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Notations

Indices:
i  – index of suppliers, i ∈  I;
j  – index of demanders, j ∈  J;
k  – index of alternative discrete solutions for trans-

porting flows, k ∈  K(i,j).
Constants:
ci,j  – cost parameters;
dj  – demands at destinations;
fi,j,k  – cost function values of alternative discrete solu-

tions for transporting flows;
PA  – curve fitting parameter for cost function A(xi,j);
PB  – curve fitting parameter for cost function B(xi,j);
qk  – alternative discrete solutions for transporting 

flows;
si  – supply capacities of sources;
S  – input parameter for cost functions A(xi,j), 

B(xi,j), E(xi,j) and F(xi,j).
Variables:
A(xi,j)  – nonlinear continuous arc-tangent approxima-

tion of a five-step piece-wise linear cost func-
tion;

B(xi,j)  – nonlinear continuous arc-tangent approxima-
tion of a piece-wise linear cost function with 
three gradients;

Cost  – total cost of single cargo transportation;
C(xi,j)  – regular quadratic cost function;
D(xi,j)  – square root cost function;
E(xi,j)  – continuous nonconvex cost function with peak;
fi,j(xi,j)  – cost functions of transporting flows;
F(xi,j)  – non-convex function with multiple valleys and 

peaks;
xi,j  – transporting flows;
yi,j,k  – binary decision variables for the selection of 

optimal discrete transporting flows.

Introduction

Transportation Problem (TP) generally presents a net-
work-flow optimization problem. The basic aim of the 
TP is to achieve the minimum total transportation cost 
for a shipment of single merchandise from a number 
of suppliers to a number of demanders without exceed-
ing capacities of suppliers and by fulfilling requirements 
of demanders. From the viewpoint of the optimization 
problem formulation, the transportation costs, supply 
and demand quantities usually represent input param-
eters while transporting flows denote decision variables.

Traditionally, the unit costs of commodity trans-
portation from suppliers to demanders are assumed 
to have constant values within the TP formulation. In 
this way, the total transportation cost objective function 



takes linear form and the TP can be efficiently solved 
applying Linear Programming (LP) approach. However, 
in real operations, the unit cost of transporting cargo 
often decreases as the amount of cargo increases, most-
ly on account of economy of scale. For this reason, the 
dependence between the amount of cargo and the unit 
cost of its transportation was extensively discussed in 
published literature.

For instance, Dangalchev (1996) approximated re-
lationships between quantities and unit costs of trans-
portation employing partially-linear functions in the 
TP model. Yan and Luo (1999) demonstrated that the 
unit costs for transportation of goods from suppliers 
to demanders can be formulated in the TP model ap-
plying linear fixed charge cost functions. Still, the de-
pendence between the amount of commodity and the 
transportation cost can be also, in many cases, suitably 
approximated using nonlinear terms, such as quadratic, 
square-root or power functions among others, see e.g. 
Mizutani and Yamashita (2013). As soon as the cost of 
transportation becomes nonlinearly dependent on the 
discrete amount of cargo units transported, the TP turns 
into the nonlinear discrete network-flow problem.

Different variations of Nonlinear Discrete Trans-
portation Problem (NDTP) can be widely found in 
many industrial fields including logistics, production, 
engineering, management, etc. However, finding an 
exact optimal solution of the NDTP still represents a 
most challenging task. Classical nonlinear techniques 
for constrained optimization can be applied to solve 
nonlinear transportation problems which contain inte-
ger variables by rounding real-valued points to nearest 
integers. Though, the application of such techniques may 
sometimes lead to sub-optimal results and be less appro-
priate for achieving high quality exact discrete solutions 
in cases of large-scale problems. 

NDTPs that occur in practice often represent NP-
hard problems of combinatorial optimization. In this 
way, the development of an appropriate model formu-
lation and the selection of an adequate optimization 
method are significant for finding valuable solution of 
the NDTP. When nonlinearities appear in the objective 
function, a specific NDTP can be set directly as a Mixed-
Integer Nonlinear Programming (MINLP) task, see e.g. 
Ozsen et  al. (2009); Monteiro et  al. (2010); Romeijn 
and Sargut (2011); Ağralı et al. (2012); Carrizosa et al. 
(2012). On the other hand, the nonlinear transportation 
cost can be also approximated into a linear form (see 
e.g. Kameshwaran and Narahari (2009); Madadi et  al. 
(2010); Christensen et al. (2013)) and the NDTP can be 
thus reformulated into a Mixed-Integer Linear Program-
ming (MILP) problem.

The main purpose of this paper is to present a 
comparison between MILP and MINLP approaches to 
exact optimal solution of the NDTP. The implemented 
research presents a natural continuation of the work 
introduced in reference (Klanšek 2014) where the per-
formance of different exact MINLP optimization meth-
ods, i.e. the Extended Cutting Plane (ECP) method by 
Westerlund and Pettersson (1995), the Branch and Re-

duce (BR) method by Ryoo and Sahinidis (1996), the 
Augmented Penalty/Outer-Approximation/Equality-
Relaxation method (AP/OA/ER) by Viswanathan and 
Grossmann (1990), the Branch and Cut (BC) method 
by Lin and Schrage (2009), and the Simple Branch and 
Bound (SBB) method by Leyffer (2001), was tested on a 
set of reference NDTPs.

In a view of precedent work, the original NDTP 
formulation was linearized and converted into a MILP 
problem. Afterwards, the developed MILP model was 
applied to solve the same reference test problems from 
the previous research (Klanšek 2014). MILP solutions 
of test problems were obtained by CPLEX algorithm 
(GAMS/CPLEX 12.0 User Notes 2012), an implementa-
tion based on branch and bound (BB) method (Land, 
Doig 1960), and compared with those achieved by 
MINLP methods. The paper discusses attained results 
of performed tests as well as MILP and MINLP model-
ling capabilities. The comparison shows advantages and 
limitations of both optimization approaches.

1. General Optimization Problem Formulations

The NDTP represents the nonlinear discrete problem of 
combinatorial optimization. In this way, the NDTP can 
be directly formulated as a problem of MINLP optimiza-
tion. The MINLP optimization problem can be generally 
set as:

Minimize z = f(x) + d Ty,
subject to:

h(x) = 0;
g(x) ≤ 0;                          (MINLP-G)
Ax + By ≤ b;
x ∈  X = {x ∈  Rn: xLO ≤ x ≤ xUP};
y ∈  Y = {0, 1}m,

where: x is the vector of continuous variables defined in 
compact set X; y is the vector of binary decision vari-
ables; dT is the vector of constants. Continuous varia-
bles x can be set linearly or nonlinearly in the objective 
function and constraints while binary variables y can 
only occur in linear terms. Functions f(x), h(x) and g(x) 
denote nonlinear functions comprised in the objective 
function z, equality and inequality conditions, respec-
tively. Thereafter, the expression Ax + By ≤ b introduces 
a subset of mixed linear (in)equality constraints. At this 
point, all functions f(x), h(x) and g(x) have to be con-
tinuous and differentiable.

As soon as the nonlinear expressions are appropri-
ately linearized, the MINLP task can be reformulated 
into the MILP problem. The general formulation of the 
MILP problem can be presented using following expres-
sions:

Minimize z = cTx + d Ty,
subject to:

Ax + By ≤ b;                                  (MILP-G)
x ∈  X = {x ∈  Rn: xLO ≤ x ≤ xUP};
y ∈  Y = {0, 1}m.

Similarly as the MINLP-G optimization problem, 
also the MILP-G one includes the objective function 
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which is subjected to various (in)equality conditions 
with continuous and binary decision variables. Though, 
when the problem of MILP optimization is taken into 
consideration, both types of decision variables can ap-
pear only linearly in its formulation. 

Thus, the nonlinear expressions of the objective 
function f(x) must be linearized into the form cTx and 
the nonlinear (in)equality constraints h(x) and g(x) have 
to be approximated using linear terms and set in the 
formulation as mixed linear restrictions Ax  + By ≤ b. 
Nonlinear terms can be set into a linear form using dis-
cretized or (piece-wise) linear functions. Note, however, 
that perfect matching between the nonlinear continuous 
function and the discretized one can be reached in dis-
crete points while the (piece-wise) linear approximation 
of nonlinear expression can only be achieved under a 
certain linearization error.

2. Optimization Model Formulations

Compared with previously introduced general optimiza-
tion problem formulations, the NDTP model contains 
more specific objective function, decision variables and 
(in)equality conditions. For instance, the total cost of 
single cargo transportation from suppliers to demand-
ers can be defined as the objective function of the NDTP 
model using the following form:

Cost ( ), ,Cost i j i j
i I j J

f x
∈ ∈

= ∑∑ ,  (1)

where: expressions ( ), ,i j i jf x  are applied to comprehend 
cost functions of transporting flows xi,j from suppliers 
i, i ∈  I, to demanders j, j ∈  J, within the criterion of op-
timization. 

Since functions ( ), ,i j i jf x  generally represent non-
linear terms, the NDTP model that includes the objec-
tive function formulation as given in Eq. (1) can be 
exactly solved to optimality only by MINLP approach. 
However, the nonlinear objective function can be discre-
tized and formulated as linear part of the optimization 
model employing the following equation:

( )∈∈∈

= ∑∑ ∑ , , , ,
,

i j k i j k
k K i jj Ji I

Cost f y ,  (2)

where: fi,j,k represents the cost function values of alter-
native discrete solutions k, k ∈  K(i,j), for transporting 
flows xi,j; yi,j,k denotes binary decision variables which 
are used to perform the selection of optimal discrete 
values for continuous variables xi,j from the developed 
superstructure of alternatives. 

The following equality condition should be satisfied 
in order to establish optimal discrete solutions for trans-
porting flows xi,j out of the generated superstructure of 
alternatives:

( )
, , ,

,
i j k k i j

k K i j

y q x
∈

=∑ , i ∈  I; j ∈  J,  (3)

where: discrete constants qk are defined as discrete solu-
tion alternatives for transporting flows xi,j. The discrete 
constant option qk is chosen as the discrete solution for 

the continuous variable xi,j as soon as the obtained value 
of the allocated binary variable yi,j,k is equal to 1. Oth-
erwise, when the gained value of binary variable yi,j,k is 
equal to 0, the discrete constant option qk is rejected.

For the purpose of assuring that exactly one dis-
crete value qk is selected as the discrete optimal solution 
for each continuous variable xi,j, the following logical 
constraint should be fulfilled:

( )
, ,

,

1i j k
k K i j

y
∈

=∑ , i ∈  I; j ∈  J.  (4)

The total outgoing shipment of cargo from each 
stated source i, i ∈  I, cannot exceed its available supply 
capacity. Hence, the supply limitation has to be included 
into the optimization model as:

,i j i
j J

x s
∈

≤∑ , i ∈  I,  (5)

where: si represents available supply capacities of incor-
porated sources.

Similarly, the total incoming shipments of cargo to 
each considered destination j, j ∈  J, are required to sat-
isfy its total demand. In this way, the following demand 
condition has to be comprehended in the optimization 
model:

,i j j
i I

x d
∈

≥∑ , j ∈  J,  (6)

where: dj denotes demands at comprised destinations. 
Note here that the solvability of handled optimization 
problem is ensured only when the total supply exceeds 
the total demand, i.e. when:

i j
i I j J

s d
∈ ∈

≥∑ ∑ , i ∈  I; j ∈  J.  (7)

As regards solution quality, the widest feasible space 
for transporting flows can be determined as 0 ≤ xi,j ≤ 
min{si,dj}. However, in integer optimization, the trans-
porting flows xi,j may take only those discrete values qk 
which were inserted into the superstructure of discrete 
solution alternatives. Accordingly, the superstructure of 
discrete alternatives should be generated attentively so 
that quality solution can be achieved.

The NDTP can be formulated as a MINLP opti-
mization problem taking into account exact nonlinear 
shape of the objective function, as given in Eq. (1), and 
the set of linear conditions as presented in Eqs (3–7). 
If the exact nonlinear objective function is replaced by 
discretized one, as defined in Eq. (2), the same problem 
can be also solved by MILP optimization.

3. Optimization Methods

The exact solution methods for (non)linear discrete op-
timization problems require considerably more mathe-
matical computation than those for similarly sized (non)
linear continuous programs. Therefore, even simply for-
mulated integer programming models may require large 
amount of process time to be solved to optimality on 
account of their combinatorial size. The computational 
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intensity of the optimization search in integer program-
ming often demands significant amount of physical 
memory.

Despite its ease of formulation, the NDTP belongs 
to the class of combinatorial problems that are difficult 
to be optimally solved. In this way, the comparisons be-
tween different modelling approaches and optimization 
methods may provide useful information about which 
one of them is suitable for solving the stated problem.

In previous research (Klanšek 2014), the perfor-
mance of five different state-of-the-art MINLP optimi-
zation methods was tested on a set of reference NDTPs. 
The evaluated MINLP methods included the ECP meth-
od (Westerlund, Pettersson 1995) of the AlphaECP soft-
ware (Westerlund, Pörn 2002), the BR method (Ryoo, 
Sahinidis 1996) of the BARON software (Sahinidis, 
Tawarmalani 2008), the AP/OA/ER method of the DI-
COPT software (Viswanathan, Grossmann 1990), the 
BC method of the LINDOGlobal software (Lin, Schrage 
2009), and the SBB method of the same designated soft-
ware (Leyffer 2001). 

The most performed tests revealed that each MINLP 
method was able to solve a specific NDTP to a better 
solution than the other considered MINLP techniques. 
Such differences between obtained results were expected 
to a certain degree since the applied test problems rep-
resented combinatorial and, in most of cases, nonconvex 
MINLP problems for which the global optimal solution 
is generally difficult to be reached.

In this paper, the MILP model for the NDTP, for-
mulated using Eqs (2–7), was applied to solve the same 
reference test problems for the purpose of comparison 
between both optimization approaches. The MILP search 
for the optimal solutions of test problems was performed 
by CPLEX algorithm (GAMS/CPLEX 12.0 User Notes 
2012), an implementation based on BB method (Land, 
Doig 1960). 

The BB optimization procedure manages a search 
tree comprised of nodes. Each node represents an LP 
subproblem to be solved, checked for integrality, and 
possibly analysed further. During the search process, 
the BB algorithm solves a series of LP subproblems to 
compute linear constraints that cut off potential solu-
tions that violate the discreteness conditions. The basic 
aim of adding linear constraints is to reduce the size of 
solution domain for continuous LP subproblems rep-
resented at the nodes while not removing legal integer 
solutions. The convergence of the BB optimization algo-
rithm is achieved as soon as all active nodes have been 
processed within the search tree, i.e. solved or fathomed.

4. Test Problems

4.1. Input Data
The optimization tests were executed on 7×7 and 10×10 
node reference problems (Michalewicz et  al. 1991). 
The originally proposed continuous test problems were 
modified to comprehend only discrete solutions as per-
formed in reference (Klanšek 2014). For both type of test 
problems, the input data matrices with cost parameters 

ci,j, capacities of sources si and demands of destinations 
dj are given in Appendix A.1.

The 7×7 cost matrix is a symmetrical matrix with 
zero cost coefficients on the diagonal and six cost pa-
rameters with markedly large value of 1000. The 10×10 
cost matrix contains randomly arranged values of pa-
rameters without prominent extremes. Applied cost ma-
trices define the set of balanced test problems since the 
total supply of sources is, in both cases, equal to the total 
demand of destinations. 

The objective function was set for each test case as:

( )∈∈ ∈

= ∑∑ ∑ , , ,
,

i j k i j k
k K i ji I j J

Cost c f y ,  (8)

where: fk denotes the cost function values of alternative 
discrete solutions qk for transporting flows xi,j. The cost 
function values were generated on basis of six different 
discretized nonlinear cost functions, labelled from A(xi,j) 
to F(xi,j), which were found in reference (Michalewicz 
et al. 1991), see Appendix A.2. 

During generation procedure, input parameters PA, 
PB and S were considered for the purpose of calculat-
ing cost function values of alternative discrete solutions. 
Both values of input parameters PA and PB were set at 
1000. A value of 2 was set for input parameter S in the 
7×7 test problems, while in the 10×10 ones a value of 5 
was used. 

Cost function A(xi,j) defines a nonlinear continu-
ous arc-tangent approximation of a five-step piece-wise 
linear function. The values fk of cost function A(xi,j), at 
optional discrete solutions qk for transporting flows xi,j, 
were included into the superstructure of alternatives as 
shown in Fig. 1.

The formulation of cost function B(xi,j) determines 
a nonlinear continuous arc-tangent approximation of a 
piece-wise linear function with three gradients. Fig.  2 
presents the discrete values fk of cost function B(xi,j) as 
they were comprehended within the MILP optimization 
model.

Cost function C(xi,j) was established by a regular 
quadratic expression while cost function D(xi,j) was de-
fined by a square root term. Their cost values fk were set 
into the optimization model within the superstructure 
of discrete alternatives as demonstrated in Figs 3 and 4, 
respectively.

Nonconvex cost functions with peaks and valleys 
are less often applied in practice. However, such cost 
functions are frequently used to provide difficult tests for 
evaluating the solution efficiency of optimization tech-
niques. Michalewicz et al. (1991) proposed two different 
nonconvex cost functions to be applied in severe perfor-
mance tests of optimization methods, i.e. cost functions 
E(xi,j) and F(xi,j).

Cost function E(xi,j) formulates a continuous non-
convex function with peak. Fig.  5 demonstrates the 
values fk of cost function E(xi,j) at alternative discrete 
transportation flows which were incorporated into the 
MILP optimization model.

The expression of cost function F(xi,j) creates a 
highly non-convex diagram with multiple valleys and 
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peaks. Taking into account the form of function F(xi,j), 
the superstructure of discrete alternatives comprised 
cost function values fk as demonstrated in Fig. 6. Fig. 6 
shows that the most scattered superstructure of discrete 
alternatives for cost function values fk was generated on 
the basis of term F(xi,j).

4.2. Optimization Setup
After generating the superstructure of discrete solu-
tion alternatives, a twelve different test problems were 
determined to be solved to optimality by BB approach, 
namely 7×7 and 10×10 test problems with cost values 
of alternative discrete transporting flows based on six 
different nonlinear expressions: A(xi,j), B(xi,j), C(xi,j), 
D(xi,j), E(xi,j) and F(xi,j), see Appendices A.1 and A.2. 
Hereinafter, the said test problems will be denoted as test 
problems 7×7A, 7×7B and further up to 7×7F as well as 
10×10A, 10×10B and so on up to 10×10F, respectively.

Following the structure of input data, the logical 
constraints (3–4), the supply constraints (5), the demand 
constraints  (6), the condition of supply sufficiency (7) 
and the objective function (8) were included into the 
MILP optimization model to obtain optimal solutions 
for test problems. A high-level language for mathemati-
cal programming GAMS (General Algebraic Modelling 

Fig. 1. Discretized cost function A(xi,j) Fig. 2. Discretized cost function B(xi,j)

Fig. 3. Discretized cost function C(xi,j) Fig. 4. Discretized cost function D(xi,j)

Fig. 5. Discretized cost function E(xi,j) Fig. 6. Discretized cost function F(xi,j)
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System) by Brooke et  al. (2012) was applied for com-
puter modelling and for data inputs/outputs. The stated 
test problems were modelled and solved on a 64-bit op-
erating system using the personal computer: Intel Core 
i7, 2.93 GHz, 8 GB RAM and 1 TB hard disc.

The MILP optimization model for 7×7 test prob-
lems comprehended 49 continuous variables, 1087 bi-
nary decision variables and 112 constraints while the 
one for 10×10 test problems included 100 continuous 
variables, 616 binary decision variables and 220 con-
straints. The initial points to start the BB based search 
for optimal solutions of test problems were generated 
using classical north-west corner approach.

4.3. Computational Results
The convergence of the BB optimization algorithm was 
achieved under default CPLEX settings. Tables 1 and 2 
present the obtained optimal discrete solutions for test 
problems 7×7A and 10×10A, respectively.

The minimum objective function value of 186.00 
was obtained for test problem 7×7A while the objective 
function value of the optimal discrete solution for test 
problem 10×10A was 8.00, respectively. The results of 
BB optimization executed on test problems 7×7B and 
10×10B are separately shown in Tables 3 and 4.
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Table 1. Optimal discrete solution for test problem 7×7A

Discrete transporting flow xi,j

19 1 1 1 1 3 1
0 19 5 1 1 1 1
1 0 14 1 1 1 7
0 0 0 18 1 1 0
0 0 0 0 20 0 0
0 0 0 1 1 18 0
0 0 0 1 1 1 17

Objective function: 186.00

Table 2. Optimal discrete solution for test problem 10×10A

Discrete transporting flow xi,j

4 0 4 0 0 0 0 0 0 0
0 0 2 0 3 0 0 3 0 0
0 0 2 0 0 0 0 0 0 0
4 2 4 4 4 4 2 0 2 0
3 0 9 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 4 0 0
4 0 4 1 4 1 0 4 0 0
4 0 4 0 0 6 0 3 0 1
0 0 1 0 0 0 0 0 0 0

Objective function: 8.00

Table 3. Optimal discrete solution for test problem 7×7B

Discrete transporting flow xi,j

19 0 0 4 0 4 0
1 19 0 0 4 0 4
0 1 20 0 0 0 4
0 0 0 19 1 0 0
0 0 0 0 20 0 0
0 0 0 0 0 20 0
0 0 0 0 1 1 18

Objective function: 350.00

Table 4. Optimal discrete solution for test problem 10×10B

Discrete transporting flow xi,j

0 2 1 4 1 0 0 0 0 0
0 0 0 0 0 0 0 8 0 0
0 0 0 0 0 0 2 0 0 0

11 0 10 1 0 3 0 0 0 1
0 0 10 0 0 0 0 0 2 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 6 0 0
8 0 10 0 0 0 0 0 0 0
0 0 0 0 10 8 0 0 0 0
0 0 1 0 0 0 0 0 0 0

Objective function: 147.00

For test problem 7×7B, the attained minimum 
value of the objective function was 350.00. The optimal 
discrete solution of test problem 10×10B contains objec-
tive function value of 147.00. In following tests, the BB 
optimization method was employed to solve 7×7C and 
10×10C problems. After executed optimization, the BB 
algorithm reported optimal discrete solutions for both 
aforesaid problems as presented in Tables 5 and 6.

The achieved optimal discrete solution for test 
problem 7×7C indicates the minimum objective func-
tion value of 2648.00 while the one for 10×10C problem 
shows the minimum value of 4466.00. In dealing with 
test problems 7×7D and 10×10D, the convergence of the 
BB algorithm was achieved at optimal discrete solutions 
demonstrated individually in Tables 7 and 8.

Table 7 points out the found optimal discrete solu-
tion for test problem 7×7D and its minimum objective 
function value of 480.16 while Table 8 shows the one 
attained for the problem 10×10D which indicates the 
minimum objective function value of 377.25. The opti-
mal discrete solutions of test problems 7×7E and 10×10E 
reached by BB approach are given in Tables 9 and 10, 
respectively. 

In view of Table 9, one can see that the optimal 
discrete solution for test problem 7×7E was achieved at 
the minimum objective function value of 556.19. For test 
problem 10×10E, Table 10 highlights that the minimum 
of the objective function was found at value of 71.72. 

Table 5. Optimal discrete solution for test problem 7×7C

Discrete transporting flow xi,j

20 0 1 2 2 2 0
0 20 2 2 2 0 2
0 0 17 1 1 2 4
0 0 0 18 1 0 1
0 0 0 0 20 0 0
0 0 0 0 0 20 0
0 0 0 0 0 1 19

Objective function: 2648.00

Table 6. Optimal discrete solution for test problem 10×10C

Discrete transporting flow xi,j

1 0 3 0 2 0 0 2 0 0
1 0 2 0 2 0 0 2 1 0
0 0 2 0 0 0 0 0 0 0
4 2 4 5 2 3 2 2 1 1
0 0 8 0 1 0 0 3 0 0
0 0 1 0 0 0 0 0 0 0
0 0 4 0 0 0 0 2 0 0

11 0 5 0 1 0 0 1 0 0
2 0 3 0 3 8 0 2 0 0
0 0 1 0 0 0 0 0 0 0

Objective function: 4466.00
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Table 7. Optimal discrete solution for test problem 7×7D

Discrete transporting flow xi,j

20 7 0 0 0 0 0
0 13 15 0 0 0 0
0 0 5 0 0 0 20
0 0 0 20 0 0 0
0 0 0 0 20 0 0
0 0 0 0 0 20 0
0 0 0 3 6 5 6

Objective function: 480.16

Table 8. Optimal discrete solution for test problem 10×10D

Discrete transporting flow xi,j

1 2 0 5 0 0 0 0 0 0
0 0 0 0 0 0 0 8 0 0
0 0 0 0 0 0 2 0 0 0
0 0 22 0 0 3 0 0 0 1
0 0 10 0 0 0 0 0 2 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 6 0 0

18 0 0 0 0 0 0 0 0 0
0 0 0 0 11 7 0 0 0 0
0 0 1 0 0 0 0 0 0 0

Objective function: 377.25

Table 9. Optimal discrete solution for test problem 7×7E

Discrete transporting flow xi,j

0 1 0 0 0 0 26
0 1 0 0 14 13 0
0 0 0 13 12 0 0
0 8 0 0 0 12 0
0 0 20 0 0 0 0
0 10 0 10 0 0 0

20 0 0 0 0 0 0
Objective function: 556.19

Table 10. Optimal discrete solution for test problem 10×10E

Discrete transporting flow xi,j

0 2 0 2 2 0 0 2 0 0
0 0 1 0 3 0 0 2 2 0
0 0 0 1 0 0 0 1 0 0
0 0 26 0 0 0 0 0 0 0
0 0 4 0 1 0 2 4 0 1
0 0 0 0 1 0 0 0 0 0
0 0 1 2 0 0 0 3 0 0

18 0 0 0 0 0 0 0 0 0
1 0 1 0 3 11 0 2 0 0
0 0 0 0 1 0 0 0 0 0

Objective function: 71.72

Table 11. Optimal discrete solution for test problem 7×7F

Discrete transporting flow xi,j

6 9 0 0 0 0 12
2 0 2 0 0 12 12
0 9 16 0 0 0 0
0 0 0 11 9 0 0
0 0 0 12 8 0 0
0 0 0 0 9 11 0

12 2 2 0 0 2 2

Objective function: 162.25

Table 12. Optimal discrete solution for test problem 10×10F

Discrete transporting flow xi,j

0 2 6 0 0 0 0 0 0 0

1 0 0 0 5 0 0 0 2 0

0 0 0 0 0 0 2 0 0 0

0 0 14 5 6 0 0 0 0 1

6 0 6 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 0 0 0 0

6 0 6 0 0 6 0 0 0 0

0 0 0 0 0 4 0 14 0 0

0 0 1 0 0 0 0 0 0 0

Objective function: 127.98

The lattermost experiments were done on 7×7F 
and 10×10F problems where the BB search resulted in 
optimal solutions as presented in Tables 11 and 12, re-
spectively. The obtained optimal discrete solution of test 
problem 7×7F shows the minimum objective function 
value of 162.25. Considering the 10×10F test problem, 
the discrete optimality of its solution was achieved as 
soon as the objective function indicated the minimum 
value of 127.98.

It should be pointed out that, the total solver times 
required by the BB algorithm to find optimal discrete 
solutions for test problems from defined starting points 
were in most cases less than a second. The longest pro-
cess time of about five minutes was exceptionally needed 
for BB algorithm to obtain the optimal solution for test 
problem 7×7F which included the most scattered super-
structure of alternatives for cost function values.

5. Discussion

The following section discusses results of executed ex-
periments and modelling capabilities of both applied 
optimization techniques. For this purpose, Table 13 
presents a comparison between results obtained here 
by the BB based MILP optimization applied on the lin-
earized NDTP model and previously reported results 
(Klanšek 2014) gained employing five different MINLP 
algorithms on the original NDTP model.
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The results of MILP optimization were found here 
by the BB method that operates within the CPLEX soft-
ware while the reference MINLP results from the previ-
ous research were attained by the ECP method of the 
AlphaECP software, the BR method of the BARON soft-
ware, the AP/OA/ER method of the DICOPT software, 
the BC method of the LINDOGlobal software, and the 
SBB method of the same designated software.

On the basis of comparison between achieved re-
sults, it was established, that the BB based MILP opti-
mization employed on linearized NDTP model, with 
the exception of very few cases which are discussed in 
continuation of this paper, obtained smaller or equal ob-
jective function values for test problems than the consid-
ered MINLP methods applied on the same test problems 
using original NDTP model.

By way of illustration, Table 13 demonstrates that 
CPLEX found higher objective function values than Al-
phaECP for test problem 7×7A and SBB for test problem 
7×7B. The main cause for such results arose from the 
fact that cost function values in MINLP models of test 
problems 7×7A and 7×7B were generated using con-
tinuous nonlinear approximations for piece-wise linear 
functions, i.e. expressions A(xi,j) and B(xi,j) given in Ap-
pendix A.2, while those in MILP models for the same 
test problems were determined by exact discrete values, 
as presented in Figs 1 and 2, respectively.

For test problem 7×7B, it was ascertained that dif-
ferences between approximated cost function values and 
the exact ones had nearly negligible impact on the qual-
ity of solutions, mostly because of high values of curve-
fitting parameter PB. On the other hand, in the case of 
test problem 7×7A, the mentioned differences had a 
certain effect on the optimal objective function value. 

More precisely, on each skip from one step to next, 
for example when transporting flow xi,j is equal 2, 4, 6, 8 
and 10, the five-step function A(xi,j) gives approximated 
cost values 0.5, 1.5, 2.5, 3.5 and 4.5 instead of accurate 
ones, i.e. 1, 2, 3, 4 and 5, respectively, see Appendix A.2 

and Fig. 1. Furthermore, that feature of expression A(xi,j) 
cannot be reduced by sharpening the function with pos-
sibly higher values of curve fitting parameter PA. Since 
the obtained MINLP solution of test problem 7×7A 
comprehended some transporting flows xi,j with values 
2 and 6 (Klanšek 2014), the objective function value 
reported by AlphaECP optimization algorithm was ac-
cordingly underestimated.

Based on the experience acquired during modelling 
and solution process as well as gained results of tests, the 
advantages and the drawbacks of MILP and MINLP mod-
els for solving the NDTP are summarized in Table 14. 

Table 14. Comparison of MILP and MINLP  
models for NDTP

Characteristics/effectiveness 
measures MILP model MINLP model

Result quality Higher Lower
Result accuracy Same Same
Solution time Lower Higher
Modelling capabilities Lower Higher
Modelling effort Higher Lower

The executed tests indicated that the BB based 
MILP optimization employed on suitably linearized 
NDTP model may sometimes give exceedingly more 
effective solution in comparison with the MINLP op-
timization applied on the original NDTP model, espe-
cially in cases when the objective function is nonconvex. 
However, when the superstructure of alternatives for 
cost function values is combinatorial, highly scattered or 
follows very nonconvex pattern, the BB search process 
for the optimal solution of linearized NDTP may require 
additional solution time. 

In this respect, the results of test problems 7×7F 
and 10×10F found by MILP optimization show that the 
number of binary variables had larger impact on the BB 

Table 13. Comparison of optimization results for test problems

Test problem CPLEX AlphaECP BARON DICOPT LINDOGlobal SBB

7×7A 186.00 171.59 – 190.89 322.87 244.13
7×7B 350.00 362.96 – 350.97 397.46 349.98
7×7C 2648.00 2648.00 2648.00 2648.00 2648.00 2648.00
7×7D 480.16 556.21 480.16 601.78 480.16 557.81
7×7E 556.19 1020.12 598.42 1083.68 1099.15 861.45
7×7F 162.25 1009.95 – 610.89 900.58 444.58

10×10A 8.00 66.89 – 92.38 86.86 91.37
10×10B 147.00 176.59 – 176.59 177.99 169.59
10×10C 4466.00 4530.00 4538.00 5123.00 4758.00 4466.00
10×10D 377.25 404.18 377.25 443.55 487.58 427.50
10×10E 71.72 81.45 71.79 80.47 80.33 73.73
10×10F 127.98 768.78 – 315.44 884.01 246.24

Notes: For more details about MINLP optimization results found by AlphaECP, BARON, DICOPT, LINDOGlobal and SBB, see 
reference (Klanšek 2014).
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process time than the number of continuous variables 
and constraints. Considering the accuracy of the results, 
both optimization techniques are expected to obtain ex-
act solution for the NDTP. Although the results of per-
formed tests demonstrated better solution efficiency in 
favour of MILP approach, the modelling capabilities can 
be identified as the advantage of the MINLP optimiza-
tion. 

Namely, the MINLP model of the NDTP may con-
tain a wide variety of nonlinear functions. The MINLP 
models are thus especially applicable for those transpor-
tation problems where a large number of discrete vari-
ables of the same type follow the same nonlinear pattern. 
In such cases, the nonlinear approximation functions 
may be used in the NDTP model for easier dealing with 
a large-sized superstructure of discrete alternatives.

Conclusions

The NDTP problem appears in real operations when 
single merchandise, that can be counted in number of 
pieces (such as cargo in containers, goods on wooden 
pallets, semi-finished or finished metallurgical products, 
etc.), should be cost effectively transported from a num-
ber of suppliers to a number of demanders taking into 
account the feature of economy of scale where the unit 
cost of transporting cargo decreases nonlinearly as the 
amount of cargo increases. For example, the economy of 
scale may involve the unit cost reduction originated out 
of the massification of transportation as well as larger 
modes (such as megaships), distribution centres and 
terminals.

The aim of this paper was to demonstrate a com-
parison between MILP and MINLP approaches to exact 
optimal solution of the NDTP. The paper discussed the 
results of experiments obtained applying both tech-
niques on a set of reference test problems as well as their 
modelling capabilities. The set of test problems included 
the 7×7 and the 10×10 node problems with objective 
functions that contained cost values generated on basis 
of six different discretized nonlinear expressions.

The results of performed experiments demonstrat-
ed that the MILP optimization applied on appropriately 
linearized NDTP model can obtain more effective solu-
tion when compared with the MINLP optimization em-
ployed on the original NDTP model. This study demon-
strated that the MILP approach holds advantages over 
the MINLP technique in the field of solving transporta-
tion problems from the viewpoint of solution time and 
result quality while it requires higher effort for dealing 
with the input data on account of lower modelling capa-
bilities. Thus, the MILP approach may be suitably used 
for small- and medium-sized transportation problems 
with reasonable amount of input data to be filled within 
the optimization model or in cases when large-size input 
data can be handled by data sets. 

Such outcome of executed tests was also anticipated 
to some extent, since the field of MINLP optimization 
is significantly more complex and has not yet reached 
the state of maturity and reliability as MILP optimiza-

tion. Irrespective of the fact that the results of performed 
tests demonstrated better solution efficiency in favour of 
MILP approach, it can be established that the MINLP 
optimization can, in many cases, found acceptable exact 
solutions for different NDTPs, especially for those with 
convex objective functions. 

In this sense, the modelling capabilities represent 
the main advantage of MINLP approach that comes 
most to the fore in cases when a large-sized superstruc-
ture of discrete alternatives can be more efficiently han-
dled within the NDTP model using nonlinear terms. 
Finally, the application of nonlinear functions may also 
enable more compact NDTP model formulation as well 
as acceleration of model management tasks, such as 
transforming the data into model parameters and modi-
fying the model.
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APPENDIX

A.1. Cost matrices and source/destination capacities
7×7 cost matrix and source/destination capacities

Source si: 27 28 25 20 20 20 20
Destination dj: 20 20 20 23 26 25 26
Cost ci,j: 0 21 50 62 93 77 1000

21 0 17 54 67 1000 48
50 17 0 60 98 67 25
62 54 60 0 27 1000 38
93 67 98 27 0 47 42
77 1000 67 1000 47 0 35

1000 48 25 38 42 35 0

10×10 cost matrix and source/destination capacities

Source si: 8 8 2 26 12 1 6 18 18 1
Destination dj: 19 2 33 5 11 11 2 14 2 1
Cost ci,j: 15 3 23 1 19 14 6 16 41 33

13 17 30 36 20 17 26 19 3 33
37 17 30 5 48 27 8 25 36 21
13 13 31 7 35 11 20 41 34 3
31 24 8 30 28 33 2 8 1 8
32 36 12 9 18 1 44 49 11 11
49 6 17 0 42 45 22 9 10 47
2 21 18 40 47 27 27 40 19 42

13 16 25 21 19 0 32 20 32 35
23 42 2 0 9 30 5 29 31 29

A.2. Cost functions

A(xi,j) = arctan (PA (xi,j – S))/π + 0.5 +
 arctan (PA (xi,j – 2 S))/π + 0.5 +
 arctan (PA (xi,j – 3 S))/π + 0.5 +
 arctan (PA (xi,j – 4 S))/π + 0.5 +
 arctan (PA (xi,j – 5 S))/π + 0.5
B(xi,j) = (xi,j /S) (arctan (PB xi,j)/π + 0.5] +
 (1 – xi,j /S) (arctan (PB (xi,j – S))/π + 0.5) +
 (xi,j /S – 2) (arctan (PB (xi,j – 2 S))/π + 0.5)
C(xi,j)  = xi,j

2

D(xi,j) = xi,j
0.5

E(xi,j)  = (1 + (xi,j – 2 S)2)–1 + 
 (1 + (xi,j – 2.25 S)2)–1 +
 (1 + (xi,j – 1.75 S)2)–1

F(xi,j) = xi,j (sin(5 π xi,j /4 S) + 1)
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