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Abstract. The heterogeneity of traffic and the lack of lane discipline on the roads in India and other developing coun-
tries add complexity to the analysis and modeling of traffic. It is generally believed that it is important to take hetero-
geneity into account in traffic modeling. The aim of the present study is to check the validity of this assumption by 
analyzing the effect of incorporating heterogeneity in a macroscopic level traffic flow analysis. The application con-
sidered is real-time congestion analysis on Indian roads. Traffic density is considered as the congestion indicator. The 
measurement of density is difficult since it is a spatial parameter. It is usually estimated from other traffic parameters 
that can be readily measured using available sensors. A model-based estimation scheme using Kalman filtering has 
been employed to estimate traffic density. A non-continuum macroscopic model was attempted based on the lumped 
parameter approach. All the traffic variables were quantified without considering traffic lanes in order to take into 
account the lack of lane discipline. The effect of heterogeneity has been studied by incorporating static values of Pas-
senger Car Units (PCU), dynamic values of Two Wheeler Units (TWU) and considering different classes of vehicles 
explicitly in the modeling process. The proposed estimation schemes without and with heterogeneity have been com-
pared. The results have been corroborated using data collected from a road stretch in Chennai, India. The study shows 
that the significance of incorporating heterogeneity into the modeling of mixed traffic at the macroscopic level was not 
very significant.  
Keywords: macroscopic modeling; non-continuum models; heterogeneous traffic; density estimation; extended 
Kalman filter. 
Reference to this paper should be made as follows: Thankappan, A.; Vanajakshi, L.; Subramanian, S. C. 2014. Signifi-
cance of incorporating heterogeneity in a non-continuum macroscopic model for density estimation, Transport 29(2): 
125–136. http://dx.doi.org/10.3846/16484142.2014.928789

Introduction

Analysis and modeling of traffic flow is essential for un-
derstanding the traffic flow phenomena and for plan-
ning, design and management of transportation systems. 
The heterogeneous traffic conditions existing in India 
and other developing countries are highly complex and 
differ from the homogeneous and lane disciplined traffic 
seen in developed countries. Modeling of heterogene-
ous traffic is challenging due to the typical features that 
characterize a heterogeneous system such as the pres-
ence of several vehicle types and the absence of lane 
discipline. In general, it is assumed that to characterize 
such a system with reasonable accuracy, it is essential 
to incorporate heterogeneity into the modeling process. 

To incorporate the effect of heterogeneity, the common 
approach is to use passenger car equivalents. However, 
there are no reported systematic studies analyzing the 
effect of this approach in the performance of traffic flow 
models. 

There are many types of traffic flow models report-
ed in literature, including microscopic and macroscopic 
models. Among these, microscopic models are complex 
and computationally intensive and hence not usually 
preferable for real time applications. Macroscopic mod-
els are more appropriate for applications where compu-
tational effort is crucial. Most of the available macro-
scopic traffic flow models treat traffic as a continuum 
(Hoogendoorn, Bovy 2001). However, this approxima-
tion is not accurate since the number of vehicles in a 



road stretch is not sufficient enough to consider it as a 
continuum (Tyagi et al. 2009). Furthermore, the avail-
able macroscopic models may not be able to take into 
account some of the specific characteristics of Indian 
traffic such as absence of lane discipline and heteroge-
neity of traffic. 

The studies reported on modeling of heterogeneous 
traffic are limited. The multi-class concept of incorpo-
rating heterogeneity has been used in a few traffic flow 
modeling studies by extending the continuum models 
developed for homogeneous traffic (Wong, Wong 2002; 
Logghe, Immers 2003; Tang et al. 2009). In India, apart 
from a few preliminary studies on macroscopic model-
ing (Padiath et al. 2009, 2010; Anand et al. 2011), there 
are no comprehensive studies in this respect. None of 
them analyzed the effect of incorporating heterogeneity 
of traffic in characterizing Indian traffic and evaluated 
its performance for real-time applications.

This study presents a non-continuum based lumped 
parameter macroscopic traffic flow model for the esti-
mation of traffic density (the number of vehicles occu-
pying a given length of roadway) under heterogeneous 
traffic conditions. Mathematical models of dynamic sys-
tems are typically used for estimation and control ap-
plications. The scope of the present study is to develop a 
density estimation scheme using a mathematical model 
for the traffic flow. The aspect of control of the pres-
ent traffic system (a relevant study can be seen in Péter 
(2012)) investigated as part of a future study. 

A model-based approach using techniques such as 
the Kalman filter is appropriate for traffic flow model-
ing applications that require estimation of traffic density, 
due to its ability to account for the uncertainty associ-
ated with the traffic flow phenomena. This is particularly 
relevant to heterogeneous traffic conditions where the 
randomness associated with traffic is high. Another ad-
vantage of this approach is that, it is recursive in nature, 
so that, unlike other historic methods, there is no need 
for a historic database. This is advantageous in places 
like India, where a database is not available due to ab-
sence of traffic sensors. 

The base equation of the model proposed in this 
study has been formulated based on the conservation 
of vehicles inside a section of roadway and the auxiliary 
equation has been formulated using steady-state speed-
density relationships developed for the traffic under 
study. The two important spatial parameters – density 
and aggregate space-mean speed – that characterize 
traffic flow have been considered as the variables to be 
estimated in this model. 

In order to account for the lack of lane discipline, 
all traffic variables have been quantified without consid-
ering traffic lanes. Thus, the model was first developed 
without considering heterogeneity and then heterogene-
ity was incorporated at an aggregate level by converting 
the heterogeneous traffic into a homogeneous equivalent 
as well as by including explicitly the different classes of 
vehicles into the model. In order to aggregate the het-
erogeneous traffic into a homogeneous equivalent, both 
static values of Passenger Car Units (PCU) and dynamic 

values of Two Wheeler Units (TWU) were used. Using 
these models, estimation schemes have been developed 
based on the Kalman filtering technique. The proposed 
schemes have been corroborated using data collected 
from sections along an urban arterial in Chennai and 
finally the significance of incorporating heterogeneity 
at a macroscopic level has been evaluated based on the 
performance of these estimation schemes.

1. The Proposed Non-Continuum Model

A non-continuum model has been proposed in this 
study for characterizing the system. The model was 
formulated based on the lumped parameter approach. 
Here, the physical system under study is divided into 
lumps or segments and within each segment, the ag-
gregate characteristics such as velocity, pressure, density 
etc., may vary with time, but are assumed to be uniform 
over the segment. When this is applied to roadways, 
within a small section of roadway, the spatial variation of 
traffic variables (such as density, speed, etc.) is neglected 
and it is assumed that the variables depend only on time. 
A reasonable section length for this assumption to hold 
good is about 1–1.5 km, the usual spacing between au-
tomated data collection sensors. The section length L 
in this study has therefore been selected in this range. 
To apply this procedure to longer roadways, the section 
can be divided into sub-sections of lengths in this range. 
The lumped parameter approach results in the govern-
ing equations of the model being ordinary differential 
equations (in the continuous time domain) and ordinary 
difference equations (in the discrete time domain).

In order to formulate the model equations, a typical 
road segment between two data collection points, having 
a length L, is considered as shown in Fig. 1. 

The density and the average space mean speed 
of traffic, which are two spatial parameters difficult to 
measure from field, were considered as the macroscopic 
state variables in this study. The governing equation for 
density was formulated based on the conservation of ve-
hicles inside the section as follows. 

Let N(k) denote the number of vehicles inside the 
section at the kth instant of time. Then, the conservation 
of vehicles inside the section for a time step of h can be 
described as:

   ( ) ( )+ = +1N k N k ( ) ( ) ( )( )− +en ex sideh q k q k q k ,   (1)

where: qen(k) is the flow rate at which vehicles are enter-
ing into the section; qex(k) is the flow rate at which vehi-
cles are exiting from the section; qside(k) is the net flow 
rate at which the vehicles are entering into the section 
from the side road in the time interval (k, k+1).

SIDE ROAD

ENTRY EXIT

L

qside

qen qex�, v

Fig. 1. Schematic diagram of a typical road section
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Dividing Equation (1) by the length of the section L 
results in the governing equation for density as:

( ) ( ) ( ) ( )( )ρ + = ρ + − +1 ( ) en ex sidek k h q k q k q k ,  (2)

where: ρ(k + 1) denotes the density inside the section at 
the (k + 1)th instant of time.

The above equation solely depends on the mea-
sured values of flow rates at which vehicles are entering 
into the section, exiting from the section and the net 
flow rate at which vehicles are entering into the section 
from side road. Thus, the accuracy of the methodol-
ogy depends heavily on the accuracy of the measured 
flow values. If the sensors work perfectly, this method 
is appropriate. However, in reality, the sensors may not 
always work perfectly (Chen, May 1987; Turner et  al. 
2000; Vanajakshi, Rilett 2004). When there is a sensor 
malfunction, the flow data is affected more than other 
parameters such as speed and occupancy because flow 
data are reported as a cumulative number, whereas speed 
and occupancy data are averaged over the accumulation 
time interval. Hence, the effect of a sensor malfunction, 
such as missing vehicles, has less impact on speed and 
occupancy in comparison to flow data. This is a serious 
issue for Indian traffic conditions where none of the ex-
isting automated sensors can count all the parallel mov-
ing vehicles within the same lane. Average speed is a 
variable that can be obtained more accurately, especially 
under congested Indian traffic conditions. In the present 
study, the exit end of the section was assumed to experi-
ence more congestion due to the proximity to a signal 
downstream than other sections and hence prone to flow 
measurement errors. Hence, qex  in the above equation 
was written in terms of the average space-mean speed v 
using the fundamental equation of traffic flow as:

( ) ( ) ( )= ρ ⋅exq k k v k .                                      (3)

Substituting Equation (3) in Equation (2) resulted 
in:

( )ρ + = ρ + ×( 1) hk k
L

( ) ( ) ( ) ( )( )− ρ ⋅ +en sideq k k v k q k ,              (4)

where: ρ(k + 1) denotes the density inside the section 
at the (k + 1)th instant of time. This substitution can be 
made for the end that is more congested, which in this 
case is the exit location.

The governing equation for average space mean 
speed of vehicles inside the section was formulated as a 
dynamic speed equation by incorporating a steady state 
speed-density relationship developed for the traffic be-
ing analyzed. The optimum relation was chosen based 
on the motive of minimizing the error e between the 
speed values estimated using this steady state speed-
density relation v(ρ) and the observed speed values v, 
that is, e=v(ρ) – v. The time evolution of this error was 
hypothesized to be governed by:

( )= − ⋅
de a e t
dt

,              (5)

where: the parameter a is selected to be positive. 

This equation is a linear homogeneous Ordinary Dif-
ferential Equation (ODE) with a unique solution, 

( ) ( ) ( )= ⋅ − ⋅0 expe t e a t , (Coddington 1989), where e(0) 
is the initial error (can be either positive or negative), 
which will converge to zero with time. Although there 
may be other choices for describing the time evolution 
of the error function, an exponentially decaying error 
function has been chosen in this study since its perfor-
mance will be comparably good to any alternate choice. 
This approach has been applied in other studies involv-
ing the dynamical systems approach (Ioannou, Chien 
1993; Swaroop et al. 1994).

Substituting e=v(ρ)–v in Equation (5) and re-ar-
ranging resulted in:

( )( ) ( )( )
ρ ρ

− = − ⋅ ρ −
ρ

.
d v d dv a v v

d dt dt
.              (6)

Discretizing Equation (6) using a time step h re-
sulted in:

( )( ) ( ) ( )( )ρ ρ + − ρ
⋅ −

ρ

1d v k k

d h

( ) ( )( ) ( )( )
+ −

= − ⋅ ρ −
1v k v k

a v v
h

.             (7)

Substituting:
 ( ) ( ) ( ) ( ) ( ) ( )( )ρ + − ρ

= − ρ ⋅ +
1 1

en side
k k

q k k v k q k
h L

 

from Equation (4), the dynamic speed equation (that is, 
the equation governing the evolution of speed) can be 
obtained as:

( ) ( ) ( ) ( )( )+ = + ⋅ ⋅ ρ − + ×1 hv k v k a h v v k
L

( )( ) ( ) ( ) ( ) ( )( )
ρ

⋅ − ρ ⋅ +
ρ en side

d v
q k k v k q k

d
.            (8)

The general formulation of the lumped parameter 
model is represented by Equations (4) and (5). Here the 
heterogeneity of traffic was not explicitly considered. 
The site specific speed density relationship v(ρ) was 
also developed without considering heterogeneity and 
incorporated in Equation (8). A brief description of the 
developed speed density relation and the details on in-
corporating it in Equation (8) is provided below. 

Based on the field data collected from locations 
along the study stretch on Rajiv Gandhi road in Chen-
nai, India, the best fitting speed density relation was 
identified empirically (base work of this can be found at 
Thankappan, Vanajakshi (2012)). To take into account 
the lack of lane discipline, the roadway was analyzed 
without considering the traffic lanes and hence flow was 
expressed in [veh/hr] and density in [veh/km]. Using 
this data, the best fitting traffic stream model was found 
to be a two-regime relationship of the form:

   ρ  = ⋅ − ⋅ ≤ ρ ≤ ρ    ρ   
 ρ 

= ⋅ − ρ ≤ ρ ≤ ρ   ρ  

2

exp 0.5 for 0 ;

1 for .

f cr
cr

j
cr j

v v

v C

    (9)
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where: vf  is the free flow speed; ρcr indicates the criti-
cal density (density at maximum flow); ρj represents the 
jam density and C is a model parameter. 

A plot of the predicted values from this stream 
model against the observed values from field is shown 
in Fig. 2. Values of the model parameters are shown in 
Table 1.

Incorporating Equation (9) in Equation (8), the dy-
namic speed equation reduced to:

( ) ( ) ( )
( ) ( ) ( )

 + = + ≤ ρ ≤ ρ
 + = + ρ ≤ ρ ≤ ρ

1

2

1 for 0 ;
1 for ,

cr

cr j

v k v k comp k
v k v k comp k

 (10)

where:
( ) ( )

   ρ  = ⋅ ⋅ ⋅ − ⋅ − −    ρ     

2

1 exp 0.5f
cr

k
comp a h v v k

( )
( )

( ) ⋅ ⋅ρ  ρ − ⋅ ×   ρ ρ ⋅   

2

2
.exp 0.5f

crcr

v h k k

L

( ) ( ) ( ) ( )( )− ρ ⋅ ⋅en sideq k k v k q k ;

( ) ( )
 ρ 
 = ⋅ ⋅ − − −   ρ  

2 1jcomp a h C v k
k

( )( )
( ) ( ) ( ) ( )( )

⋅ρ ⋅
⋅ − ρ ⋅ +

⋅ ρ
2

j
en side

C h
q k k v k q k

L k
.

Thus, the complete model for traffic without con-
sidering heterogeneity can be represented by Equa-
tion (4) and Equation (10).

2. Incorporation of Heterogeneity into the Model

The above model was subsequently modified to incorpo-
rate heterogeneity in different ways as explained below. 

2.1. Use of Static Passenger Car Units
One common way to consider different categories of 
vehicles in a traffic stream is to convert them into a ho-
mogeneous equivalent using either static values of PCU 
or dynamic values of PCU and this approach has been 
applied in this study. The static values of PCU recom-
mended by Indian Road Congress (IRC 1990) were used 
first to convert the heterogeneous traffic into a homoge-
neous equivalent. Thus, in Equations (4) and (8) traffic 
flow was considered in [PCU/hr] and traffic density in 
[PCU/km]. The site specific speed density relationship 
v(ρ) developed using the data converted into a com-
mon unit using static values of PCU was incorporated 
in Equation (8). During development of the equation 
for v(ρ) in this case, the data were measured separately 
for different categories of vehicles and then converted 
into static PCU units. Three vehicle groups were con-
sidered: Two Wheelers (TWs), Three Wheelers (ThWs) 
and Four Wheelers (FWs). TWs included motorcycles, 
scooters and mopeds, ThWs included auto-rickshaws 
and small three wheeled tempos, and FWs included light 
passenger cars and heavy commercial vehicles. Based on 
availability of data, the model can be extended easily to 
incorporate more classes. Table 2 presents the values of 
PCU recommended by Indian Roads Congress (IRC 
1990) that have been used in this study (IRC 1990). The 
average traffic composition of different vehicles present 
in the study stretch were observed to be around 51%, 
7%, 34%, 6% and 2% of TWs, ThWs (auto rickshaw), 
passenger cars, light commercial vehicles and heavy 
commercial vehicles (buses and trucks) respectively. In 
this study, a weighted average value of PCU was calcu-
lated for FWs, considering the proportion of different 
categories of vehicles coming under the category of FWs 
as the weights. The functional forms of the speed-den-Fig. 2. Plot of developed stream model against the observed 

values from field

Table 1. Parameters of the derived steady-state speed-density relationships

Category
Parameters

vf  [km/hr] ρcr ρj C [km/hr]

Data without considering heterogeneity 53.58 157 veh/km 665 veh/km 11.74
Data converted in to static PCU units 53.86 149 PCU/km 602 PCU/km 12.15
Data converted in to dynamic TWU units 52.54 600 TWU/km 5800 TWU/km 4.63

Classified data without considering interaction
Class 1 51.93 97 TW/km 375 TW/km 12.06
Class 2 41.56 15 ThW/km 49 ThW/km 15.17
Class 3 57.30 63 FW/km 250 FW/km 12.58

Classified data with considering interaction
Class 1 52.58

157 veh/km 674 veh/km
11.94

Class 2 43.24 9.83
Class 3 57.72 11.04
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sity relationship and dynamic speed equation for this 
PCU converted data were obtained similar to the case 
without considering heterogeneity. Various parameters 
associated with this relationship are shown in Table 1. 

Thus, the complete model formulation after incor-
porating static PCU was represented by Equation (4) 
and Equation (10) with flow rates and density expressed 
in [PCU/hr] and [PCU/km] respectively and with the 
parameters developed using the PCU converted data.

2.2. Use of Dynamic Two Wheeler Units
The next approach was the use of dynamic values of 
equivalents to aggregate the heterogeneous traffic into 
a homogeneous one, since the equivalency factor for a 
vehicle type is not a static factor as is usually assumed 
(Chandra et al. 1995). The dynamic values of the equiva-
lency factors used in this study were developed based 
on the formula for dynamic PCU proposed by Chandra 
et  al. (1995), which is considered to be most suitable 
for mixed traffic conditions in India (Chandra, Kumar 
2003). According to Chandra et  al. (1995), the PCU 
value for different vehicles under mixed traffic situation 
is directly proportional to the speed ratio and inversely 
proportional to the space occupancy ratio with respect 
to a car, which is taken as the reference vehicle. Thus,

 
 
 =
 
 
 

PCU

c

i
i

c

i

v
v

A
A

,                        (11)

where: PCUi indicates the dynamic passenger car unit 
for the ith category of vehicle; vc/vi is the speed ratio for 
the car to the ith vehicle; Ac/Ai is space ratio for the car 
to the ith vehicle.

In the present study, the motorized two wheeler is 
considered as the reference vehicle, since the proportion 
of two wheelers is observed to be more than 50% of the 
composition in the study stretch. Hence, Equation (11) 
was modified to incorporate this change and the formula 
for calculating the dynamic TWU values was obtained as: 

 
 
 =
 
 
 

TW

TW
TWU i

i

i

v
v

A
A

,            (12)

where: TWUi  indicates the dynamic TWU for the ith 
category of vehicle; vW/vi is the speed ratio for (Two 
Wheelers) TW to the ith vehicle; AW/Ai is space ratio 
for TW to the ith vehicle. The vehicle dimensions for 
calculating the space ratios for the different categories of 
vehicles were adopted from an earlier study conducted 
in Chennai (Arasan, Krishnamurthy 2008). For the FW 
category, weighted average values of area were used us-
ing the proportions of different categories of vehicles 
coming under this category as weights.

Equations (4) and (8) were modified to incorpo-
rate the heterogeneity in terms of this dynamic TWU. 
The governing equation for density (Equation (4)) was 
modified by expressing the flow rates in terms of the 
dynamic TWU equivalents indicated by Equation (12) 
and was obtained as:

( ) ( )ρ + = ρ + ×k 1 hk
L

( ) ( )

( )
( )

  
     + ⋅ +

     

1

21 2

1

2

en en

v k
v k

q k q k
A
A

( )

( )
( )

( ) ( ) ( )

 
  
 ⋅ − ρ ⋅ + +

 
 
 

1

33 1

1

3

en side

v k
v k

q k k v k q k
A
A

( )

( )
( )

( )

( )
( )

   
          ⋅ + ⋅ 

            

1 1

2 32 3

1 1

2 3

side eside

v k v k
v k v k

q k q k
A A
A A

.       (13)

The dynamic equation for speed (Equation (8)) was 
modified by incorporating the steady-state speed-den-
sity relationship derived from the empirical data con-
verted using the dynamic TWU units. This relationship 
was also obtained in a similar form as indicated in Equa-
tion (9), where ρ is in [TWU/km]. The corresponding 
parameters obtained are shown in Table 1.

Table 2. Recommended PCU values of vehicles on urban 
roads by IRC (1990)

Vehicle type

Equivalent PCU values

Percentage composition of vehicle 
type in traffic stream

5% 10% and above

Fast Vehicles:
1. Two Wheeler Motor 
Cycle or Scooter 0.5 0.75

2. Passenger Car,  
Pick-up Van 1.0 1.0

3. Auto-rickshaw 1.2 2.0
4. Light Commercial 
Vehicle 1.4 1.2

5. Truck or Bus 2.2 3.7
6. Agricultural Tractor 
Trailer 4.0 5.0

Slow Vehicles:
1. Cycle 0.4 0.5
2. Cycle Rickshaw 1.5 2.0
3. Tonga (Horse 
Drawn Vehicle) 1.5 2.0

4. Hand Cart 2.0 3.0
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This derived speed-density relationship was incor-
porated in Equation (8) to get the dynamic equation for 
speed in this case and was obtained as:

( ) ( ) ( )
( ) ( ) ( )

 + = + ≤ ρ ≤ ρ
 + = + ρ ≤ ρ ≤ ρ

1

2

1 for 0 ;
1 for .

cr

cr j

v k v k comp k
v k v k comp k

(14)

( ) ( )
   ρ  = ⋅ ⋅ ⋅ − ⋅ − −    ρ     

2

1 exp 0.5f
cr

k
comp a h v v k

( ) ( ) ⋅ ⋅ρ  ρ ⋅ − ×   ρρ ⋅    

2

2
exp 0.5f

crcr

v h k k
L

( ) ( )

( )
( )

( )

( )
( )

    
           + ⋅ + ⋅ −

           

1 1

2 31 2 3

1 1

2 3

en en en

v k v k
v k v k

q k q k q k
A A
A A

( ) ( ) ( ) ( )ρ ⋅ + + ×1 2
side sidek v k q k q k

( )
( )

( )

( )
( )

   
          + ⋅ 

            

1 1

2 33

1 1

2 3

side

v k v k
v k v k

q k
A A
A A

;

( ) ( )
 ρ 
 = ⋅ ⋅ ⋅ − − −   ρ  

2 1jcomp a h C v k
k

( )( )
( ) ( )

( )
( )

  
   ⋅ρ ⋅   ⋅ + ⋅ +

 ⋅ ρ    

1

21 2
2

1

2

j
en en

v k
v kC h

q k q k
AL k
A

( )

( )
( )

( ) ( ) ( )

 
  
 ⋅ − ρ ⋅ + +

 
 
 

1

33 1

1

3

en side

v k
v k

q k k v k q k
A
A

( )

( )
( )

( )

( )
( )

   
          ⋅ + ⋅ 

            

1 1

2 32 3

1 1

2 3

side side

v k v k
v k v k

q k q k
A A
A A

.

Thus, Equation (13) along with Equation (14) rep-
resents the complete model in this case.

2.3. Multi-Class Model without Interaction
A third way of introducing heterogeneity in traffic flow 
is to consider different classes of vehicles separately 
in the modeling process. The classification considered 
in this study was three vehicle groups namely, TWs 
(class 1), ThWs (class 2) and FWs (class 3) as mentioned 
earlier. The governing equation for density was modified 
by incorporating separate state equations for the three 
different classes of vehicles based on the conservation 

principle and was obtained as:

( ) ( )ρ + = ρ + ×1 11 hk k
L

( ) ( ) ( ) ( )( )− ρ ⋅ +1 1
1 1en sideq k k v k q k ;                      (15)

( ) ( )ρ + = ρ + ×2 21 hk k
L

( ) ( ) ( ) ( )( )− ρ ⋅ +2 2
2 2en sideq k k v k q k ;                      (16)

( ) ( )ρ + = ρ + ×3 31 hk k
L

( ) ( ) ( ) ( )( )− ρ ⋅ +3 3
3 3en sideq k k v k q k .           (17)

The dynamic equations for space-mean speed of 
the three classes of vehicles were formulated using the 
steady state speed-density relationships developed for 
these three classes. Two different approaches were fol-
lowed in this study while developing the classified steady 
state speed-density relationships. In the first approach of 
this multi-class modeling, the speed of a particular class 
of vehicle is assumed as a function of density of that par-
ticular class alone and separate speed-density relations 
were developed for all the three classes (corresponding 
parameters are shown in Table 1) and were obtained as:

( ) ( ) ( )

( ) ( ) ( )

   ρ  = ⋅ − ⋅ ≤ ρ ≤ ρ    ρ    
  ρ
  = ⋅ − ρ ≤ ρ ≤ ρ

 ρ  

2
1

1 1

1 1 1
1

1 exp 0.5 for 0 1 ;
1

1
1 for 1 1 ;

f cr
cr

j
cr j

v v

v C
                            (18)

( ) ( ) ( )

( ) ( ) ( )

   ρ  = ⋅ − ⋅ ≤ ρ ≤ ρ    ρ    
  ρ
  = ⋅ − ρ ≤ ρ ≤ ρ

 ρ  

2
2

2 2

2 2 2
2

2 exp 0.5 for 0 2 ;
2

2
1 for 2 2 ;

f cr
cr

j
cr j

v v

v C

             

(19)

( ) ( ) ( )

( ) ( ) ( )

2
3

3 3

3 3 3
3

3 exp 0.5 for 0 3 ;
3

3
1 for 3 3 .

f cr
cr

j
cr j

v v

v C

   ρ  = ⋅ − ⋅ ≤ ρ ≤ ρ    ρ    
  ρ
  = ⋅ − ρ ≤ ρ ≤ ρ

 ρ  

                          

(20)

Using these equations, the dynamic speed equa-
tions were formulated for TWs, ThWs and FWs were 
obtained as:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

 + = + ≤ ρ ≤ ρ
 + = + ρ ≤ ρ ≤ ρ

1 1 1 1

1 1 2 1

1 for 0 1 ;
1 for 1 1 ,

cr

cr j

v k v k comp k
v k v k comp k

         

(21)
where:

( ) ( )
( ) ( )

   ρ  = ⋅ ⋅ ⋅ − ⋅ − −    ρ     

2
1

1 11 exp 0.5
1f

cr

k
comp b h v v k

( ) ( )
( )( )

( )
( )

 ⋅ ⋅ρ  ρ ⋅ − ⋅ ×   ρ  ρ ⋅  

2
1 1

2

1
exp 0.5

11

f

crcr

v h k k

L
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( ) ( ) ( ) ( )( )− ρ ⋅ +1 1
1 1en sideq k k v k q k ;

( )
( ) ( ) ( )

( )( )
  ρ ⋅ρ ⋅
  = ⋅ ⋅ − − − ×

  ρ ρ  

1
2 1 1 2

1 1

1 1
1

.

j jC h
comp b h C v k

k L k

( ) ( ) ( ) ( )( )− ρ ⋅ +1 1
1 1en sideq k k v k q k .

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

 + = + ≤ ρ ≤ ρ
 + = + ρ ≤ ρ ≤ ρ

2 2 1 2

2 2 2 2

1 for 0 2 ;
1 for 2 2 ,

cr

cr j

v k v k comp k
v k v k comp k

                

(22)

where:

( ) ( )
( ) ( )

   ρ  = ⋅ ⋅ ⋅ − ⋅ − −    ρ     

2
2

1 22 exp 0.5
2f

cr

k
comp b h v v k

( ) ( )
( )( )

( )
( )

 ⋅ ⋅ρ  ρ ⋅ − ⋅ ×   ρ  ρ ⋅  

2
2 2

2

2
exp 0.5

22

f

crcr

v h k k

L

( ) ( ) ( ) ( )( )− ρ ⋅ +2 2
2 2en sideq k k v k q k ;

( )
( ) ( )

  ρ
  = ⋅ ⋅ ⋅ − − −

  ρ  
2 2 2

2

2
1jcomp b h C v k

k

( )
( )( )

( ) ( ) ( ) ( )( )⋅ρ ⋅
⋅ − ρ ⋅ +

⋅ ρ

2 2 2
2 22

2

2j
en side

C h
q k k v k q k

L k
.

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

 + = + ≤ ρ ≤ ρ
 + = + ρ ≤ ρ ≤ ρ

3 3 1 3

3 3 2 3

1 for 0 3 ;
1 for 3 3 ,

cr

cr j

v k v k comp k
v k v k comp k

              

(23)

where:

( ) ( )
( ) ( )

   ρ  = ⋅ ⋅ ⋅ − − −    ρ     

2
3

1 33 exp 0.5
3f

cr

k
comp b h v v k

( ) ( )
( )( )

( )
( )

 ⋅ ⋅ρ  ρ ⋅ − ×   ρ  ρ ⋅  

2
3 3

2

3
exp 0.5

33

f

crcr

v h k k

L

( ) ( ) ( ) ( )( )− ρ ⋅ +3 3
3 3en sideq k k v k q k ;

( )
( ) ( ) ( )

( )( )
  ρ ⋅ρ ⋅
  = ⋅ ⋅ − − − ×

  ρ ⋅ ρ  

3
2 3 3 2

3 3

3 3
1j jC h

comp b h C v k
k L k

( ) ( ) ( ) ( )( )− ρ ⋅ +3 3
3 3en sideq k k v k q k .

Thus, the complete model based on this multi-class 
modeling can be represented by Equations (15) to (17) 
and Equations (21) to (23).

2.4. Multi-Class Model with Interaction
For the multi-class stream model, it is assumed that the 
movement of one category of vehicle is influenced by the 
presence of all other vehicles. Hence, the speed of one 
category of vehicle is assumed as a function of total den-
sity ρ. This is a more realistic representation under In-

dian traffic conditions than the previous approach, since 
vehicles of different categories typically move without 
segregation on Indian roads. The corresponding speed-
density relationships (parameters shown in Table 1) de-
veloped for the three classes were obtained as:

( )
   ρ  = ⋅ − ⋅ ≤ ρ ≤ ρ    ρ   
 ρ 

= ⋅ − ρ ≤ ρ ≤ ρ   ρ  

2

1

1 1

1 exp 0.5 for 0 ;

1 for ;

f cr
cr

j
cr j

v v

v C

                           

(24)

( )
   ρ  = ⋅ − ≤ ρ ≤ ρ    ρ   
 ρ 

= ⋅ − ρ ≤ ρ ≤ ρ   ρ  

2

2

2 2

2 exp 0.5 for 0 ;

1 for ;

f cr
cr

j
cr j

v v

v C

                            

(25)

( )
   ρ  = ⋅ − ≤ ρ ≤ ρ    ρ   

ρ 
 = ⋅ − ρ ≤ ρ ≤ ρ
 ρ  

2

3

3 3

3 exp 0.5 for 0 ;

1 for .j

j

f cr
cr

cr

v v

v C

                                         

(26)

Using these equations, the governing equation for 
the space mean speed of each class of vehicles was for-
mulated based on the methodology as before and the 
equations were obtained as:

( ) ( ) ( )
( ) ( ) ( )

 + = + ≤ ρ ≤ ρ
 + = + ρ ≤ ρ ≤ ρ

1 1 1

1 1 2

1 for 0 ;
1 for ,

cr

cr j

v k v k comp k
v k v k comp k

    (27)

where:
( ) ( )

   ρ  = ⋅ ⋅ ⋅ − − −    ρ     

2

1 1(1) exp 0.5f
cr

k
comp b h v v k

( ) ( )
( )

( ) ⋅ ⋅ρ  ρ ⋅ − ×   ρ ρ ⋅   

2

2

1
0.5f

crcr

v h k k

L

( ) ( ) ( ) ( ) ( ) ( ) ( )( + + − ρ ⋅ − ρ ⋅ −1 2 3
1 1 2 2en en enq k q k q k k v k k v k

( ) ( ) ( ) ( ) ( ))ρ ⋅ + + +1 2 3
3 3 side side sidek v k q k q k q k ;

( ) ( )
( )( )

 ρ ⋅ρ ⋅ 
 = ⋅ ⋅ ⋅ − − − ×   ρ  ⋅ ρ 

1
2 1 1 2

1j jC h
comp b h C v k

k L k

( ) ( ) ( ) ( ) ( ) ( ) ( )( + + − ρ ⋅ − ρ ⋅ −1 2 3
1 1 2 2en en enq k q k q k k v k k v k

( ) ( ) ( ) ( ) ( ))ρ ⋅ + + +1 2 3
3 3 side side sidek v k q k q k q k .

( ) ( ) ( )
( ) ( ) ( )

 + = + ≤ ρ ≤ ρ
 + = + ρ ≤ ρ ≤ ρ

2 2 1

2 2 2

1 for 0 ;
1 for ,

cr

cr j

v k v k comp k
v k v k comp k

        (28)

where:

( ) ( ) ( )
   ρ  = ⋅ ⋅ ⋅ − ⋅ − −    ρ     

2

1 22 exp 0.5f
cr

k
comp b h v v k
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( ) ( )
( )

( ) ⋅ ⋅ρ  ρ ⋅ − ×   ρ ρ ⋅   

2

2

2
0.5f

crcr

v h k k

L

( ) ( ) ( ) ( ) ( ) ( ) ( )( + + − ρ ⋅ − ρ ⋅ −1 2 3
1 1 2 2en en enq k q k q k k v k k v k

( ) ( ) ( ) ( ) ( ))ρ ⋅ + + +1 2 3
3 3 side side sidek v k q k q k q k ;

( ) ( )
( )( )

 ρ ⋅ρ ⋅ 
 = ⋅ ⋅ − − − ×   ρ  ⋅ ρ 

2
2 2 2 2

1j jC h
comp b h C v k

k L k

( ) ( ) ( ) ( ) ( ) ( ) ( )( + + − ρ ⋅ − ρ ⋅ −1 2 3
1 1 2 2en en enq k q k q k k v k k v k

( ) ( ) ( ) ( ) ( ))ρ ⋅ + + +1 2 3
3 3 side side sidek v k q k q k q k .

( ) ( ) ( )
( ) ( ) ( )

 + = + ≤ ρ ≤ ρ
 + = + ρ ≤ ρ ≤ ρ

3 3 1

3 3 2

1 for 0 ;
1 for ,

cr

cr j

v k v k comp k
v k v k comp k

      (29)

where:

( ) ( ) ( )
   ρ  = ⋅ ⋅ ⋅ − ⋅ − −    ρ     

2

1 33 exp 0.5f
cr

k
comp b h v v k

( ) ( )
( )

( ) ⋅ ⋅ρ  ρ ⋅ − ⋅ ×   ρ ρ ⋅   

2

2

3
0.5f

crcr

v h k k

L

( ) ( ) ( ) ( ) ( ) ( ) ( )( + + − ρ ⋅ − ρ ⋅ −1 2 3
1 1 2 2en en enq k q k q k k v k k v k

( ) ( ) ( ) ( ) ( ))ρ ⋅ + + +1 2 3
3 3 side side sidek v k q k q k q k ;

( ) ( )
( )( )

 ρ ⋅ρ ⋅ 
 = ⋅ ⋅ − − − ×   ρ  ρ ⋅ 

3
2 3 3 2

1j jC h
comp b h C v k

k k L

( ) ( ) ( ) ( ) ( ) ( ) ( )( + + − ρ ⋅ − ρ ⋅ −1 2 3
1 1 2 2en en enq k q k q k k v k k v k

( ) ( ) ( ) ( ) ( ))ρ ⋅ + + +1 2 3
3 3 side side sidek v k q k q k q k .

Equations (15) to (17), along with Equations (27) to 
(29) represent the complete model based on the multi-
class modeling with interaction.

It can be seen that in all these models presented 
above, the generic governing equations are derived us-
ing the conservation of vehicles and the hypothesis re-
garding the evolution of the error between the speed 
values estimated using the steady state relation and the 
observed values from field. This will hold good for any 
road segment. However, the specific equations for the 
evolution of error obtained from the developed steady-
state speed-density relation (traffic stream models) are 
site specific (Hall 2001). Thus, though the generic equa-
tions are transferable, the site specific stream model is 
transferable only to sections with similar characteristics. 
In other cases, the section specific stream model should 
be known or developed and needs to be used in the ge-
neric governing equations for good performance. 

3. Model-Based Estimation Scheme

The Kalman filter (Kalman 1960) is an optimal estimator 
suitable for recursive estimation and prediction of vari-
ables that characterize dynamical systems. It is a model-
based scheme and it incorporates the stochastic nature 

of the process disturbance and the measurement noise. 
The process disturbance and the measurement noise are 
assumed to be independent of one another, white and 
normally distributed with zero mean. The Kalman filter 
works like a predictor corrector algorithm, i.e., it first 
predicts an ‘a priori’ estimate of the state variables using 
the system model, the system inputs and the state esti-
mate from the previous time interval, and then corrects 
the same using measurements to obtain an ‘a posteriori’ 
state estimate. The Kalman filter is used for estimation 
and prediction when the governing equations of the sys-
tem are linear. When the governing equations are non-
linear, the Extended Kalman Filter (EKF) is commonly 
used (Maybeck 1979, 1982a, 1982b). The EKF linearizes 
the governing equations at each time step about the esti-
mate obtained from the previous time step. The Kalman 
filter and the EKF have been widely used in many disci-
plines including the field of transportation (Nahi, Trive-
di 1973; Gazis, Szeto 1974; Okutani, Stephanedes 1984; 
Nanthawichit et al. 2003; Wang, Papageorgiou 2005; Pa-
diath et al. 2009, 2010; Anand et al. 2011). 

In the present study, as the models developed are 
non-linear, the EKF is used for the purpose of estimating 
traffic density. Combining the model presented in the 
previous section and using the EKF, the model based 
estimation scheme was designed as detailed below.

Considering a non-linear system whose model is 
given by:

( )+ =1 , ,k k k kx f x u w ;                        (30)

( )= ,k k kz g x v ,                       (31)

where: xk is the system state; zk is the system output; uk 
is the system input; wk is the process disturbance; vk is 
the measurement noise at the kth instant of time. Here, 
f represents the non-linear function that relates the state 
at time step k to the state at time step k+1. Similarly g 
is the non-linear function that relates the state to the 
measurement. The above equations can be linearized us-
ing Taylor’s Series expansion to result in:

( )+
+ += + − +1 1 ˆk k k k kx x A x x Ww ;                      (32)

( )= + − + k k k k kz z H x x Vv ;                          (33)

( )+
+ =1 ˆ , ,0

kk kx f x u ;                                     (34)

( )= ,0 ,k kz g x                                      (35)

where: x , z are the approximate state and measurement 
variables without considering the process disturbance 
and measurement noise as indicated by Equations (34) 
and (35) respectively in which +ˆ kx  is the a posteriori 
estimate of the state (from a previous time step k); A is 
the matrix of the partial derivative of f with respect to x; 
W is the matrix of the partial derivative of f with respect 
to w; H is the matrix of the partial derivative of g with 
respect to x and V is the matrix of the partial derivative 
of g with respect to v. 

Let Q denote the process disturbance covariance, 
R denote the measurement noise covariance, −ˆ kx denote 
the a priori estimate of the state variables at the kth in-
stant of time and −

kP  and +
kP  denote respectively the a 
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priori and the a posteriori error covariance at the kth 
instant of time.

Now the following steps were followed recursively 
for estimation using EKF:

1. The a priori estimate in the (k+1)th interval of 
time was obtained through: 

   ( )+
− +=

1
ˆ ˆ ,

k kkx f x u ;

2. The a priori error covariance in the (k+1)th in-
terval of time was obtained through:

   
− +

+ = +1
T T

k kP AP A WQW ;
3. The Kalman gain Kk+1 was calculated through:

   
−− −

+ + + = + 
1

1 1 1
T T T

k k kK P H HP H VRV ;
4. The a posteriori state estimate was calculated 

through: 

   
( )( )+ − −

+ + + ++ = + −1 1 1 11ˆ ˆ ˆk k k kkx x K z g x ;
5. Finally, the a posteriori error covariance was ob-

tained through:

   
+ −

+ + += −  1 1 1k k kP I K H P .

In the first case, where heterogeneity was not con-
sidered, density in [veh/km] and average space-mean 
speed in [km/hr] were considered as the state variables 
to characterize the system. The measured values of av-
erage space-mean speed values were taken as the mea-
surement and the rate at which vehicles enter into the 
section from upstream and through the side road in 
[veh/hr] were provided as the inputs to the estimation 
scheme. Thus in this case, the parameters x, u, z and H 
were obtained as:

( ) ( )
( )

 ρ
= 

  

k
k

v k
x ;

( )
( )

 
=  
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Similarly, for the cases where all variables were 
considered in static PCU and dynamic TWU, the only 
change from the above was that the variables such as 
density and flow were considered in static PCU units 
and dynamic TWU units respectively. 

Finally for the cases where different classes of ve-
hicles were considered explicitly, these parameters were 
obtained as:
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The other parameters such as A, W and V for all 
the cases were derived from the corresponding model 
equations. The initial values of the state variables were 
assumed in all the cases and the above estimation 
schemes were implemented and corroborated using data 
collected from a road stretch in Chennai, India, as de-
tailed in the following sections. 

4. Data Collection

Data collection for the implementation and the corrobo-
ration of the estimation schemes presented in previous 
section were carried out using the video recording tech-
nique from the three sections AB, BC and AC of the 
selected road in Chennai, India, as shown in Fig. 3. The 
section BC had one side entry in the middle and that is 
also included in this study. The traffic variables required 
for the implementation of the proposed scheme include 
the flow through the entry points and the side road and 
the average space mean speed of vehicles inside the 
study stretches. The variable that needs to be collected 
for corroboration of the scheme is traffic density.

Video data were collected at the entry and exit points 
of the selected sections of roadway and corresponding 
data from the side road were collected manually. The de-
tails of the data collection – the dates of data collection, 
the study stretch chosen, the duration of data collection 
and the traffic condition are enumerated in Table 3.  

Data extraction was carried out manually due to the 
lack of any automated data extraction methods. Video 
data collected at the entry and exit points were analyzed 
in the laboratory to manually extract the required flow 

Fig. 3. Schematic sketch of study stretch showing  
the study sections

1 km 0.738 km

A CB
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data at a classified level and at every one-minute inter-
val. The flow data at the entry and exit sections were ex-
tracted for every one-minute interval by classifying and 
counting the number of vehicles traveling in all three 
lanes. The spot speeds of vehicles of different classes 
passing the entry and exit sections were determined for 
every one minute by measuring the time taken to cross 
a known distance. The space-mean speeds were com-
puted by taking the harmonic mean of spot speeds (May 
1989). The average space-mean speed values of vehicles 
were computed by averaging the values at the entry and 
exit sections. The actual densities at every one-minute 
interval required for corroboration of the estimation 
scheme were determined using input-output analysis 
(May 1989). An aerial picture of the study sections at 
the start of video recording was taken to get a measure 
of the initial number of vehicles inside the sections re-
quired for the input output analysis. This was carried out 

by taking snapshots from either end of the study stretch. 
The photographs were overlapped and the number of 
vehicles inside the section was counted manually. The 
data extracted at classified levels were aggregated using 
static values of PCU and dynamic values of TWU to be 
used in the estimation schemes at aggregate levels. Using 
the collected data and assuming the initial values of the 
state variables, the proposed estimation scheme without 
incorporating heterogeneity and schemes with heteroge-
neity incorporated in different ways were implemented 
and corroborated as discussed in the following section.

5. Evaluation of Incorporating Heterogeneity 

The results obtained using the above estimation schemes 
with and without heterogeneity incorporated were cor-
roborated using the corresponding actual density values 
measured from field using the input output analysis. The 
performance of all these estimation schemes were quan-
tified by calculating the Mean Absolute Percentage Error 
(MAPE) given by:

( ) ( )
( )=

 −
 = ⋅ ⋅
 
  

∑
1

1 100%,
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obsk

x k x k
MAPE

N x k
      (36)

where: xest(k), xobs(k) are the estimated and observed or 
measured values of the state variable during the kth in-
terval of time respectively and N is the total number of 
observations. The MAPE values for traffic density using 
all the proposed schemes are given in Table 4 and Fig. 4 
shows a comparison of these results.

It can be seen that use of dynamic TWU does not 
improve the results for most days as compared to use 
of static PCU values. At the classified level, the scheme 
considering interaction where speed of a certain class 
of vehicle in a heterogeneous mix was assumed to be 
influenced by the presence of all other vehicles in the 
roadway, is reasonable. When heterogeneity was incor-
porated at aggregate and at classified levels, inclusion 
of different classes of vehicles into the model did not 
significantly improve the performance compared to that 

Table 3. Details of data collection for implementation  
and corroboration of estimation schemes

Section Day Date Duration 
[minutes]

Peak/
Off 

peak

AB
(L = 1 km)

1 28 July 2009 61 Peak

2 30 June 2010 160 Off 
peak

3 03 December 2010 120 Off 
peak

BC
(L = 0.738 km)

4 29 December 2008 53 Peak
5 02 January 2009 54 Peak
6 12 September 2009 56 Peak

7 03 December 2010 117 Off 
peak

AC
(L = 1.738 km)

8 23 September 2010 124 Off 
peak

9 03 December 2010 117 Off 
peak

Table 4. MAPE for density estimation

Section Day

MAPE [%]

Without incorporating 
heterogeneity

Heterogeneity incorporated

Static PCU Dynamic 
TWU

Multi-class without 
interaction

Multi-class with 
interaction

AB
(L = 1 km)

1 20.8 20.6 19.9 22.8 23.6
2 8.0 9.2 11.3 10.4 9.7
3 11.1 11.8 13.6 10.0 9.8

BC
(L = 0.738 km)

4 13.9 13.9 23.3 16.4 15.7
5 11.3 15.8 22.1 14.7 14.5
6 23.8 24.5 29.3 23.7 23.8
7 17.1 18.2 25.6 17.4 17.7

AC
(L = 1.738 km)

8 16.3 13.6 25.9 15.8 14.6
9 13.1 9.2 13.6 10.7 10.1
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aggregate level using static PCU. Finally, the compari-
son of schemes where heterogeneity was not explicitly 
considered and where heterogeneity was considered in 
terms of static PCU, shows that the results were compa-
rable and the inclusion of heterogeneity is not making 
any significant difference in estimating traffic density at 
the aggregate level. 

Summary and Conclusions

Traffic flow conditions prevailing in India and many 
other developing countries are highly complex with its 
heterogeneity and lack of lane discipline making analysis 
and modeling of traffic difficult. It is in general expected 
that in order to characterize the heterogeneous traffic 
more accurately, the heterogeneity needs to be incor-
porated into the models irrespective of whether one is 
dealing with microscopic, macroscopic or mesoscopic 
modeling. 

The present study reported a systematic compari-
son of the effect of including heterogeneity in a mac-
roscopic modeling taking real time congestion analysis 
as an example. A non-continuum macroscopic model 
was proposed in this study for congestion analysis on 
Indian roads. Traffic density was used to indicate traf-
fic congestion and was estimated using a model-based 
estimation scheme developed using the extended Kal-
man filter. Heterogeneity was incorporated at aggregate 
level and at classified levels. Both static values of PCU 
and dynamic values of TWU were used to aggregate the 
traffic. At classified level, the heterogeneous traffic was 
classified into different vehicle groups and explicitly in-
cluded into the model. The proposed schemes with and 
without heterogeneity were corroborated using data 
measured from a road stretch in Chennai, India. The 
results showed that the incorporation of heterogeneity 
did not have a significant effect in estimating traffic den-
sity at the macroscopic level. 

It is generally believed that the effects of hetero-
geneity need to be incorporated explicitly in modelling 

heterogeneous traffic. But the present study illustrates 
that this need not be the case for all models of mac-
roscopic nature involving heterogeneous traffic. This 
would results in a reduced number of equations and as-
sociated parameters, which will lead to reduced calibra-
tion, computational and data requirements with respect 
to field implementation. In future, this approach can be 
used for developing congestion prediction and travel 
time prediction applications for heterogeneous traffic 
suitable for real time field implementation.
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