized by a dependent variable and a set of ex-
planatory variables (Hastie et al. 2013). These trees aim 
to classify unknown records using the pattern obtained. 
The algorithm is very simple. It recursively splits the 
feature space (usually binary splits) into several regions 
using explanatory variables and split-points to obtain 
the best fit, until a stopping rule terminates the process. 
Suppose, for graphical reasons, that we have just two ex-
planatory variables, X1 and X2 as in Fig. 4. The first step 
consists in splitting the feature space at X1 = a1. Then the 

Fig. 2. Time series of arrivals at the TCT of Cagliary

Fig. 3. Distribution of arrivals

Fig. 4. A two-dimensional feature space partitioned by 
recursive binary splitting

X1
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algorithm splits region X1 ≤ a1 at X2 = a2 and X1 > a1 at 
X1 = a3. Finally, the region X1 > a3 at X2 = a4 until five 
regions are generated. The algorithm assigns a specific 
value or label to each region. 

The algorithm works in the same way when there 
are more than two explanatory variables. Among all de-
cision tree algorithms – CART (Breiman et al. 1984) is 
considered a landmark. Using this method it is possible 
to distinguish between regression trees and classifica-
tion trees. Regression trees when the response variable 
is numerical, or classification trees when it is categorical. 
The algorithm is explained below. All formulas are from 
Hastie et al. (2013).

3.2. CART: Regression Trees
The regression tree algorithm involves two phases: tree 
growing and tree pruning. In the first phase a tree is 
built. The aim of the second phase is to reduce tree size 
in order to be able to apply the recognized patterns to 
other data, as large trees give unsatisfactory results when 
applied to new data. Moreover, an oversized tree con-
tains a large number of terminal nodes, making its inter-
pretation difficult and falling in risk of the over-fitting. 
Normally data are divided into two subsets: a training 
set (with two-thirds of the data) and a test set (with the 
other third). The training set is used for tree growing, 
while the test set is used for tree pruning to select the 
optimal tree. Nowadays, due to the fact that it is possible 
to use more powerful computers and, the computation 
time is strongly reduced, a γ-fold cross-validation ap-
proach is considered. 

Tree Growing. Suppose that we have a data set with 
p explanatory variables X, one dependent variable Y and 
N records:
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Let us consider the training set. The algorithm 
splits the feature space into several regions, for instance 
into M regions, selecting the explanatory variables and 
split-points automatically. In each region the algorithm 
models the dependent variable as: 

( ) ( )
=

= ∈∑
1

M

m m
m

f x c I x R . (2)

To decide the value of cm it minimizes the sum of 
squared deviation between yi and f(xi), obtaining cm 
equal to average of yi in region m:

( )
( )( ) ( )− ⇒ = ∈∑

2 ˆmin ave |
i

i i m i i mf x
y f x c y x R . (3)

In tree growing the regression trees algorithm 
makes a series of local decisions about which predictor 
variable j and split-point s to use in binary recursive par-
titioning in order to create homogeneous regions. With 
the first split we have:

( ) { }= ≤1 , | jR j s X X s  (4)

and
( ) { }= >2 , | jR j s X X s  (5)

to know the optimal j variable and s split-point it suf-
fices to solve:

( )
( )

( )
( )

∈ ∈

 
 
 


− + −


∑ ∑
1 2

1 2

2 2
1 2, , ,

min min  min  
i i

i ij s c cx R j s x R j s
y c y c . 

 

(6)

Once the algorithm has found the best j variable 
and s split-point, it repeats the previous step dividing 
each region into two sub-regions until a stopping rule 
terminates the process.

Tree Pruning. As a Tree T0 has been built, it needs 
to be trimmed in order to improve its interpretability 
and in order to avoid over-fitting. The obtained classifi-
cation rule can now be applied to new data. CART uses a 
specific tree pruning method known as cost-complexity 
pruning. Let, ∈ ∞á [0, ) , called complexity parameter, 
expressing trade-off between tree size and goodness of 
fit. Indicate T as a subtree of T0 obtained by pruning, 
such that ⊆ 0T T  and T  is the number of terminal 
nodes in T. Letting:

{ }= ∈#m i mN x R ; (7)

∈

= ∑ˆ 1

i m

m i
m x R

c y
N

; (8)

( ) ( )
∈

= −∑ 2ˆ1

i m

m i m
m x R

Q T y c
N

. (9)

Cost-complexity pruning is defined as follows:

( ) ( )α
=

= + α∑
1

T

m m
m

C T N Q T T . (10)

The idea is to find a α ⊆T T  minimizing ( )αC T . To 
find αT  the weakest link pruning approach is applied. 
This approach is developed by successively collapsing 
the internal node that produces the smallest per-node 
increase in ( )∑ m m

m
N Q T  until the single node (root) 

is obtained. In this way a finite sequence of subtrees has 
been generated containing the optimal subtree αT  (Brei-
man et al. 1984). 

If the data only contain a few records, it is possible 
to use γ-fold cross-validation. The training set is split 
into γ parts each of size 

γ
N . A tree is grown γ times, 

each one with a different training set consisting of a γ 
combinations of γ−1 original parts. The generalization 
error is calculated averaging over each γ tree generat-
ed. Finally, α is chosen minimizing the cross-validated 

( )αC T .
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4. Discussion

This study, based on the KDD approach (all statistical 
analyses were performed with the aid of the software R), 
consists of six main tasks (Fayyad 1996): 

1) understanding the application domain;
2) data selection;
3) data preparation;
4) data mining;
5) interpretation of results;
6) consolidation of the discovered knowledge. 

4.1. Understanding the Application Domain  
and Data Selection
A specific theoretical study was carried out for the first 
two tasks. In order to forecast container ship delays the 
variables that were able to provide a theoretical explana-
tion for the delay were examined. Once these had been 
identified, then data collection could start. The database 
contains information about mother and feeder vessels 
arriving at the container terminal in 2010. It consisted 
of 779 records and 44 variables. 

The variables were divided into two groups: the first 
composed of 11 variables having a direct influence on 
late/early arrivals, the second containing 33 variables that 
does not affect or does not have a direct influence on delay. 
These variables will be used for a post-analysis, an essen-
tial step for examining the economic/organizational fall-
out caused by late/early arrivals in the system as a whole. 

The first group of variables comprises: ETA at pilot 
point (the pilot point is a conventional imaginary point 
into the port used to indicate when vessels arrived in 
port)  – 24  hours, actual time of arrival at pilot point, 

length, gross tonnage, capacity, vessel type, previous 
port, shipping line, service, sailing direction, average 
speed. The second group includes variables such as char-
acteristics and number of containers to be unloaded, 
characteristics and number of containers to be loaded, 
date and time of berthing, of start operations, of end 
operations, of unberthing. In the present study only the 
first group of variables was examined. 

Furthermore, preliminary investigations and fre-
quent consultations with professionals revealed that the 
inconvenience created by the uncertainty surrounding 
arrivals at the TCT of Cagliari is caused mainly by de-
lays. As container traffic is not particularly heavy and the 
container terminal does not experience any significant 
congestion, ships arriving early that cannot be handled 
straight away due to unavailability of resources can wait 
until their assigned berthing space without creating ma-
jor difficulties. For this reason, in this work, only delays 
were analysed.

4.2. Data Preparation
Data preparation consisted of several steps:

 – missing values and outliers were deleted as stand-
ard statistical procedure;

 – new variables were created: 
 Fdelay [minutes]: calculated as the difference 
between the actual time of arrival at the pilot 
point and the ETA. As this variable was only 
intended to express delay, it was set at zero for 
early arrivals;
 Fprevious port distance [nautical miles]: calcu-
lated as the distance of the previous port from 
the TCT of Cagliari;

Fig. 5. Correlation matrix, Length–GRT–Capacity
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 F sailing: divided into two classes sailed and not 
sailed. It indicates if vessel notified the ETA 
once it had left the previous port or while it was 
still in port. 

 – the redundant variables, variables strongly cor-
related with others that do not provide any ad-
ditional information on the phenomenon being 
studied, were eliminated. Length, Gross Register 
Tonnage and Capacity were found to be strongly 
correlated (Fig.  5). The correlation coefficients 
are 0.94 (GRT–Length), 0.93 (Capacity–Length) 
and 0.97 (Capacity–GRT). To remove redundant 
information it was necessary to include one vari-
able only in the analysis. Length was chosen as it 
also expresses berth occupancy; 

 – a statistical exploratory analysis was performed 
to identify the most important characteristics of 
the data;

 – the data were cross checked (e.g. previous Port 
with service).

As a result of the analysis, the dimensions of the 
database changed: records being reduced to 752 and 
variables of the first group increasing to 12.

4.3. Data Mining
The CART method has been considered. Several regres-
sion trees were built using different combinations of all 
twelve variables. The tree with a good trade-off between 
goodness of fit and its interpretation and generalization 
to new data was chosen (Fig. 6). 

Length, ETA Day, ETA Shift, Vector Type and Sail-
ing were used as predictor variables in the tree.

The response variable is Delay. A brief description 
of them is given below. 

Delay [minutes] was calculated as the difference 
between the ETA notified and the actual time of arrival 
at the port.

Length [metres] is an indicator of the vessel’s physi-
cal structure that directly affects both the speed of han-
dling operations in previous ports (cranes on board, posi-
tion of bridge) and navigation (speed, ability to withstand 
adverse weather and sea conditions). It also provides 
important information concerning berth occupancy.

ETAs, indicated by two variables ETA Day and ETA 
Shift, constitute the expected date of arrival. This infor-
mation is updated several times as the date approaches, 
in general monthly, weekly, 48 hours and 24 hours in 
advance. This study concerns the last ETA 24 hours be-
fore the arrival. 

Vector Type (mother or feeder) considers not only 
the objective physical/structural differences between the 
two types of vessels but also the different services pro-
vided by the container terminal to cope with the delay.

Sailing (Ship departed/not departed) provides im-
portant information about the position of the ship over 
the last 24 hours. It is calculated on the basis of transit 
time from the previous port. A transit time of more than 
24 hours means that the ship notified the ETA once it 
had left the port. In this case any delay will most likely 
depend on weather/sea conditions alone. 

For a transit time of less than 24 hours the ETA 
is notified while the ship is still in port. In this case, 
the delay could be caused not only by weather or sea 
conditions but also by the organization/ occupancy of 
the previous port. The transit time was calculated as the 
ratio between the distance in nautical miles of the last 
port of call from the port of Cagliari and the average 
speed, in knots, of the vessel.

Fig. 6. Regression tree
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4.4. Interpretation of Results 
The regression tree is composed of 11 nodes, six of 
which are terminal nodes (Table). These are described 
below. Node 2, with an average delay of 37.24 minutes, 
comprises 477 observations: 57% concerns the feeder 
vessels, the remaining 43% the mother vessels. The dis-
criminating variable is the ETA Day: all vessels arrive in 
the first 5 days of the week.

A clear distinction emerges between ships arriving 
at the weekend, more likely to be delayed, and those ar-
riving on weekdays, more likely to arrive on time. This 
result can be interpreted considering that most ships 
that estimate to arrive in the port of Cagliari on Saturday 
or Sunday depart from the previous port on Friday, Sat-
urday or Sunday when, as a general rule, there is often 
lower functionality.

Node 12, with an average delay of 41.42 minutes 
comprises 117 arrivals of mother ships. These vessels ar-
rive at TCT of Cagliari at weekends and, the most, from 
ports at more than 24 hours sailing time away. Because 
they are already en route when the last ETA is notified, 
eventual delays cannot be attributed to inefficiencies in 
the previous port.

Node 13, with an average delay of 127.90 minutes, 
comprises 114 feeder vessels arriving in port at week-
ends. The majority of these were still in port when the 
ETA was notified.

Terminal nodes 12 and 13 are created by partition-
ing node 6 on the basis of vector type. The average de-
lays for the two nodes suggest that mother ships have a 
greater tendency to arrive on time than feeder vessels. 
This result is confirmed by the fact that, in practice, the 
service contract terms for the two types of vessels differ. 
As the cost of their stay in port is higher, mother ships 
usually have priority over feeder vessels.

Moreover, the analysis of the two terminal nodes 
revealed that though the variable sailed/not sailed is not 
one of the discriminating variables, it contribute to dif-
ferentiate between them. This type of variable substanti-
ates the fact that information notified prior to sailing 
from the previous port is not very reliable because the 
extent of the delay also includes any efficiencies of the 
port.

Node 14, which has an average delay of 56 min-
utes, includes 22 feeder vessels arriving in the port at 
the weekend. Apart from the ETA Day and Vector Type, 

the other two discriminating variables are Length and 
ETA Shift. The ships belonging to this node in fact are 
over 135 metres long, and therefore tend to be shorter 
than the feeder ships belonging to node 13, which have 
an average length of 150 metres. For the feeder ships, 
which generally notify the ETA before sailing from the 
previous port, delays increase with length. This can be 
explained by the fact that longer ships are more difficult 
to process in terms of availability of port services (num-
ber of cranes, personnel, etc.) and, also, they are more 
difficult to berth as they occupy more space.

Moreover, all the ships belonging to node 14 arrive 
during the third work shift (13:00–19:00). Considering 
that the ports of origin (Malta, Barcelona, Naples, Cata-
nia and Genoa) are on average 17 hours away, the ves-
sels leave the last port of call at around 23:00 and sail 
overnight, meaning that the ship will be processed in 
daylight. Therefore this variable provides an indication 
of processing times in the previous port, highlighting 
variations in performance for the different shifts: gen-
erally port operators working at night shifts experience 
greater mental and physical fatigue.

Node 30 is characterized by an average delay of 
31.43 minutes. Similarly to node 12 it includes mother 
ships arriving at TCT of Cagliari at weekends with a 
transit time of more than 24 hours from the port of ori-
gin. Thus, as these vessels had already set sail when the 
ETA was notified, eventual delays cannot be attributed 
to inefficiencies at the previous port. The only difference 
between the two nodes lies in ship length. In this case 
however, as mother ships take priority over feeder ships 
this variable is not particularly discriminating. Vessels 
belonging to nodes 12 and 30 tend to arrive on time, 
differences in delays being insignificant.

Comparison of the terminal nodes 14 and 30 that 
originate from the same node 7, also confirms that 
mother ships are more likely to arrive on time than 
feeder ships.

Lastly, node 31 comprises 15 mother and feeder 
vessels arriving at the terminal at the weekend. Average 
delay in this case is 491.8 minutes. Almost all the vessels 
in question have already set sail when the ETA was noti-
fied. This substantial delay is not completely explained 
by the model and it is most probably due to exogenous 
variables (weather variables, breakdown or navigation 
problems).

Table. Final nodes characteristics

Nodes Delay 
[minutes]

Length 
[metres]

Vector type ETA day ETA shift Sailing

feeder mother 5-days 
week weekend 1:00–7:00 7:00–13:00 13:00–19:00 19:00–1:00 yes no

Node 2 37.24 196.9 57% 43% 100% 0% 33% 26% 24% 17% 61% 39%
Node 12 41.42 261.1 0% 100% 0% 100% 43% 49% 0% 8% 93% 7%
Node 13 127.90 148.2 100% 0% 0% 100% 38% 40% 0%% 22% 32% 68%
Node 14 56.00 135.0 100% 0% 0% 100% 0% 0% 100% 0% 14% 86%
Node 30 31.43 292.3 0% 100% 0% 100% 0% 0% 100% 0% 100% 0%
Node 31 481.80 209.0 47% 53% 0% 100% 0% 0% 100% 0% 80% 20%
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4.5. Consolidation of Knowledge Found
CART methodology has been used to classify new data 
through obtained tree. We have considered all mother 
and feeder arrivals at TCT of Cagliari during the first 6 
months of 2011, collecting for every vessel all informa-
tion about their predictor variables. Each arrival trickles 
down the tree and is assigned to a terminal node. We 
then compared actual and estimated delays. The mean 
prediction error obtained, based on 339 arrivals, was 
89.80 minutes.

The results obtained with CART methodology are 
very encouraging. In particular if we compare it with 
the Neural Networks model calibrated at the University 
of Cagliari built to forecast the delay in the same port 
(Fancello et al. 2011). Mean error on delay prediction 
was significantly lower, passing from around 2 hours 40 
minutes to about 1 hour and 30 min.

Three basic considerations emerge from these re-
sults: 

 – the possibility that the vessel’s predicted arrival 
time falls within 3 or 4 work shifts is entirely 
ruled out;

 – there is the certainty that resources can be sched-
uled over 2 work shifts at the most;

 – the probability of specifically determining the 
work shift of arrival is around the 75%.

Conclusions

The major issue for enhancing planning efficiency in a 
container terminal is the prediction of ship arrival times. 
Greater certainty on demand data would in fact improve 
port operations management. Furthermore, considering 
the strong dependence of planning processes on incom-
ing information flow, a reliable estimation of the delay 
would reduce uncertainty in scheduling the resources 
(space, equipment and personnel), required to satisfy the 
predicted demand.

This paper concerns the development of a tool for 
predicting arrivals in a Mediterranean transhipment 
container terminal, for a short time horizon. Based on 
data collected and the available tools and after an analy-
sis of the scientific literature it was decided to adopt the 
CART methodology.

In particular, referring to the TCT of Cagliari con-
tainer terminal, where the working day is divided into 
four 6-hour shifts, a mean error of around 1 hour 30 
minutes was obtained for delay prediction. In this way, 
the probability of the uncertainty interval falling entirely 
within a single work shift increases. In practical terms, 
this means that resources can be scheduled over most at 
the 2 work shifts. The results obtained are therefore very 
favourable, viewed from both the scientific standpoint 
and in the operational context.

They also provide basis for furthering the research 
work, which will focus on refining the model using new 
variables and observations. This will be followed by a 
careful economic analysis for examining the second 
group of variables and determining the repercussions of 
delays on the entire economic/organizational/manage-
ment system.

In a broader perspective, the aim is to create a De-
cision Support System (DSS) for port operators that will 
assist planners and ultimately contribute to maximizing 
terminal efficiency and hence competitiveness, combin-
ing three main, closely interrelated modules, forecasting, 
resources optimization and equipment maintenance.
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