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Abstract. Due to low quality of bus service in a congested road network, some bus-waiting travelers would take taxis 
instead in order to save time or get to their destinations on time. However, the correlation between bus service quality 
and passengers’ taxi-hiring behavior is essentially unknown. This paper aims to assess the effects of bus service qual-
ity on taxi-hiring behavior based on historical data from the Global Position Systems (GPS) equipped buses and taxis 
in the city of Shenzhen, China. The taxi-hiring behavior is captured by analyzing the taxi-data, such as the origins of 
passenger pick-up, destinations of passengers drop-off, and taxi paths from the taxi movement data. The quality of bus 
service is assessed based on the bus location information. Parametric, semiparametric and nonparametric models are 
developed to explore the effects of bus service quality on taxi-hiring behavior. The results indicate that bus speed, head-
way and stoppage time are the core factors affecting passengers’ taxi-hiring behavior. Availability of metro, time of the 
day and bus route directions are the secondary important factors. This study shows that when buses run with relatively 
low and stable speed, taxi-hiring behavior is sensitive to the slight change of bus speed. More passengers would like to 
take taxis when bus speed starts to decline, or speed or stoppage time of buses tends to be irregular. However, the ef-
fects of bus headway on taxi-hiring behavior are more complicated. A specific turning point (coefficient of variability of 
mean headway ≈ 0.7) in the relationship between taxi-hiring behavior and bus headway is shown in this paper. Based 
on data mining and model development, this research presents details on attributes of bus service that drive passengers 
to switch to taxis and how changes in those attributes encourage modal shift from buses to taxis.
Keywords: quality of bus service, taxi-hiring behavior, data mining, model developing, geographic information system (GIS).

Introduction

Transit systems are always congested in peak hours in 
East Asia mega-cities, such as Tokyo, Seoul, Hong Kong, 
Beijing, Shanghai, and Shenzhen. Low running speed, 
unpunctual arrival and full load are quite common, 
leading to passengers switch to taxis to save time. This 
phenomenon is related to two factors: quality of service 
and behavioral intention. Quality of service is the transit 
passengers’ assessment of the standard of the service de-
livered (TRB 2013). Behavioral intention is transit pas-
sengers’ judgment about the likelihood of continuing to 
use public transportation or willingness to recommend 
it to others (Rojo et al. 2012). Quality of service could af-
fect perceived value, satisfaction and involvement, which 
could finally influence behavioral intentions of transit 
passengers (Lai, Chen 2011). This result indicates that 

quality of service is the core factor affecting behavioral 
intentions. 

Specifically, some attributes of service quality could 
significantly affect passengers’ preferences to different 
transit modes. The quality of the information available 
to passengers about aspects of their journeys (times, 
frequencies, delays, etc.) is the most important attribute 
to affect users’ willingness to pay for improving qual-
ity of service (Dell’Olio et al. 2011b). This means when 
bus reliability decreases under congestion, passengers 
start to feel difficult to get regular schedules or other 
information of bus operation, the willingness to pay for 
better service will go up. Moreover, travel time is an es-
sential factor to determine users’ preferences when faced 
with the introduction of two completely different public 
transport systems (Dell’Olio et al. 2012). Waiting time 

*Corresponding author. E-mail: zrpeng@sjtu.edu.cn

Copyright © 2017 The Author(s). Published by VGTU Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited.

TRANSPORT
ISSN 1648-4142 / eISSN 1648-3480

2018 Volume 33 Issue 4: 1030–1044

doi:10.3846/16484142.2016.1275786

Special Issue on  
Collaboration and Urban Transport



Transport, 2018, 33(4): 1030–1044 1031

and comfort are also shown to be the variables that pub-
lic transport users most valued (Dell’Olio et al. 2012). If 
the comfort degree drops consistently and waiting time 
tends to be longer, some passengers would switch to tax-
is. Especially in Shenzhen, China, this phenomenon is 
quite common due to the congested bus system. Millions 
of passengers live in suburb and work in the downtown, 
generating huge traffic volume about 10 million trips per 
day (Xiao, Xu 2012; Lei 2009). During peak time peri-
ods, passengers have to wait 20 to 40 min due to bus 
overloading, and some of them even cannot catch their 
buses until passing 4 or 5 full-loaded buses (Xie et al. 
2013). At Meilinguan hub station, a large bus hub, there 
are thousands of people waiting for buses in the morn-
ing peak from 7:00 to 10:00 (Li et al. 2009). Some buses 
even cannot close doors because of the overloaded pas-
sengers (Gu et al. 2010). The congestion of transit system 
in peak time results in the long, irregular and unbear-
able waiting time at stations, pushing some passengers 
to switch to taxis. However, exactly how attributes of bus 
service affect taxi-hiring behavior is still unclear.

Taxi-hiring behavior has been proven to have some 
cross-elasticity with other transportation modes. Passen-
gers will choose alternative modes or services if buses 
arrive late, as they have many other options like taxis, 
alternative buses with different destinations along the 
same route, public motorcycles, the underground rail 
system (known as the MRT), tuk-tuks and vans (Hana-
oka, Qadir 2009). The main factors affecting passengers’ 
preferences and bus-holding strategy are income, wait-
ing time, service reliability and frequency (Redman et al. 
2013). Wealthy people tend to be less sensitive to price 
and more sensitive to quality of service than poor people 
(Litman 2013). For example, the tendency to take a taxi 
will be higher as passengers’ monthly household income 
increases, while the MRT is more popular for those of 
lower monthly household income groups (Hanaoka, Qa-
dir 2009). Moreover, higher value travels, such as busi-
ness and commute travels, tend to be less price sensitive 
(Litman 2013). This means that different passengers who 
are price sensitive and waiting-time sensitive will have 
different preferences and limits of tolerance when buses 
are late.

According to previous research, bus headway was 
proven to have an essential influence on waiting time. 
Osuna and Newell (1972) conducted theoretical research 
and developed a model for the expected waiting time 
W, which was a function of the mean headway µ and 

variations in the headway s2: 
2

2
1 sW
 

= m ⋅ + 
m 

. Several 

empirical studies demonstrated this theoretical function 
was reasonable and found similar linear relationship 
between headway and waiting time from field observa-
tions. Salek and Machemehl (1999) developed a model, 
which was W = 2.0 + 0.3 ⋅m based on extensive empiri-
cal data. Fan and Machemehl (2002) used regression 
models to exam the effects of bus headway on waiting 
time, and the result was W = 2.0 + 0.3 ⋅m. The above re-
search showed that headway was a main factor affecting 
waiting time, which was a core public transport vari-

able influencing quality of bus service and taxi-hiring 
behavior. Therefore, headway is paid more attention to 
in this study. 

However, previous research had mainly focused on 
passengers’ taxi-hiring behavior from the viewpoint of 
characteristics of passengers and just had general discus-
sions about the elasticity of taxis and other transporta-
tion modes. The studies of elasticity between buses and 
taxis in commute travel were limited. However, at some 
bus stations in metropolis, metro is far away to transfer, 
tuk-tuks and public motorcycles are forbidden, taxi is 
almost the only alternative mode when buses are late. 
Thus it is important to understand the details on attri-
butes of bus operation that drive passengers to switch 
to taxis and how changes in attributes of bus service 
encourage modal shift from buses to taxis. The study 
on this issue would help bus companies and traffic ad-
ministration departments have a better understanding 
of the severity of interplay between buses and taxis. To 
this end, this study analyzes the quantitative interplay 
between bus service quality and passengers’ taxi-hiring 
behavior, and identifies the key factors attracting pas-
sengers to hail taxis from waiting buses. 

The remainder of the paper is structured as follows: 
first, the methodology, data description and specific 
workflows of data process are presented in Section 1. 
Next, in Section 2, parametric, semiparametric and non-
parametric model are developed and compared. Then, in 
Section 3, model results and key factors contributing to 
passengers’ switch from buses to taxis are discussed. Fi-
nally, conclusions and recommendations for future work 
are proposed in the last section.

1. Methodology and data process

1.1. Methodology 
To analyze the correlation between buses and taxis, two 
key points should be paid attention to: one is the defini-
tion of the taxis affected by bus service quality; the other 
is the methodology to recognize these taxis. Thus, there 
are three basic assumptions: First, if people have planned 
to take taxis, they would not go to bus stations to take 
taxis. Second, if passengers waiting on bus stops want to 
switch to taxis, the positions where they take taxis are al-
ways near the bus stations. Third, if people take buses to 
go to work, the workplace is usually not far from bus sta-
tions. Based on these three assumptions, if a taxi is hired 
around a bus station and drops off passengers not far 
from another station of the same bus route, this hail-taxi 
behavior is considered to be resulted from low bus ser-
vice quality. That means if the OD (origin/destination) 
of taxis meets the above conditions, these taxis are re-
garded as the research objects. In this research, the total 
taxi and bus data in Shenzhen urban area are enormous. 
Therefore, the taxi and bus data in the Shennan Avenue 
need to be extracted into small data set. 

A geo-processing workflow is created to capture 
these taxis from the small data set, based on ArcGIS 
10.2 platform and the network data of Shenzhen. First, 
the buffer areas around bus stations, with reasonable 
distance to take taxis, are drawn in ArcMap. The pick-



1032 H.-W. Wang et al. Assessing effects of bus service quality on passengers’ taxi-hiring behavior

up behavior of taxis is captured and recorded (see Sec-
tion 1.3.1). Second, the largest reachable region from a 
bus station to nearby workplaces is defined, and all these 
regions along the bus routes are drawn in ArcMap (see 
Section 1.3.2). Third, the drop-off behavior of these taxis 
is captured, and the number of these taxis is recorded 
in the above-mentioned largest reachable regions (see 
Section 1.3.2).

The descriptive factors of bus service quality are 
calculated based on the bus data of Route 223 in Shen-
nan Avenue. The processed data of taxis and buses are 
matched based on date and time. Availability of metro, 
AM or PM, weekday or weekend and bus directions are 
also considered. The entire matching data are listed in 
a table. Then parametric, semiparametric and nonpara-
metric models are developed to analyze the correlation 
between bus service quality and passengers’ taxi-hiring 
behavior around stations. Moreover, the relationships 
between passengers’ taxi-hiring behavior and each fac-
tor of buses are explored. 

1.2. Data description and extraction
This paper selected the Global Position Systems (GPS) 
data of taxis and buses in Shenzhen for 4 weeks includ-
ing both weekdays and weekends from 12 October 2013 
to 8 November 2013. Shennan Avenue is one of the 
busiest east-west main arterials in Shenzhen and always 
congested during peak time. A 21-kilometre section 
of Shennan Avenue is chosen as a case study segment. 
Route 223 has better GPS data quality and heavier pas-
senger load, compared with other bus routes along the 
Shennan Avenue. Thus, Route 223 is selected to represent 
the condition of bus running on this avenue. In either 
direction, there are 38 stations, and the mean distance 

between stations is 767 m. Considering the distribution 
of stations and whether the bus stops are around metro 
stations, 16 stations of Route 223 including 8 stations 
in eastbound direction and 8 stations in westbound are 
selected, as shown in Table 1.

SQL Server 2012 platform is selected to extract taxi 
and bus data, according to the location coordinates, 
date, route number and other features. The GPS data of 
each day are divided into two parts based on morning 
peak from 7:30 to 9:30 and evening peak from 17:30 to 
19:30. The taxi and bus data in off-peak time are not 
included. Therefore, both 21-day bus and taxi data are 
selected as 42 data files for each bus station. Totally, 16 
stations generate 642 files in two directions. Moreover, 
the missing data and unreadable codes are deleted dur-
ing the data extraction.

1.3. Taxi OD data collection 
1.3.1. Capture pick-up behavior of taxis 
Stations of Route 223 in both directions were drawn on 
the Shenzhen road network in ArcMap software. As de-
mand increases, accessibility to public transport service 
should be increased and transfer distance ought to be 
dropped in congested network (Alonso et al. 2011). Ac-
cording to a previous study (Sun et al. 2011), the dis-
tance to transfer are 0.4 km (general distance), 0.6 km 
(acceptable distance), 0.8 km (maximal distance). Thus, 
200 m is selected as a radius to draw station-centered 
buffer areas, considering the location distribution of 
taxi-hiring centering on stations. It is assumed that the 
bus service quality in one direction would basically af-
fect the hail-taxi behavior in the same direction. Thus, 
the street centerline is used to clip the buffer areas.  

Table 1. Information of selected bus stations

Station ID Station name Direction Metro around Distance to starting station [km]
5920 Investment Tower eastbound yes 11.2
7290 Taichong eastbound yes 0.9
5824 Zhuzilin eastbound yes 7.0
6078 Diwang Mansion eastbound yes 17.0

15865 Shennan Xiangmi eastbound no 8.9
5831 Shenhang Mansion eastbound no 7.8
6007 Tianmian eastbound no 13.8
6500 People Bridge eastbound no 17.5
6569 Guangshen Hotel westbound yes 2.0
6006 Shanghai Hotel westbound yes 6.2
6070 Diwang Building westbound yes 3.5

5856 China Merchant Bank 
Building westbound yes 12.5

6583 Jingpeng Building westbound no 1.5
6592 Metallurgical Mansion westbound no 1.0

20713 Shenhang Mansion westbound no 12.8
5910 SAR Newspaper westbound no 10.2
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The half buffer areas covering stations in one direction 
are left and the other half are deleted, as shown in Fig-
ure 1a. The half buffer areas are marked with station ID. 
A geo-processing module is built to clip the taxi data 
based on the half buffer areas and assign the bus station 
ID field to taxi data. Finally, the taxi data are processed 
and output as Excel files. 

In the taxi data, a field named EMPTY_LOAD 
records the taxi load and empty state, where 1 repre-
sents load (with customers) and 0 represents empty (no 
customers). A procedure is applied to capture the mo-
ment when 0 changes to 1, which indicates that the taxi 
started to carry passengers. The number of hired taxis 
and the total number of taxis around the bus stations 
in peak time are counted. These two numbers are used 
to identify target bus stations for analysis. High value of 
the two numbers means that there are enough samples 
for research and this kind of stations could be included 
in the analysis. 

1.3.2. Capture drop-off behavior of taxis 
The crossings of the street centerline and the line con-
necting two opposite bus stations are selected as mean 
position of stations. 1 km is regarded as a suitable radius 
to draw station–workplace buffer areas, considering the 
maximal distance (0.8 km) and computational redun-
dancy (Sun et  al. 2011). Those buffer areas center on 
mean position of stations, as shown in Figure 1b. The 
taxi data are clipped by 1 km buffer areas and assigned 
corresponding bus station IDs field. 

Drop-off behavior of taxis is captured with the 
following steps: First, the vehicle IDs of the hired taxis 
around bus stations are applied to filter the taxi data 
clipped by 1 km buffer areas. Second, the stations be-
hind the hail-taxi station along Bus Route 223 in one 
direction are selected. The processed taxi data in Step 
1 are filtered according to these selected stations. These 
two steps find all records of the trips of the taxis hired 
around the bus stations. After hired, EMPTY_LOAD 
field of taxi keeps value of 1. Therefore, third, a proce-
dure is applied to the data set of Step 2 to capture the 
moment when 1 changes to 0 at the first time, which 
indicates that the passengers get off the taxis and the 
taxis return to empty state. This step assists to find the 
destination of the taxi path. 

Therefore, the taxi, with origin around a bus sta-
tion and destination in a station–workplace buffer area, 
is considered to be hired due to low bus service quality. 
So far, the OD of the taxis is identified and the number 
of the taxis is counted. This number is regarded as the 
amount of taxis affected by bus service quality. 

1.4. Bus data process 
All the distances from starting station to selected station 
are measured in Google Map. The mean speed between 
starting station and the selected station for each bus is 
regarded as bus speed. For each selected station, the dif-
ference of station-arriving time between two adjacent 
buses of Route 223 is defined as headway. The difference 

Figure 1. Buffer areas to capture: a – pick-up behavior of taxis; b – drop-off behavior of taxis
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between station-arriving time and station-departure 
time of one bus is regarded as stoppage time. Thus, with 
SQL server 2012 platform, the mean and Coefficient of 
Variation (CV) of bus speed, headway and stoppage time 
could be calculated. 

1.5. Data matching between taxi  
and bus calculated results 
Variables describing taxi-hiring behavior and quality of 
transit service are matched based on time and bus station 

ID. These variables contain TAXI, AVG_SPEED, CV_
HEADWAY, METRO and etc., as described in Tab le 2 
and Figure 2. In this paper, the number of taxis affected 
by bus service quality (TAXI) is selected as dependent 
variable. The independent variables include bus service 
attributes such as the mean and CV of the bus speed, 
headway and stoppage time, as well as route direction 
and availability of metro. A number of temporal variables 
are also used, such as peak time periods (morning peak 
from 7:30 to 9:30 and evening peak from 17:30 to 19:30).  

Table 2. Descriptions of selected variables

Definitions of the variables used in the regression model
Variable Description
TAXI Number of taxis impacted by bus service quality 
AVG_SPEED Mean bus speed [km/h]
CV_SPEED CV of bus speed [km/h]
AVG_HEADWAY Mean bus headway [min]
CV_HEADWAY CV of bus headway [min]
AVG_STOPPAGE Mean stoppage time of bus [min]
CV_STOPPAGE CV of bus stoppage time [min]
AM_PEAK AM peak: 1 and PM peak: 0
METRO METRO: 1 and NO METRO: 0
DIRECTION Eastbound: 1 and Westbound: 0

Descriptive statistics of numerical variables
Period Variable Mean Median Max Min

All periods 

TAXI 13.94 11.98 50.69 4.41
AVG_SPEED [km/h] 20.36 20.69 33.65 9.53
CV_SPEED 0.11 0.09 0.49 0.00
AVG_HEADWAY [min] 8.71 8.31 17.26 5.49
CV_HEADWAY 0.66 0.64 1.34 0.22
AVG_STOPPAGE [min] 0.63 0.60 1.49 0.25
CV_STOPPAGE 0.40 0.37 1.32 0.04

Metro only 

TAXI 13.56 11.93 38.66 4.56
AVG_SPEED [km/h] 20.02 20.30 33.65 10.66
CV_SPEED 0.12 0.09 0.37 0.00
AVG_HEADWAY [min] 8.78 8.38 23.26 5.49
CV_HEADWAY 0.66 0.65 1.27 0.22
AVG_STOPPAGE [min] 0.65 0.60 1.49 0.25
CV_STOPPAGE 0.41 0.36 0.96 0.09

No metro only 

TAXI 14.31 12.25 50.69 4.41
AVG_SPEED [km/h] 20.70 21.15 30.06 9.53
CV_SPEED 0.11 0.08 0.49 0.00
AVG_HEADWAY [min] 8.64 8.29 19.01 5.54
CV_HEADWAY 0.66 0.63 1.34 0.23
AVG_STOPPAGE [min] 0.61 0.59 1.10 0.33
CV_STOPPAGE 0.39 0.37 1.32 0.04

Eastbound only 

TAXI 11.94 11.13 31.12 4.41
AVG_SPEED [km/h] 24.23 23.77 33.65 18.46
CV_SPEED 0.10 0.07 0.36 0.00
AVG_HEADWAY [min] 8.33 8.27 15.73 5.49
CV_HEADWAY 0.64 0.61 1.34 0.35
AVG_STOPPAGE [min] 0.62 0.61 1.26 0.25
CV_STOPPAGE 0.36 0.31 1.01 0.04

Westbound only 

TAXI 15.93 13.63 50.69 4.56
AVG_SPEED [km/h] 16.49 16.16 23.85 9.53
CV_SPEED 0.13 0.11 0.49 0.00
AVG_HEADWAY [min] 9.09 8.45 23.26 6.09
CV_HEADWAY 0.68 0.66 1.29 0.22
AVG_STOPPAGE [min] 0.63 0.58 1.49 0.33
CV_STOPPAGE 0.44 0.41 1.32 0.09



Transport, 2018, 33(4): 1030–1044 1035

The GPS devices installed on vehicles record approxi-
mately 20 to 29 million data for taxis and 15 to 20 mil-
lion data for buses per day in Shenzhen urban area. Dur-
ing the morning peak or evening peak each day, there 
are from 900 to 1050 thousand data for taxis and from 
14 to 26 thousand data for Route 223 in the 21-kilometre 
section of Shennan Avenue. The matching records are 
generated from 16 stations in a continuous 21-day data 
set. This data set is calculated from totally about 19.95 
million data of taxis and buses in the Shennan Avenue 
and extracted from 882 million data of all the taxis and 
buses in Shenzhen.

2. Statistical model development 

2.1. An overview of parametric, nonparametric  
and semiparametric approaches 
Multivariate regression techniques are often used to de-
scribe the dependence of a variable on explanatory vari-
ables, which include the parametric, nonparametric and 
semiparametric methods (Shively et  al. 2010; Shively, 
Sager 1999). The parametric approach assumes that re-
sponse function could be expressed parametrically and 
is often used to describe the dependence of a variable on 
explanatory variables. 

Figure 2. Descriptive statistics distribution of numerical variables: a – distribution of mean bus speed; b – distribution  
of coefficient of variability (CV) of bus speed; c – distribution of mean bus headway; d – distribution of CV of bus headway;  
e – distribution of CV of bus stoppage time; f – distribution of target taxis (the purple curve in each figure is fitting curve)
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However, a major disadvantage of the parametric 
approach is that a parametric function must be specified 
before fitting (Carslaw et  al. 2007). Parametric model 
is limited when the presupposed model is inaccurate 
or the relationships between explanatory variables are 
hard to be represented as linear functions. Unlike para-
metric approaches, nonparametric approaches make no 
hypotheses about the parametric relationship between 
variables. The form of Yi just depends on data itself. The 
additive nonparametric model can be described as (Has-
tie, Tibshirani 1990):

( )
1

n

i i j ij i
j

Y A s x
=

= + + e∑ ;

( )20,i Ne ∼ σ ,  (1)

where: Yi is the concentration of the time series; sj(xij) 
is a smooth function of covariate xj; n is the number of 
covariates; ei is the residual. 

The generality of the nonparametric model makes 
it very attractive when there is complicated nonlinear-
ity in the multivariate case. Especially for transportation 
applications, there are many non-linear relationships 
among variables, sometimes the nonparametric ap-
proach is more effective (Li et al. 2009). However, there 
are also obvious shortcomings in nonparametric model. 
Nonparametric estimates are too flexible because the 
response functions totally depend on the observed data 
and often these fits are subject to high variance (Wan, 
Birch 2011). 

The semiparametric approach is a combination of 
traditional parametric regression analysis and nonpara-
metric regression methods. The semiparametric model 
can be given as follow (Ruppert et al. 2003):

( )
1 1

n n

i i i j ij i
i j

Y A x s x
= =

= + β⋅ + + e∑ ∑ ;

( )20,i Ne ∼ σ ,  (2)

where: Yi is the concentration of the time series; xi is the 
i-th explanatory variables; sj(xij) is a smooth function 
of covariate xj; n is the number of covariates; ei is the 
residual, which is assumed to have constant variance. 

Semiparametric approaches allow a mixture of 
parametric and nonparametric components. These 
characteristics lead that data suitable for parametric 
modeling are modeled that way and nonparametric 
components are used only where needed, which essen-
tially combines the advantages of the parametric and 
nonparametric methods and avoid their disadvantages 
(Ruppert et al. 2003). The discussions above had implied 
that the semiparametric technique might be effectively 
applied to model the complex relationships between 
taxi-hiring behavior and bus service quality. 

A key part in developing nonparametric and semi-
parametric models is how to find the smooth functions 
and how to control the degree of smoothness used. In 
this paper, we used a nonparametric approach proposed 
by Wood and Augustin (2002), which integrates model 

selection and automatic smoothing parameter selec-
tion using penalized regression splines. Generalized 
Cross Validation (GCV) is applied to decide the choice 
of smoothing parameter. The semiparametric approach 
we used in this research was proposed by Ruppert et al. 
(2003). Smoothing parameter selection of semipara-
metric model are based on generalization of smoothing 
splines (French et  al. 2001) and can be done via RE-
stricted Maximum Likelihood (REML). Both approach-
es currently used depend on an unconditional Bayesian 
method, which has been shown to perform well through 
numerical simulations (Wood 2006) and offers a prag-
matic solution to confidence interval estimation. All cal-
culations were made by the R-programming language 
(Wood 2006). Nonparametric model was developed with 
package mgcv version 1.8-6 (Wood 2006) and semipa-
rametric model was built via package SemiPar version 
1.0-4.1 (Ruppert et  al. 2003). More theoretical details 
of these methods are available in Wood and Augustin 
(2002), Wood (2003, 2006), Ruppert et al. (2003).

2.2. Model development 
Statistical models were derived from parametric, non-
parametric and semiparametric approaches. A key part 
to develop a semiparametric model is to define covari-
ates suitable for parametric modeling and nonparamet-
ric modeling. However, a wide range of covariates in this 
semiparametric model result in that the combinations of 
parametric and nonparametric components are various. 
Thus, the process of semiparametric modeling needs to 
consider the performance of parametric and nonpara-
metric approaches. 

The performance of these three models could be 
assessed numerically with descriptive statistics. GPS 
data of taxis and buses in Shenzhen from 2 November 
to 8 November 2013 are applied to verify these models. 
Table 4 shows the details of model estimation compared 
with observations. Root Mean Squared Error (RMSE), 
Normalized Mean Bias (NMB), Mean Absolute Error 
(MAE), adjusted R2 and Theil’s inequality coefficient T 
were employed to evaluate the model performance. T is 
a measure of a time series of estimated values compares 
to observed values, as expressed in Equation (3): 
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where: Oi represents the actual values; Pi represents pre-
dicted values; n is the total number of data. 

0 ≤ T ≤ 1, T → 0 indicates that the model is good 
for estimation; otherwise, the model is not suitable for 
estimation.

At first, both parametric and nonparametric 
models are applied and compared, as shown in Equa-
tions  (4)–(5) and Table 3. In the parametric model 
(Equation (4)), Table 3 shows that only bus speed, stop-
page time, time period, metro and direction have linear 
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relationship with taxi-hiring behavior. However, bus 
headway is excluded from the parametric model due 
to the low statistical significance, which means there is 
no statistically linear relationship between taxi-hiring 
behavior and bus headway. This result is inconsistent 
with the common sense and findings in the literatures. 
In the nonparametric model, Table 3 indicates that bus 
speed and stoppage time fit for nonparametric model-
ing, but their significance decreases. This means that 
bus speed and stoppage time is more suitable for para-
metric modeling. Mean bus headway and irregularity 
of bus headway are significant in the nonparametric 
model. This result demonstrates that nonparametric 
model has a better performance in bus headway, com-
paring with parametric model. However, several signifi-
cant Boolean variables in the parametric model are not 
included in the nonparametric model, such as metro 
and direction. This means that Boolean variables is 
not very suitable for nonparametric modeling. Figure 3 
shows the individual smoothed model components for 
the nonparametric model, as defined in Equation (5).

1 1 2TAXI AVG_SPEED CV_SPEEDA= +β ⋅ +β ⋅ +

3 4AVG_HEADWAY CV_HEADWAYβ ⋅ +β ⋅ +  

5 6AVG_STOPPAGE CV_STOPPAGEβ ⋅ +β ⋅ +

7 8 9AM_PEAK METRO DIRECTIONβ ⋅ +β ⋅ +β ⋅ ;  (4)

( ) ( )2 1 2TAXI AVG_SPEED  CV_SPEEDA s s= + + +

( ) ( )3 4AVG_HEADWAY CV_HEADWAY +s s+

( ) ( )5 6AVG_STOPPAGE CV_STOPPAGE +s s+

( ) ( ) ( )+ +7 8 9AM_PEAK METRO DIRECTIONs s s ;    (5)

3 1 2TAXI AVG_SPEED CV_SPEEDA= +β ⋅ +β ⋅ +

( ) ( )1 2AVG_HEADWAY CV_HEADWAYs s+ +

( )3 3AVG_STOPPAGE CV_STOPPAGEs +β ⋅ +

4 5 6AM_PEAK METRO DIRECTIONβ ⋅ +β ⋅ +β ⋅ .  (6)

For the second step, semiparametric model was de-
veloped based on the performance of the parametric ap-
proach and the nonparametric approach. The covariates 
that are significant in parametric model are kept in the 
parametric components, while the others remained in 
nonparametric components, as shown in Equation (6). 
According to Table 3, almost all variables which are sig-
nificant in parametric model or nonparametric model 
are included in semiparametric model. Significances 
of bus speed, stoppage time, time period and metro 
are similar in parametric and semiparametric models. 
Moreover, mean bus headway and irregularity of bus 
headway have better performance of confidence level in 
the semiparametric model, which means that bus head-
way is more suitable for semiparametric modeling. 

Models are compared further based on descrip-
tive statistics. In Table 4, the results indicate that semi-
parametric model has the highest adjusted R2 (0.671), 
comparing with parametric model (0.426) and nonpara-
metric model (0.638). We found that nonparametric and 
semiparametric models had the similar adjusted R2, but 
parametric model performed worse. This means that the 
effects of bus service quality on taxi-hiring behavior are 
closer to a kind of nonparametric relation. The RMSE, 
NMB, MAE and T show the same conclusion that the 
performance of nonparametric model and semipara-
metric model is similar, while fitting result of paramet-
ric model is the worst. In terms of model comparison, 
parametric model shows that it is a little restrictive when 
the relationships between explanatory variables are too 
complex to be represented as linear functions (Carslaw 
et al. 2007). Nonparametric model shows its superiority 
to fit complicated relationship between covariates, but it 
has some limitations when variables are Boolean or the 
relationship is linear. Semiparametric model contains 
the most variables and is able to explain the influence of 
bus headway on taxi-hiring behavior better. 

All these three models were analyzed for a variety 
of statistical diagnostics. Residual autocorrelation can 
influence model performance and leads to standard er-

Table 3. Results of the parametric, nonparametric and semiparametric models 

Variable
Parametric model Nonparametric model Semiparametric model

Estimated 
coefficients

Standardized 
coefficients Sig. Estimated 

coefficients Sig. Estimated 
coefficients Sig. 

Intercept 18.695 *** 12.723 *** 20.366 ***
AVG_SPEED –0.627 –0.418 *** ** –0.443 ***
CV_SPEED 23.969 0.266 *** ** 17.407 ***
AVG_HEADWAY –0.072 –0.020 ** ***
CV_HEADWAY –1.577 –0.040 * **
AVG_STOPPAGE 1.027 0.025
CV_STOPPAGE 15.274 0.372 *** ** 12.833 ***
AM_PEAK 0.537 0.038 * 1.391 ** 1.473 **
METRO –1.320 –0.093 ** –1.318 –1.751 *
DIRECTION 3.214 0.226 * 1.544 1.647
Adjusted R2 0.426 0.638 0.671

Notes: Sig.: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1, ‘ ’ 1.
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ror underestimated and model over-fitting. As shown in 
Table 4, residual autocorrelations of these three models 
varied between 0.23 and 0.27, which were acceptable. 
The residual distributions in all cases were close to nor-
mal, uniformly distributed and symmetrical. Further-
more, a Generalized Additive Mixed Model (GAMM) 
was used to model autocorrelation explicitly (Wood 
2003). In GAMMs, the unknown coefficients or func-
tions in the linear predictor are regarded as random 
variables; in order to make correlated data modelled 

(Wood 2006). Thus, models shown in Eqs (4)–(6) were 
verified in GAMMs, and autocorrelations were modelled 
explicitly via function available in the mgcv package. The 
result indicated that the residual autocorrelation was not 
significant and well described by a lag-1 autoregressive 
process in all cases. This means that residual autocorre-
lation of all three models led to very minor influence on 
both the estimated trend and the uncertainty intervals. 
Thus, residual autocorrelations of these three models 
could be almost ignored.

Table 4. Descriptive statistics of parametric, nonparametric and semiparametric models for estimation

Statistics measure Parametric model Nonparametric model Semiparametric model
Adjusted R2 0.426 0.638 0.671
RMSE 6.472 5.871 5.805
NMB –3.07% –1.28% –0.90%
MAE 4.395 4.302 4.276
T 0.115 0.093 0.088
Residual autocorrelation f 0.27 0.24 0.23

Figure 3. Fitted components of the nonparametric model: a – smooth function of mean bus speed; b – smooth function  
of coefficient of variability (CV) of bus speed; c – smooth function of mean bus headway; d – smooth function of CV of bus 

headway; e – smooth function of CV of bus stoppage time (the dashed lines are the estimated 95% confidence intervals;  
the vertical lines adjacent to the lower x-axis show the presence of data in (a)–(e))
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3. Results and discussion 

3.1. Bus speed, headway and stoppage time
The mean bus speed is the most intuitively important 
factor to describe traffic congestion levels on the route. 
The CV of the bus speed describes the reliability of bus 
operation. The mean bus headway has been proven to 
have positive linear relationship with waiting time at 
bus stations (Fan, Machemehl 2002). The CV of the bus 
headway reflects the uniformity of bus arriving time and 
its high value indicates bus irregularity like bus bunch-

ing and big gaps between buses. The mean stoppage time 
of bus represents the time people could use to get on and 
off. Higher stoppage time allows people to have more 
chances to aboard and be less hurried. Moreover, the CV 
of the bus stoppage time reflects the variations of time 
for passengers to get on buses. 

AVG_SPEED and CV_SPEED are included in 
parametric model, nonparametric model and para-
metric component of semiparametric model. Figure 3a 
shows that taxi-hiring behavior has decreased gradually 
with mean bus speed increasing, and Figure 4a presents 

Figure 4. Fitted components of the semiparametric model: a – smooth function of mean bus speed; b – smooth function  
of coefficient of variability (CV) of bus speed; c – smooth function of mean bus headway; d – smooth function of CV  
of bus headway; e – smooth function of CV of bus stoppage time; f – smooth function of metro; g – smooth function  
of morning peak (the shaded area are the estimated 95% confidence intervals; the vertical lines adjacent to the lower  

x-axis show the presence of data in (a)–(g))
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a more rapid drop in the semiparametric model. The 
unstandardized coefficient of AVG_SPEED is –0.627 in 
the parametric model, and –0.443 in the semiparametric 
model. This means that TAXI will decrease by 0.443–
0.671 when all other variables are kept the same, for each 
km/h added to AVG_SPEED. An examination of the un-
certainty intervals of Figures 3a and 4a also suggest that 
the decline in TAXI has been statistically significant at 
the 95% confidence level. By contrast, Figure  4b indi-
cates that taxi-hiring behavior has grown continuously 
with irregularity of bus speed increasing. Figure 3b also 
demonstrates that taxi-hiring behavior experiences a 
fluctuant rise when irregularity of bus speed goes up. In 
summary, the results show that in all the time periods, 
mean bus speed has negative influence on taxi-hailing 
but irregularity of bus speed has a positive effect. Ac-
cording to Table 3, in the parametric model, the stan-
dardized coefficient of AVG_SPEED equals to –0.418, 
which is the highest among all the negative variables in 
absolute value. Meanwhile, the standardized coefficient 
of CV_SPEED is 0.266 and ranks the second among 
all the positive variables. All of these analyses indicate 
the bus speed is an essential factor influencing taxi-
hailing behavior. Moreover, the descriptive statistics of 
bus speed could also provide some reference. As shown 
in Table 2 and Figure  2a, AVG_SPEED is 20.36  km/h 
among different peak time observations. The distribu-
tion (black bars) of AVG_SPEED follows the similarly 
uniform distribution from 14 to 26 km/h. However, ac-
cording to Table 2 and Figure 2b, the mean CV_SPEED 
is 0.11 and about 70% of them are under 0.1 in each 
observed peak time. The analysis results of AVG_SPEED 
and CV_SPEED show that when buses run with rela-
tively low and stable speed, taxi-hiring behavior is sensi-
tive to the slight change of bus speed. More passengers 
would like to hire taxis when bus speed starts to decline 
or to be irregular.

AVG_HEADWAY and CV_HEADWAY are not 
included in the parametric model due to the lack of sta-
tistical significance, but they are significant covariates in 
both the nonparametric model and nonparametric com-
ponent of the semiparametric model. This means that 
the effects of bus headway on taxi-hiring behavior are 
more complex and not just a simple linear relationship. 

Figure 3c shows that taxi-hiring behavior experi-
ences a continuous rise at first and reach the peak when 
mean headway increases to about 12 min. Then taxi-
hiring behavior starts to keep stable, when all other co-
variates are kept the same. However, Figure 4c indicates 
a slightly different result that taxi-hiring behavior has 
a nearly linear increase with the increase of mean bus 
headway. The difference that taxi-hiring behavior shows 
different growth trends in Figures 3c and 4c when mean 
bus headway is longer than 12 min may be resulted 
from several reasons. First, smooth functions used in 
Figures 3c and 4c are estimated by different penalized 
spline smoothing. Penalized spline smoothers take on a 
number of forms (Ruppert et al. 2003). In this paper, the 
choice of smoothing parameter in nonparametric mod-
el is based on penalized regression splines and made 

through GCV (Wood, Augustin 2002); Smoothing pa-
rameter selection of semiparametric model are based on 
generalization of smoothing splines (French et al. 2001) 
and can be done via REML. Second, Nonparametric 
methods are flexible in that the resulting estimates of 
mean response completely depend on the observed data 
itself (Wan, Birch 2011). Third, observed data of mean 
bus headway mainly distributed from 6–12 min, specifi-
cally, about 90% of them are distributed from 6.8 to 9.7 
min, as shown in Figure 2c and the x axis of Figures 3c 
and 4c. Thus, when mean bus headway is shorter than 
12 min, Figures 3c and 4c are mainly estimated based 
on observed data and have similar growth trends. When 
mean bus headway is longer than 12 min, observed 
points are fewer and different smooth functions lead to 
different fitting results. This means more people would 
like to hire taxis with mean bus headway closing to 12 
min. However, when mean bus headway is over 12 min, 
the willing of people hiring taxis is still not clear enough 
according to Figures 3c and 4c.

Figure  3d shows that taxi-hiring behavior rises 
gradually with CV of bus headway increasing. When CV 
of bus headway grows to around 0.7, taxi-hiring behavior 
reaches the highest level. Then Figure 3d sees a slow and 
consistent drop. In Figure  4d, a similar change trends 
could be observed and taxi-hiring behavior reaches its 
peak at about 13 when CV of bus headway equals to 0.7. 
There is some indication that passengers could be divid-
ed into two groups: people sensitive to waiting time and 
people sensitive to price (Dell’Olio et  al. 2011a). Both 
groups would like to wait for buses when headway just 
starts to be unstable. However, passengers sensitive to 
waiting time have a limit of tolerability for irregularity 
of bus headway, because irregular headway could make 
waiting time longer (Fan, Machemehl 2002), in this re-
search, the limit is 70%. When irregularity of bus head-
way closes to this limit, more people would like to hire 
taxis; when irregularity of bus headway is over this limit, 
the percentage of people sensitive to waiting time in all 
passengers would decrease. People sensitive to price 
would comprise more proportion and less people would 
like to hire taxis although irregularity of bus headway 
becomes worse. The descriptive statistics of CV of bus 
headway could also provide us more details. According 
to Table 2 and Figure 2d, mean of CV of bus headway 
is 0.66 (close to 0.7) and the distribution (black bars) of 
CV of bus headway indicates that 70% of them are dis-
tributed between 0.5 and 0.7. This result indicates that 
bus headway drastically fluctuates in each observation 
and taxi-hiring behavior could almost reach its peak just 
when CV of bus headway shows normal performance in 
congested transit systems. 

AVG_STOPPAGE is excluded from all the models 
due to lack of significance. However, CV_STOPPAGE 
is significant at the 99% confidence level in parametric 
model, nonparametric model and parametric compo-
nent of semiparametric model. Figure 3e shows that taxi-
hiring behavior grows substantially with CV of stoppage 
time increasing, and Figure 4e indicates a similar growth 
trends. The unstandardized coefficient of this variable 
is 15.274 in parametric model and 12.833 in paramet-
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ric component of semiparametric model. This means 
that TAXI will increase about 12–15 with irregularity 
of bus stoppage time doubled, when all other variables 
are kept the same. Moreover, the standardized coefficient 
of CV_STOPPAGE in parametric model is the highest 
(0.372) among all the variables, which indicates that this 
variable has essential influence on taxi-hiring behavior. 
Based on descriptive statistics in Table 2 and Figure 2e, 
the mean CV_STOPPAGE in each observation is 0.40, 
and about 75% of them are distributed between 0.2 and 
0.5 in each observed peak time. This result means that 
more passengers would like to hire taxis when stoppage 
time of bus starts to show more irregularity in peak time. 

Service elasticity refers to how changes in transit 
service mileage, service-hours, frequency, and service 
quality (such as comfort) affect transit ridership (Litman 
2013). Increased travel speed and reduced delay for a 
particular mode tends to attract travel from other modes 
on a corridor (Dell’Olio et al. 2011a, 2011b). In Table 3 
and Figure  4a, 4b, for each km/h added to bus speed, 
taxi ridership shifted from transit would drop 0.443; in-
creasing irregularity of bus speed by 10% was associated 
with a 1.741 increase in taxi ridership. The results mean 
that bus speed has a strong transit service elasticity and 
could affect the amount of induced travels in different 
modes. Furthermore, commute trips for each rider al-
ways have constant distances, thus travel time has a pro-
portional relationship with transit speed, indicating that 
travel time and speed could be both regarded as indices 
to evaluate service elasticity in commute trips (Redman 
et al. 2013). Some transport economists supported the 
constant travel time budget hypothesis, which means 
the amount of time people devote to commute travel 
tends to remain constant (typically averaging 70–90 min 
daily), and found that the travel time between different 
modes significantly affected mode choice (Hanaoka, Qa-
dir 2009), which evidenced the results of this paper. In 
Table 3 and Figure 4d, 4e, increasing irregularity of bus 
stoppage time by 10% was associated with a 1.283 in-
crease in taxi ridership. Irregularity of bus headway pro-
duced a higher marginal utility for taxi riders attracted 
from transit before CV of bus headway equaled to 0.7. 
After that, an increased marginal disutility for irregular-
ity of bus headway and taxi ridership could be observed, 
suggesting that fewer passengers had the willingness to 
switch to taxis from transit when waiting time became 
longer. This results indicated that the commute travelers 
were more time sensitive and had a limited tolerability 
for irregularity of service frequency (called a headway 
elasticity, Litman 2013), but the non-commute riders 
were more price sensitive. This means that the higher 
value travels, such as commute or business trips, tend to 
be less elastic than lower value travels, such as shopping 
or recreational trips (Rose, Hensher 2014).

In crowded transit system, buses with available 
room will spend more stoppage time to let passengers 
aboard. However, full-load buses are more common and 
just stop for a short while or even not stop. This leads to 
the large fluctuations of stoppage time and causes many 
passengers to wait for the next buses. Most of them need 
to wait for two or more buses; some of them even have 

to wait for the 5th bus in order to get on (Xie et al. 2013). 
In this situation, the passengers’ waiting time mainly de-
pends on the bus headway (Fan, Machemehl 2002) and 
the number of buses they have to wait before being able 
to get on. Moreover, lower bus speed and higher speed 
fluctuation mean more serious traffic congestion and 
higher passenger load. This makes waiting time become 
longer and once it starts to reach the limit of tolerance of 
passengers who are sensitive to time, some of them in a 
hurry to go to work or to get to meetings start to switch 
to taxis. This is consistent with the observations and lo-
cal news reports (Xiao, Xu 2012; Xie et al. 2013; Li et al. 
2009; Gu et al. 2010) about transit system in Shenzhen.

3.2. Metro
Metro is another factor affecting the hail-taxi behavior 
around bus stations owing to the cross-elasticity be-
tween them. Various research found metro and taxi elas-
ticities often differed. In major cities, the cross-elasticity 
between them tends to be relatively low, typically in the 
–0.18 range due to users’ different incomes and price 
sensitivity (Litman 2013). In this paper, Metro is includ-
ed in the parametric model and parametric component 
of semiparametric model but removed from nonpara-
metric model due to lack of significance. This means that 
the relationship between taxi-hiring behavior and met-
ro is more suitable for parametric modeling. Figure 4f 
shows that taxi-hiring behavior decreases considerably 
with a metro station nearby. Specifically, according to 
unstandardized coefficient of METRO in parametric 
model and semiparametric model, taxi-hailing behavior 
with metro stations around will be 1.320–1.751 fewer 
than that far away from metro stations. However, the 
standardized coefficient of METRO is only –0.093 in 
the parametric model, which is the lowest among all 
the variables left. This means that metro has negative 
effects on taxi-hiring behavior, but not very noticeable. 
Descriptive statistics in Table 2 also provide us similar 
results. Mean taxi-hiring behaviors in bus stations with 
and without metro around are 13.56 and 14.31 respec-
tively, only small difference. 

3.3. Direction 
Direction is considered in the models, and most con-
ditions of these two directions are similar but conges-
tion degree between them is a little different. It is only 
included in parametric model and excluded from non-
parametric model and semiparametric model because 
of insignificance. The result of parametric model shows 
that if the hail-taxi position is located on the westbound 
roadside, TAXI will be 3.214 more than the location on 
the eastbound. Descriptive statistics in Table 2 could 
provide more details. The mean TAXI values in east-
bound and westbound are 11.94 and 15.93 respectively. 
Buses running in eastbound direction also have higher 
speed, lower headway and smaller stoppage time com-
pared with westbound direction. Moreover, all of these 
three variables in eastbound direction have less irregu-
larity. However, the standardized coefficient of DIREC-
TION is only 0.226, which is the lowest among the posi-
tive variables. This demonstrates a minimum effect. 
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3.4. Time period 
AM_PEAK is included in all three models. Figure  4g 
shows that taxi-hiring behavior decreases considerably 
when they happen in the morning peak. Specifically, ac-
cording to unstandardized coefficients of AM_PEAK in 
parametric model and semiparametric model, taxi-hail-
ing behavior in morning peak will have a 0.537–1.473 
increase comparing with that in evening peak. This 
means that people hurrying to work place in the morn-
ing have more willingness to hire taxis, comparing with 
people going home in the evening. 

Concluding remarks

This study aimed to contribute to a better understand-
ing of relationship between the quality of bus service 
and taxi-hiring behavior in commute travels. As such, 
relevant research was sought to answer the following two 
questions: which attributes of bus operating drive pas-
sengers to switch to taxis. How changes in attributes of 
bus service encourage modal shift from buses to taxis. 
With GIS and database technology, passengers’ taxi-hir-
ing behavior was captured by OD of hired taxis via geo-
processing methods, while the attributes of bus service 
were mined from huge data set. Both bus and taxi GPS 
data were matched and analyzed together with GIS.

Parametric, nonparametric and semiparametric 
models were developed and all applied to analyze the 
relationships between taxi-hiring behavior and bus ser-
vice quality. The results showed that the semiparametric 
model had the highest adjusted R2 (0.671), comparing 
with that in the parametric model (0.426) and that in 
the nonparametric model (0.638). The comparison of 
RMSE, NMB, MAE and Theil’s inequality coefficient T 
in different models also indicated that semiparametric 
model had the best estimation. Moreover, the analysis 
results in each model were basically consistent and could 
be verified mutually, which made conclusions more ac-
curate. In sum, semiparametric model is very attractive 
when there is a complicated mixture of linearity and 
nonlinearity in the multivariate cases. Such as the case 
in this research, the effects of bus service quality on 
taxi-hiring behavior were complex, and a wide range of 
covariates need to be estimated. Nonparametric model 
shows its superiority when variables are non-Boolean 
and the relationships between explanatory variables are 
totally nonlinear. In this case, nonparametric approaches 
could reduce calculation amount a lot but still obtain 
results as good as nonparametric models. Parametric ap-
proaches or multiple linear regression models make it a 
little restrictive when covariates are derived from dif-
ferent research objects or the correlation between them 
is hard to be represented as linear functions. There is 
not much recommendation for parametric models when 
correlations among covariates are complex. 

The research indicated that bus speed, headway and 
stoppage time were the core parameters affecting pas-
sengers’ taxi-hiring behavior. Availability of metro, time 
of the day and bus route directions were the next impor-

tant factors. This study found that when buses run with 
relatively low and stable speed (mean speed ≈ 20 km/h 
and CV of mean speed ≈ 0.1), taxi-hiring behavior was 
sensitive to the slight change of bus speed. More pas-
sengers would like to hire taxis when bus speed started 
to decline, and speed or stoppage time of buses tent to 
be irregular. However, the effects of bus headway on 
taxi-hiring behavior were more complicated. A specific 
turning point (CV of mean headway ≈ 0.7) in the rela-
tionship between taxi-hiring behavior and bus headway 
was shown in this paper. When bus headway is close to 
the turning point, more passengers would like to hire 
taxis; with bus headway over this turning point, taxi-
hiring behavior tends to be less. The result also showed 
that taxi drivers would get 1–3 more guests when driv-
ing in the morning peak, away from metro or in a more 
congested direction on a corridor.

This study is helpful in transportation policy mak-
ing and beneficial to the future study about the cross-
elasticity of different transit modes. Although bus speed, 
headway and stoppage time are not the causes of waiting 
time increase, they can show the transit system’s conges-
tion levels. Moreover, different degrees of congestion in 
crowded transit system affect the number of the passen-
gers switching to taxis. Thus, bus speed, headway and 
stoppage time can be regarded as indices to evaluate 
the behavioral intention (transit passengers’ judgment 
about the likelihood of continuing to take buses), and 
the elasticity of bus service quality and other transit 
modes. For traffic management departments, the fre-
quency of this kind of forced transfer behavior between 
buses and taxis can be set as a new standard to evaluate 
the bus service quality. The government should also pay 
more attention to the locations of taxi stops near the 
bus stations without metro around or the bus stations in 
a more congested direction, because the taxi-hiring be-
havior is more frequent near such stations. When traffic 
management departments plan to set up new taxi stops, 
avoiding disturbing operation of buses and convenience 
for passengers hiring taxis near bus stations are key fac-
tors, which ought to be emphasized. Moreover, transit 
systems are congested in most mega-cities with high 
population density in East Asia, especially in China and 
Japan. Therefore, the research results of Shenzhen could 
be applied to these cities with congested traffic. 

This work shows the specific relationship between 
bus service quality and taxi behavior near bus stations 
via data mining and model developing with parametric, 
semiparametric and nonparametric approaches. How-
ever, the methods to process the taxi data still have sev-
eral limitations. First, only the destinations around bus 
stations along Shennan Avenue were captured. Because 
Shennan Avenue is one of the most congested road in 
Shenzhen, the phenomenon that passengers switch to 
taxis is common and more observations could be found 
on this road. However, the results are without compari-
son with other roads. Second, other bus routes along 
Shennan Avenue except for Route 223 were not taken 
into account. Although Route 223 are busier and has 
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better GPS data quality, the lack of other routes will 
still affect the definition of statistics results. Third, the 
observation interval (2 hours in peak time) is a little 
big. Because even in Shennan Avenue, the target taxi-
hiring behavior is only several dozens at one station dur-
ing peak time. If the observation interval (such as 15 
or 30 min) is shorter, the number of target taxis is too 
small to capture. But buses are too many in 2-hour ob-
servation interval, this makes it hard to find which buses 
directly affect the target taxi-hiring behavior. In future 
studies, the comprehensive interplay between buses and 
taxis under network with more destinations should be 
focused. Moreover, the GPS data with longer observa-
tion periods (e.g. 3 months) and more advanced meth-
ods of data processing should be addressed in the future. 
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