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Abstract. Recognizing the stability of the traffic evolution process of urban traffic networks has been an important consid-
eration in traffic evolution research. However, little work has been conducted on identifying and associating temporal Traf-
fic State Pattern (TSP) with the traffic evolution process. By clustering multi-dimensional traffic time series, we attempted 
to map the traffic evolution process into massive transitions of consecutive TSPs. Through the statistics of the time distri-
bution of the transitions, we then defined the stability coefficient to conduct a quantitative analysis of the traffic evolution 
process. An empirical study using 30 days of traffic flow rate data of multiple road sections from the network of Nanshan 
District (Shenzhen, China) was carried out. Numerical results indicated that the traffic evolution process experienced obvi-
ous nonlinear changes at different periods of the day, but presented a regular cycle characteristic from morning till night. 
Further, with consideration of different travel purposes and traffic features on weekday and weekend, more traffic dynamics 
was extracted, which would be conducive to understand the complex behaviour of traffic evolution process.
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Notations

ATST – abnormal traffic state transition;
ATSPT – abnormal TSP transition;

HATSPT – heavy abnormal TSP transition;
LWR – Lighthill, Whitham and Richards traffic flow 

model;
MATSPT – medium abnormal TSP transition;

MFD – macroscopic fundamental diagram;
NTSPT – normal TSP transition;

NTST – normal traffic state transition;
SOM – self-organizing maps;
TSP – traffic state pattern;

TSPG – TSP group;
TSPT – TSP transition;

TSPTR – TSP transition relation;
TSPTRN – TSP transition relation network.

Introduction 

Nowadays, the increasing contradiction between supply 
and demand in urban transportation makes traffic con-
gestion one of the serious problems that most cities need 
to face (Beaudoin et al. 2018). Traffic congestion contains  
2 types: (1) occasional and (2) recurrent. Occasional con-
gestion is irregular and may occur at any time and any 
place, which is caused by unexpected conditions such 
as traffic events. Recurrent congestion has temporal pe-
riodicity and high spatial similarity, which is caused by 
insufficient infrastructure supply (An et al. 2016). Previ-
ous studies have confirmed that traffic congestion is the 
result of instability and phase transition in the traffic flow 
dynamics (Ghadami et al. 2022). To analyse the charac-
teristics of traffic congestion, the traffic flow is abstracted 
into TSP (Lan et al. 2008). The investigation of TSP can 
help analyse the causes of congestion and suggest deli-
cacy management measures to ensure traffic safety and 
smoothness. Therefore, TSP has become an interesting 
topic that has attracted many researchers.
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Depending on the purpose of the study and the data 
available, researchers use different metrics to character-
ize TSPs, including traffic flow (Shen, Zhang 2009; Zhang 
et al. 2016), density (Treiber, Kesting 2012), and velocity 
(Banaei-Kashani et al. 2011), etc. As detection technolo-
gies evolve and the scale of traffic data explodes, the scope 
of research is gradually expanding from intersections (Li 
et  al. 2019) and corridors (Lan et  al. 2008) to small ar-
eas (Zhu et  al. 2016) and entire cities (Anbaroglu et  al. 
2014; Yang et al. 2018). Accompanying this expansion is 
the evolution of algorithms. The LWR model described 
the equilibrium speed-concentration relationship, which 
has been widely applied in the estimation of traffic state 
(Lighthill, Whitham 1955; Richards 1956). The accelera-
tion is introduced into the LWR model to obtain a higher-
order continuum model, the Payne (1971) model. Then 
many improved models (Daganzo 1995; Zhang 1998) 
emerged to facilitate the development of higher-order 
continuum models. With the interest in the traffic state of 
the global road network, Daganzo and Geroliminis (2008) 
defined the MFD. The MFD model is obtained by statisti-
cally analysing the historical data of the road network to 
get the relationship between different parameters such as 
density, velocity, and flow, etc. With the increase of data 
volume and the high demand for data processing ability, 
machine learning models have gained popularity among 
scholars. Clustering is one of the machine learning models 
that have been widely utilized in analysing traffic states, 
revealing hidden patterns in huge traffic data, and real-
izing traffic state classification. The SOM (Kohonen 1982) 
is one of the representative clustering algorithms. SOM 
uses unsupervised learning to map higher dimensional in-
puts onto the lower dimensional grid while preserving the 
topological ordering present in the input space (García-
Rois, Burguillo 2017). Chen et  al. (2008) used SOM to 
cluster traffic flow vectors to analyse the characteristics of 
multi-dimensional traffic flow time series and predict fu-
ture trends. Then ample researches (Andrienko et al. 2010; 
Chiou et al. 2014; Gu et al. 2020) verified that the SOM 
can effectively discriminate congestion using real traffic 
data. 

Meanwhile, previous studies analysed the spatial-
temporal characteristics of TSPs. Kim and Keller (2008) 
investigated the dynamic flow density relationship based 
on traffic state classification. Zhang et al. (2016) analysed 
the geographic distribution of TSPs, pattern shifts at dif-
ferent times-of-day, and pattern fluctuations over different 
days. Zhu et al. (2016) used the hidden Markov model to 
represent the dynamic transition process of traffic state 
and analysed the law of dynamic transition in traffic state 
of the urban road network under the influence of traffic 
information. Yang et al. (2018) analysed the spatial cor-
relation of urban traffic states to identify evolutionary 
patterns. Although some researchers have analysed the 
spatio-temporal evolutionary relationships of TSPs, the 
stability during the evolutionary process has been ne-

glected, and there are still research gaps to explore further.
Inspired by this, the main purpose of this research is 

to construct an analysis model of TSP stability from the 
perspective of macroscopic traffic flow and to investigate 
the distinct regularity of the traffic state evolution process. 
The traffic evolution process is regarded as massive transi-
tions of successive TSPs. The stability analysis of the traffic 
evolution process then becomes the transition analysis of 
TSPs. In our previous paper (Wang et al. 2014), we defined 
TSP through clustering multidimensional traffic time se-
ries using SOM and construct a pattern transition network 
model. Then we analysed the temporal characteristics and 
distinct regularity in the traffic evolution process, includ-
ing preference, activity, and attractiveness.

In this paper, we further study the temporal character-
istics of the traffic evolution process, focusing on stability 
modelling and analysis. We construct a simple analysis 
model of TSP stability to quantitatively analyse the sta-
bility of the traffic evolution process. We attempt to gain 
insight into the stability of the traffic evolution process 
in urban traffic networks. By investigating the stability of 
traffic dynamics in the temporal domain, we can under-
stand the distinctive features of traffic flow evolution and 
fluctuation, and further develop effective traffic manage-
ment measures and ITS applications. Furthermore, we 
believe that this analysis provides a new way to measure 
and quantify the traffic evolution process and improves 
the understanding of the complex behaviour of the tem-
poral evolution features of traffic patterns. Ultimately, flow 
rate data of multiple road sections from the network of 
Nanshan District (Shenzhen, China), were used to illus-
trate the effectiveness of the proposed method.

The remaining parts are organized as follows. Section 1  
introduces the analysis model of TSP stability. Then the 
empirical data and road network are shown in Section 2. 
In Section 3, the analytical results are discussed. Finally, 
the conclusions of our work are presented in the final sec-
tion.

1. Analysis model of TSP stability

To describe  the transition process of traffic state, a basic 
network model for traffic evolution analysis of urban re-
gional networks is proposed. The transition process and 
evolutionary characteristics of traffic state are analysed 
from a quantitative perspective.

One traffic parameter (such as traffic volume, speed, 
occupancy, delay, V/C, etc.) can be selected to describe 
the traffic state of the road section. We select traffic flow 
rate as the input parameter. The n-dimensional vector 
( ) ( ) ( ) ( )1 2, , ...,

T
nF t f t f t f t =    was used to represent 

traffic state within the time interval t, where ( )if t  is the 
flow rate of the ith road section within the time interval 
t and n is the total number of road sections. Then multi-
ple traffic state classifications can be obtained by cluster-
ing traffic states, each of which is composed of a set of 
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traffic states, that is, TSP, denoted by P. Here Kohonen’s 
SOM (Kohonen 1982; Chen et al. 2008; Chiou et al. 2014) 

algorithm was used to cluster TSPs. For a more detailed 
theoretical model of SOM, see Chen et al. (2008). The re-
sults of the above study have proven the effectiveness of 
this method, and our previous study (Wang et al. 2014) 

has also proved it is effective and reasonable. Then the 
mean fitting method was used to fitting traffic states, and 
the characteristic state ( ) ( ) ( ) ( )1 2, , ...,

TP P P P
nCF t f t f t f t =    

can be obtained, where ( )P
if t  is the mean value of flow 

rate of the ith road section of all traffic states within P.
Our previous study (Wang et al. 2014) defined several 

network models, such as TSPTR A B A BR P P→ = →  and 
TSPTRN ( ),G P R= , where R is all transition relation sets. 
Based on this, we give the following definition.

Definition 1. If PA and PB are TSPs, ( )1 AF t P∈ , 
( )2 BF t P∈ , t1 and t2 are adjacent periods, then there ex-

ists a TSPT between ( )1F t  and ( )2F t , denoted as A BT → .
Definition 2. The variation coeffici ent c

ia  of traffic 
state in adjacent periods of road section i can be expressed 
as:

( )( ) ( )( )max min

c
ic

i
i if t f t

∆
a =

−
,  (1)

where: c
i∆  is the variation of traffic flow rate in adjacent 

periods of road section i; ( )( )max if t , ( )( )min if t  respec-
tively represent the maximum flow rate and minimum 
flow rate of the ith road section within the time interval 
t in a day. Define ai is the anomaly detection threshold 
value for ATST. If c

i ia < a , then there exists a NTST for 
the ith road section. If c

i ia ≥ a , then exists an ATST for 
the ith road section. 

Definition 3. For A BT → , A B A BR P P→ = → , the total 
number of ATSTs of all road sections in A BT →  is denoted 
as ( )A BT →Ψ . If ( )0 A B MT →≤Ψ ≤b , then A BT →  is NT-
SPT. If ( )M A B HT →b < Ψ <b , then A BT →  is MATSPT. If 
( )A B HT →Ψ ≥b , then A BT →  is HATSPT. Where, bM and 

bH are respectively the threshold value of medium and 
heavy ATST of A BR → .

The traffic evolution process is composed of massive 
consecutive traffic state transitions. The more is MAT-
SPT and HATSPT, the less is NTSPT, and the weaker the 
stability. Therefore, the statistics results to the count and 
time distribution of NTSPT, MATSPT, and HATSPT of 
the traffic state transitions can visually reflect the stabil-
ity of the dynamic traffic evolution process. Therefore, we 
will define the stability coefficient, which shows different 
levels of exponential decreases as the count of MATSPT 
and HATSPT increases. We believe the more the count of 
ATSPT (the sum of MATSPT and HATSPT), the faster the 
stability decrease.

Definition 4. Given a specified time duration t, the sta-
bility coefficient S

tC  in the traffic evolution process can be 
expressed as:

( ) ( )M H
h t h tAve N Ave NS

t M HC e e− −= w ⋅ + w ⋅ ,  (2)

where: M
tN  and H

tN  are respectively the total count of all 
MATSPTs and HATSPTs within a given specified time du-
ration t; wM and wH are the weight of effects of MATSPT 
and HATSPT respectively; the function ( )hAve ⋅  is used to 
compute the average count of MATSPT and HATSPT per 
hour of the day. The average count of MATSPT is taken as 
an example to calculate as the following:

( ) 60 M
tM

h t

M

N
Ave N

t
t

⋅
= ,  (3)

where: time duration is t [days]; the average lasting time 
of MATSPT is tM [min].

From Equation (2), it can be seen that S
tC  decreases as 

the count of MATSPT and HATSPT increases. Therefore, 
the larger S

tC , the stronger the stability.

2. Experimental data

In this paper, the regional road network in Nanshan Dis-
trict is selected as the experimental road network. The 
road network topology is shown in Figure 1. Taking in-
tersections as nodes, the regional road network is divided 
into 35 road sections, numbered 1…35 respectively. The 
real flow rate datasets of the road section in Nanshan Dis-
trict are analysed. The flow rates datasets were obtained 
from our previous study (Wang et al. 2014), a total of 30 
days of flow data. The period of this experimental study 
is from 6:00 to 24:00, with the unit time interval is 5 min. 
Each road section has 12×18×30  = 6480 data samples. 
Then a 35-dimensional series with a length of 6480 was 
constructed.

We selected 2 days of data for training and found that 
the SOM with 8×8 neurons worked best. Because SOM 
with fewer neurons would blur the input spatial relation-
ships, resulting in discrete relationships among the TSPs. 
While SOM with more neurons would increase the com-
plexity and computation time, and also make it difficult 

Figure 1. Road network topology of Nanshan District
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for visualization and analysis. Therefore, a well-trained 
8×8 SOM network was used to cluster flow rate data, and 
64 clusters were obtained. There are 4 TSPG, represented 
by “A”, “B”, “C”, and “D” respectively. Ranked according 
to the degree of congestion is A > B > C > D. For a more 
detailed clustering result of TSP, see our previous study 
(Wang et  al. 2014). Each cluster represents a TSP with 
35-dimensions.

3. Experimental analysis

3.1. Generation of TSPTRN

Considering the different travel purposes, traffic demand, 
and traffic distribution characteristics, we conduct our 
experimental analysis on weekdays and weekends respec-
tively. The TSPTRN and detailed time distribution after 
mapping of each TSP of weekdays are respectively shown 
in Figures 2 and 3. The TSPTRN and detailed time distri-
bution after mapping of each TSP of weekends are respec-
tively shown in Figures 4 and 5.

 Figure 2. TSPTRN of Nanshan District on weekdays (22 days)

Figure 3. Time distribution of TSP on weekdays (22 days)

Figure 4. TSPTRN of Nanshan District on weekends (8 days)

Figure 5. Time distribution of TSP on weekends (8 days)
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We can see that the evolution process among the TSPGs 
during a whole day follows a common sequence that is  
<D → C → B → A → B → A → B → C → D> on both week-
days and weekends, as shown in Table 1. This sequence 
of time distribution just indicates that macroscopic traffic 
operation of the road network has a strong regularity and 
the traffic operation is stable within a certain period.

3.2. Analysis of stability

We set bM = 5 and bH = 9 based on the median and 90% 
quantile of the total count of ATST. In addition, we be-
lieve that it is very abnormal if the traffic flow rate chang-
es largely in a short period, so we set ai = 0.4. Then the 
counts of NTSPT, MATSPT, and HATSPT can be obtained 
and the time distributions on weekdays and weekends are 
respectively shown in Figures 6 and 7. To cover the whole 
traffic evolution process and make a comprehensive analy-
sis of stability, we conduct 2 steps of analysis respectively 
within and between TSPGs according to Table 1.
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Table 1. Evolution sequence and time distribution of the TSPGs

TSPG
Average start time Average end time Average lasting time Time proportion

weekday weekend weekday weekend weekday weekend weekday weekend
D 06:00 06:00 06:25 07:05 25 min 1 h 5 min 2.31% 6.02%
C 06:25 07:05 06:55 08:10 30 min 1 h 5 min 2.78% 6.02%
B 06:55 08:10 07:30 09:05 35 min 55 min 3.24% 5.09%
A 07:30 09:05 11:05 11:35 3 h 35 min 2 h 30 min 19.91% 13.89%
B 11:05 11:35 16:10 17:10 5 h 5 min 5 h 35 min 28.24% 31.02%
A 16:10 17:10 19:35 20:35 3 h 25 min 3 h 25 min 18.98% 18.98%
B 19:35 20:35 21:10 22:05 1 h 35 min 1 h 30 min 8.80% 8.33%
C 21:10 22:05 22:05 23:10 55 min 1 h 5 min 5.09% 6.02%
D 22:05 23:10 0:00 0:00 1 h 55 min 50 min 10.65% 4.63%

Figure 6. Time distribution of NTSPT, MATSPT, and HATSPT 
on weekdays (22 days)

Figure 7. Time distribution of NTSPT, MATSPT, and HATSPT 
on weekends (8 days)
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3.2.1. Stability of TSPT within TSPG

The average count of MATSPT and HATSPT per hour 
of the day within TSPG is shown in Table 2. The aver-
age count of MATSPT in TSPG “D” that 1st appeared 
on weekdays is taken as an example to calculate using 
Equation (3), and the calculation process is as follows: 

( ) 6 60 0.65
22 25

M
h tAve N ⋅

= =
⋅

.

After merging the same TSPG, we get the combined-
average value of ( )M

h tAve N  and ( )H
h tAve N , and thus the 

S
tC  can be obtained, as shown in Table 3. The calculation 

process of the combined-average value of ( )M
h tAve N  

in TSPG “A” on weekdays is given as an example: 

( ) 1.23+1.34 1.285
2

M
h tAve N = = . The calculation process 

of S
tC  the in TSPG “A” on weekdays is given as an exam-

ple: 1.285 0.660.65 0.95 0.6708S
tC e e− −= ⋅ + ⋅ = .

From Table 3, we can see that no matter of weekday or 
weekend, the stability results of each TSPG calculated by 
the stability coefficient S

tC  formula is: D > A > C > B. The 
S
tC  value of TSPG “D” was much higher than the other 

TSPGs. This is mainly because the TSPs in “D” happened 
in the early morning and late at night. In these periods, 
the traffic is basically at the state of free travel, and the 
traffic operation state is quite smooth and stable in the 
whole day. It is also corroborated by Figures 6 and 7, as 
the number of MATSPT and HATSPT was the lowest dur-
ing this period of the day.

Besides, TSPG “A” had also shown relatively higher 
stability than “B” and “C”. This is due to the TSPs in TSPG 
“A” are in the morning and evening peak hours, which 
are congested periods with relatively stable traffic demand 
and traffic distribution without significant disturbance. 
Moreover, the traffic state of each road is in the “saturated” 
or “nearly saturated” condition, and the change interval of 
the traffic state is limited.

The stability of TSPG “B” is the smallest. Because for 
each pattern of “B”, the traffic states of each road were all 
in “nearly saturated” condition, and thus have larger vari-
ations spaces and change possibilities than that of “A”, “C” 
and “D”. Moreover, the traffic state transition of the whole 
network is in a period of extreme activity and fluctuation, 
with relatively unstable traffic demand and irregular traffic 
distribution. It can also be demonstrated by Figures 6 and 7,  
as the number of MATSPT and HATSPT is the highest 
during this period of the day.

3.2.2. Stability of TSPT between TSPGs
According to Table 1, the evolution in a whole day expe-
rienced 9 TSPGs, so there are 8 Transition periods be-
tween TSPGs, which are <D → C>, <C → B>, <B → A>, 
<A → B>, <B → A>, <A → B>, <B → C> and <C → D>. 
Each Transition period is formed by the last 15mins of 
the start TSPG and the early 15 min of the end TSPG. 
We set each Transition period to 30  min, which is 
formed by the last 15 min of the start TSPG and the early 
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15  min of the end TSPG. The stability coefficient S
tC  is 

obtained as shown in Table 4. The calculation process of 
( )M

h tAve N  in <D → C> on weekdays is given as an exam-

ple: ( ) 10 60 0.91
22 30

M
h tAve N ⋅

= =
⋅

. The calculation process of 
S
tC  the in <D → C> on weekdays is given as an example: 

0.91 0.640.65 0.95 0.7626S
tC e e− −= ⋅ + ⋅ =  . The remaining 

values can be calculated in the same way as above.
<B → A> and <A → B> are respectively the formation 

period and dissipating period of morning and evening 
peak hours. In these periods, the traffic states of each road 
were less in “saturated” condition (i.e., the percentage of 
travel speed to basic free-flow speed is less than or equal 
to 0.3, 0.3

f

v
v

≤ (TRB 2010)) and more in “nearly satu-

rated” condition (i.e., 0.3 0.4
f

v
v

< ≤ (TRB 2010)). When 

abnormal events such as traffic congestion or accidents 

occur, the adverse effects can spread rapidly. Therefore, 
the stability of the transitions between TSPG “A” and 
“B” is smaller than that of transitions among “B”, “C”, 
and “D”. Although the transitions occur between TSPG 
“A” and “B”, the stability of most transitions is closer to 
“B” than “A”. Because the value of stability coefficient in 
stages 4, 5, and 6 is closer to the stability coefficient of 
“B”. Let’s take stage 4 on weekdays as an example: the ab-
solute value between the stability coefficient in stage 4 and 
TSPG “A” is 0.5163 0.6708 0.1545− = , the absolute value 
between the stability coefficient in stage 4 and TSPG “B” is 
0.5163 0.4701 0.0462− = , and 0.1545 0.0462> , so the sta-
bility in stage 4 is closer to “B” than “A”. This shows that 
the transition stability between “A” and “B” is low.

Compared with <B → A> and <A → B>, the stability 
of <B → C> and <C → B> is a litter larger. Although the 
stability of TSPG “C” and “B” is relatively small, as “B” 
is in “nearly saturated” condition and “C” is in “unsatu-

Table 2. The average count of MATSPT and HATSPT per hour of the day within TSPG

TSPG Weekday (22 days) Weekend (8 days)
M
tN ( )M

h tAve N H
tN ( )H

h tAve N M
tN ( )M

h tAve N H
tN ( )H

h tAve N

D 6 0.65 5 0.55 7 0.81 3 0.35 
C 12 1.09 8 0.73 13 1.50 8 0.92 
B 23 1.79 11 0.86 14 1.91 7 0.95 
A 97 1.23 50 0.63 24 1.20 18 0.90 
B 205 1.83 104 0.93 77 1.72 37 0.83 
A 101 1.34 52 0.69 36 1.32 30 1.10 
B 63 1.81 38 1.09 18 1.50 11 0.92 
C 26 1.29 14 0.69 13 1.50 5 0.58 
D 23 0.55 8 0.19 3 0.45 2 0.30 

Table 3. The stability coefficient within TSPG

TSPG
Weekday (22 days), wM = 0.65, wH = 0.95 Weekend (8 days), wM = 0.65, wH = 0.95

( )M
h tAve N ( )H

h tAve N S
tC ( )M

h tAve N ( )H
h tAve N S

tC

A 1.285 0.66 0.6708 1.25 0.87 0.5842 
B 1.81 0.96 0.4701 1.67 0.94 0.4935 
C 1.19 0.71 0.6648 1.63 0.76 0.5716 
D 0.60 0.37 1.0129 0.63 0.32 1.0360 

Table 4. The Stability coefficient between TSPGs

Stage TSPG
transition

Weekday (22 days), wM = 0.65, wH = 0.95 Weekend (8 days), wM = 0.65, wH = 0.95
M
tN ( )M

h tAve N ( )H
h tAve N S

tC M
tN ( )M

h tAve N H
tN ( )H

h tAve N S
tC

1 <D → C> 10 0.91 7 0.64 0.7626 3 0.75 2 0.50 0.8832 
2 <C → B> 16 1.45 9 0.82 0.5709 6 1.50 3 0.75 0.5938 
3 <B → A> 17 1.55 10 0.91 0.5204 7 1.75 3 0.75 0.5617 
4 <A → B> 15 1.36 11 1.00 0.5163 5 1.25 4 1.00 0.5357 
5 <B → A> 19 1.73 11 1.00 0.4647 6 1.50 5 1.25 0.4172 
6 <A → B> 16 1.45 10 0.91 0.5349 6 1.50 4 1.00 0.4945 
7 <B → C> 14 1.27 9 0.82 0.6010 5 1.25 3 0.75 0.6350 
8 <C → D> 11 1.00 8 0.73 0.6969 4 1.00 3 0.75 0.6879 
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rated” condition, the traffic states of each road can still 
pursue smooth and stable transition in the consecutive 
time interval during the transition between “B” and “C”. 
What’ more, even abnormal event cannot lead to large-
scale spread adverse effects. Although the transitions oc-
cur between “B” and “C”, the stability is closer to “C” than 
“B”. That is, the transition stability between “B” and “C” is 
relatively higher.

The stability of <D → C> and <C → D> is the largest of 
all the transitions between TSPGs. This is because the traf-
fic states of each road were almost at the state of free travel 
or “unsaturated” condition with the traffic operation quite 
natural and stable during the transitions with no obvious 
significant changes even in case of abnormal traffic events.

Conclusions

Accurate and in-depth analysis of the stability of the traf-
fic state evolution process is a necessary condition to al-
leviate traffic congestion in urban. Therefore, we proposed 
a novel model to analyse the stability of the traffic state 
evolution process in urban regional road networks from a 
macroscopic perspective. We mapped the traffic evolution 
process into transitions of consecutive TSPs and defined 
stability coefficient, which can be used to conduct a quan-
titative analysis of the traffic evolution process through the 
statistics to the time distribution of the transitions. 

To illustrate the applicability and effectiveness of the 
proposed model, the road network of Nanshan District 
(Shenzhen, China) is taken as an example to analyse and 
verify. 

The experimental results show that the traffic evolu-
tion process experienced obvious nonlinear changes at 
different periods of the day, but presented a regular cy-
cle characteristic from morning till night. Whether it is a 
weekday or a weekend, the stability is TSPG “D”, “A”, “C”, 
and “B” in descending order. Besides, the stability of the 
transitions between TSPG “A” and “B” is the smallest, fol-
lowed by the stability of the transitions between “B” and 
“C”, and the transitions between “C” and “D” is the most 
stable. 

According to our empirical results, the proposed ana-
lytical method permits mining the change regulation and 
influence factors of stability on different periods of the day 
and extracting more information about traffic dynamics 
with the consideration of different travel purposes and 
traffic features on weekdays and weekends. We believe 
that this paper may provide a valuable reference for re-
fined traffic control in urban areas, as well as traffic safety 
and move smoothly under the background of big data and 
automated vehicles. 

However, it should be noted that compared with the 
stability analysis in the temporal domain, spatiotemporal 
stability analysis will be more valuable. Therefore, one 
challenge for our further study is to develop spatiotem-
poral stability analysis methods and discuss the threshold 
setting in detail.
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