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Abstract. Based on the literature review, the article presents the analysis of approaches to classifying Gripping Devices 
(GDs) of Industrial Robots (IRs) and substantiates the need for systematising Pneumatic GDs (PGDs). The authors pro-
pose a classification of well-known PGDs, in which the holding force of the Manipulated Object (MO) is formed under 
the action of gas-dynamic effects. A general classification of PGDs with features common to all PGD subtypes is proposed: 
PGD type; contact type; object base type; object centring type; specialisation type; working range; availability of additional 
devices; the number of grippers; type of control; type of attachment to the robot. Each feature of the general PGD clas-
sification, which affects PGD characteristics, is analysed, and a usage example is given. The advantages of each feature 
included in the general PGD classification are also considered. For a more detailed classification, PGDs are divided into 
the following types: Vacuum GDs (VGDs), Jet GDs (JGDs), Combined PGDs (CPGDs). For VGD, the main distinguishing 
features are highlighted, which are the vacuum creation method, effect/actuator, stepwise nozzle, suction cup type, suction 
material type. The main distinguishing features of JGDs include using a jet of compressed air, the shape of nozzle elements, 
the number of nozzle elements, the direction of gas flows, type of surface of the MO. The main distinguishing features of 
CPGD include the type of combination and function performed. The main features are given for each classification, and 
the advantages/disadvantages of the most typical representatives of GDs are described. The authors identify the main de-
velopment directions for GDs at the present stage of robotisation of production processes, medicine, military and space 
technology, etc. Based on the analysis and systematisation of literature data, the authors define the main promising areas 
of research that will be actively developed soon: optimisation of grippers’ design, flexible grippers, additive manufacturing 
(3D-printing) when creating grippers, collaborative grippers, modular grippers, universal grippers, grippers based on new 
materials, new effects in grippers, bionic and medical grippers, simulation and rendering of the gripping process.

Keywords: gripping device, object of manipulation, industrial robot, pneumatic gripping device, vacuum gripping device, 
jet gripping device, combined gripping device.
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Notations

BGD – Bernoulli GD;
CPG – combined PG;

CPGD – combined PGD;
EVS – elastic vertical stroke;
GD – gripping device;

IR – industrial robot;
JGD – jet GD;

JMGD – jet-magnetic GD;
JOGD – jet-orienting GD;

JPG – jet PG;
JVGD – jet-vacuum GD;
MGD – mechanical GD;

MO – manipulated object;
PG – pneumatic gripper;

PGD – pneumatic GD;
PLA – polylactic acid;
RVF – rotation vertical force;

SMA – shape memory alloy;
TPA – thermoplastic polyamide; 
TPC – thermoplastic co-polyester; 
TPE – thermoplastic elastomer; 
TPU – thermoplastic polyurethane; 
VGD – vacuum GD;
VPG – vacuum PG;

VPGD – vacuum PGD.
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Introduction

According to the International Federation of Robotics 
(IFR 2021), which publishes its annual reports in the 
World Robotics Reports (IFR 2020), global sales of robotic 
products fell by 12%, down to 373240 units worth USD 
13.8 billion in 2019 (without software and peripherals) 
after 6 years of growth and the attainment of peak values. 
This decline reflects the hard times experienced by the 2 
main consumer industries:

»» automotive;
»» electrical/electronic. 
However, sales of robotic products in 2019 decreased 

only to the level of 2017, which is not critical for this in-
dustry (Figure 1).

Given an increasingly growing introduction of robotic 
products, one of the main directions of robotisation is 
handling operations and transport operations. The effi-
ciency of handling and transport operations at the pro-
duction site depends on the correct choice of an IR, a GD, 
a gripping method, and the trajectory of the object of ma-
nipulation. The choice of the gripping method and GD 
will depend on the features of handling operations and 
the MO’s parameters. Therefore, the issue of classifying 
and reviewing GDs of IRs addressed in Koustoumpardis, 
Aspragathos (2004); Reddy, Suresh (2013); Long et  al. 
(2020); Birglen, Schlicht (2018); Bogue (2012); Boubekri, 
Chakraborty (2002); Chen (1982); Fantoni et al. (2014a, 
2014b); Raval, Patel (2016); Lien (2013); Carbone (2013); 
Bicchi, Kumar (2000); Wolf, Schunk (2019); Monkman 
et  al. (2007); Proc’ (2008) and Blanes et  al. (2011) is of 
crucial importance for the scientific and engineering com-
munity focused on simplifying the GD at the design stage 
of the robotic cell.

Koustoumpardis and Aspragathos (2004) present the 
classification of GDs of IRs for gripping textiles, which 
is a very promising area. The presented grippers are cat-
egorised according to the gripping principles: clamping, 
pinching or based on pins, brush, vacuum, air jets, elec-
trostatic, adhesive methods. The investigation of human 
performance and the simultaneous research on the assess-
ment of the textiles’ behaviour based on the artificial intel-
ligence methods and the intelligent control of the grippers 
are proposed as research areas. However, the authors do 
not consider the CPGDs and manufacturers’ proposals to 
choose a more rational method of gripping textiles at the 
production site.

Reddy and Suresh (2013) demonstrate that the end-
effector design is a critical consideration in the applica-
tion of robotics to industrial operations. The end-effector 
must typically be designed for the specific application. 
However, with the current rapid development of robot-
ics, the GDs should be unified as much as possible, and 
universal grippers should be developed. Regardless of the 
indisputable nature of the foregoing, the authors managed 
to cite only one example of a positive pressure universal 
gripper developed by Amend et al. (2012). Despite many 
of its advantages, this gripper can only be used on solid 

3D-objects and is ineffective on food and other non-rigid 
or brittle objects. In particular, Reddy and Suresh (2013) 
propose a limited classification of GDs, which does not 
include different types of friction gripping devices, cryo-
genic gripping devices, JGDs, electrostatic gripping de-
vices and VGDs.

Detailed analysis of the mechanical flexible and an-
thropomorphic gripping devices is presented in Raval, Pa-
tel (2016); Bogue (2012) and Chen (1982). An overview of 
these articles indicates a growing tendency to using flex-
ible grippers. This is because they are better adapted to 
gripping objects of different shapes. The statistical analysis 
of MGDs broken down by manufacturers and technical 
characteristics presented in Birglen, Schlicht (2018) de-
serves special attention. This statistical analysis allows es-
timating the application limits and working ranges of GDs 
of IRs. In particular, important research areas in terms of 
control and rendering of mechanical grippers are summa-
rised by Villani et al. (2012); Luo, Xiao (2007, 2005); Cui 
et al. (2009) and Lippiello et al. (2013).

The parameters of GDs and their justification consid-
ered by Boubekri, Chakraborty (2002) and Bicchi, Kumar 
(2000) are part of a stand-alone study with no regard to 
the classical review of types of GDs. In these works, the 
authors focused on the parameters, the gripping method 
of production objects using robots, and promising re-
search areas. Lien (2013) reviewed the GDs of IRs for 
gripping food to address different production types. The 
hygienic quality of the different methods is discussed. Fi-
nally, a qualitative evaluation of the suitability of the dif-
ferent methods in food handling is presented. However, 
the author considers only the main types of GDs and does 
not mention specialised grippers considered by Jørgensen 
et al. (2019), and other works.

The most extensive and detailed reviews (classifica-
tions) of GDs can be found in researches by Fantoni et al. 
(2014a, 2014b); Monkman et al. (2007) and Proc’ (2008). 
The authors mainly focus on mechanical, magnetic and 
other types of grippers but do not make correct assump-
tions concerning PGs. For example, in the comparative 
table of gripping principles and production operations, for 
which they are intended (Figure 2), grippers that employ 
a Coanda nozzle are classified as those that use the Ber-
noulli principle. In fact, the operation principles of these 
2 GDs have distinctive features; therefore, the gripper with 
a Coanda nozzle should be referred to as vacuum grip-
pers, while Bernoulli grippers should be classified as jet 
grippers. A similar situation can be found in research by 
Monkman et al. (2007), mainly when a wide-range of dif-
ferent PGs are represented by only one type – the suction 
gripper (Figure 3).

Based on the analysis of the publications, it was found 
that no precise classification of PGs exists to date. In the 
best-case scenario, they distinguish between the vacuum 
and air-jet grippers, as Koustoumpardis and Aspragathos 
(2004) did. Therefore, this article aims at reviewing and 
developing a classification of PGDs for IRs. This will make 
it possible to find the best solutions for various industrial 
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As a result of the analysis of references, it is established 
that now most of the publications duplicate erroneous 
statements about PGs in general. The classification pre-
sented for the 1st time allows to analyze the choice of 
PG for IRs at a new level. With the help of summarized 

new trends in this field will allow scientists to solve press-
ing problems. This allows a better understanding of the 
construction of pneumatic gripping systems, and their 
advantages and disadvantages for further research and 
implementation.

Figure 1. Annual number of installed IRs by region according 
to World Robotics Reports (IFR 2020)

Figure 2. Grasping principles vs. applications according  
to Fantoni et al. (2014a, 2014b)

Figure 3. Rough classification of objects and the assignment of possible gripper types according to Monkman et al. (2007)  
(filled stripe – suitable; empty stripe – conditionally suitable)
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1. General classification of PGDs 

The main features are identified to create a general clas-
sification of PGDs, which are common regardless of the 
type of PGD. Such features include:

»» PGD type;
»» contact type;
»» object base type;
»» object centring type;
»» type of specialisation;
»» working range;
»» availability of additional devices;
»» number of grippers;
»» type of control;
»» type of attachment to the robot.
The main feature is the type of PGD. These types of 

PGD include VGD, JGD, and CPGD (Figure 4).
A VGD is a device that holds an object by creating a 

vacuum on the object surface using a hollow working ele-
ment (sucker). JGDs are devices that use compressed air 
as a working agent. CPGDs are devices that use different 
types and subtypes of PGs in their design.

According to the type of contact, PGDs are divided 
into 3 types (Figure 5): 

»» contact ones  – the working body of the GD has a 
mechanical contact with the object of manipulation 
in a closed loop;

»» low-contact ones – the active surface of the GD does 
not come into contact with the object of manipula-
tion; friction elements or side stops are used to pre-
vent the object from displacement;

»» contactless (levitation) ones  – the working body 
of the GD does not come into mechanical contact 
with the object of manipulation; pneumatic supports 
(bearings) are used to prevent the object from dis-
placement.

The 1st type is VGD, and the last 2 types are usually 
JGD or CPGD (Figure 5).

According to the nature of object positioning, PGDs 
are divided into 2 types (Figure 6):

»» basing;
»» centring.
Basing PGDs determine the position of the base sur-

face (or surfaces). These include GDs designed to grip flat 
objects. Centering PGDs determine the axis position or 
the symmetry plane of the gripped object (grippers for 
cylindrical objects).

Depending on the purpose, PGD can be equipped 
with add-ons for performing the technological operations 
(for example, add-ons for screwing nuts or screws, press-
ing parts, machining, etc.) and add-ons for controlling the 
object size or its presence in the GD (Fleischer et al. 2013; 
Savkiv et al. 2019a, 2019b).

Figure 4. Schemes of operation of different types of PGDs

Figure 5. Schemes of the type of contact of the PGD with the object of manipulation

Figure 6. Schemes of the base types of the PGD with the object of manipulation

Vacuum – VGD Air jets – JGD Combined – CPGD

Contact

Based

Low-contact

Centering

Сontactless
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sified as multi-purpose, targeted and special ones. Multi-
purpose PGDs are designed for gripping and holding ob-
jects by a limited range of surfaces that differ in shape or 
size. Targeted PGDs are adapted to gripping and holding 
groups of objects that have uniform structural and tech-
nological parameters. Whereas special PGDs provide for 
the gripping and holding of only one type of MOs. Ac-
cording to the operation range, PGDs are divided into 2 
types (Figure 7): 

»» wide-range;
»» narrow-range.
Wide-range PGDs can hold objects in a wide-range 

of gripped surface sizes and narrow-range PGDs  – in a 
limited range, respectively.

In particular, research often focuses on the parame-
ters of various PGDs and surface parameters of the object 
that affect its lifting characteristics (Gabriel et al. 2020). 
In this work, the authors introduce an experiment-based 
modelling method that considers the dynamic deforma-
tion behaviour of vacuum grippers in interaction with 
the specific gripper-object combination. In addition, we 
demonstrate that for these specific gripper-object com-
binations, the gripper deformation is reversible up to a 
certain limit. This motivates to allow for a gripper defor-
mation within this stability range deliberately. Finally, the 
authors demonstrate the validity of the proposed mod-
elling method and give an outlook on how this method 
can be implemented for robot trajectory optimisation and, 
based on that, enable an increase of the energy efficiency 
of vacuum-based handling of up to 85%.

According to the number of working positions, PGDs 
can be divided into single-position and multi-position 
ones (Figure 8). According to the type of action, multi-
position PGDs are divided into 3 groups:

»» sequential;
»» parallel;
»» combined action.
Sequential PGDs include 2-position devices that have 

loading and unloading positions. In each position, work-
ing elements operate independently. Multi-position PGDs 
of parallel action have several positions for simultane-
ous gripping or unloading of a group of parts. PGDs of 
combined action are equipped with groups of positions 
working in parallel. Moreover, these groups work inde-
pendently of each other.

According to the control method, PGDs are divided 
into 3 groups: 

»» command (perform only commands to grip or re-
lease the object); 

»» programmable (relative position of the functional 
elements and the load capacity of such PGDs can 
vary depending on the program);

»» adaptive (equipped with external information sen-
sors that allow the grippers to adjust to the object 
parameters).

According to the type of the IR’s attachment to the 
arm, PGDs are divided into 4 groups: 

»» fixed (which make an integral part of the IR’s arm); 
»» variable (independent nodes with base surfaces for 

attachment to the IR); 
»» quick-change (base surfaces’ design provides for 

their quick change);
»» automatic-change (allow for the automatic attach-

ment of the IR to the arm) (Figure 9).
According to all these features, a general scheme for 

classifying PGs was made and presented in Figure 10.
A more detailed classification of each of the main types 

of PGDs is discussed in the following parts of the article.

2. Classification of VGDs

VGD operate on the principle of direct suction to the MO 
by creating a vacuum in the volume formed by the suc-
tion cup’s inner cavity and the MO surface. Despite some 
disadvantages, which include noisy operation, low effort 
of fixing MOs, short service life (especially when gripping 
hot products), such GDs have many advantages:

»» simplicity of design, low weight;
»» convenience and speed of gripping and release of 

products, possibility of gripping products by one 
surface;

»» compared to MGDs, a more uniform distribution of 
loading on MO, which prevents damage to its sur-
face.

VGDs are especially effective in transporting and in-
stalling of structures and products with a smooth surface 
made of relatively airtight material (glass, metal, stone, 
wood, polymeric materials, etc.). GDs consisting of several 
suction cups are used to grip and move bulky products 
to enhance their reliability. If some of them fail due to 
insufficiently tight contact, this will guarantee the part’s 
retention during transportation. When gripping thin elas-
tic plates with large suction cups, significant deformations 
occur, which can lead to fracture of the brittle plate ma-
terial or the appearance of residual deformations if the 
material is sufficiently plastic. VGDs for IRs have many 
main features, including:

»» methods of creating a vacuum;
»» suction cup type;
»» suction cup material.
VGD designs and their purpose depend on the method 

of creating air vacuum in the vacuum chamber, de-vacua-
tion methods, etc. Vacuum can be created in suction cups 
using air compression when deforming working elements 
to the part (pumpless), increasing the volume connected 
to the suction chamber (piston), using vacuum generators 
(ejector) and vacuum pumps (Figure 11).

The performance characteristics of pumpless vacuum 
grippers are determined by the shape (design) of the suc-
tion cup, MO surface parameters, and movement param-
eters of the gripper when extruding air from under the 
suction cup. The operational characteristics of pumpless 
vacuum grippers are determined by the shape (design) of 
the suction cup, the parameters of the surface of the MO 
and the parameters of the movement of the gripper during 
the extrusion of air from under the suction cup.
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Depending on the method of generating a vacuum 
under the suction cup of the gripper, they distinguish be-
tween different effects that can provide for a vacuum. The 
parameters of the vacuum gripper will depend on the ef-
fect used to generate the vacuum (Figure 12).

Pumping/fan vacuum generators usually employ elec-
trically driven units in the form of vacuum pumps, blow-
ers with side channels, radial fans or axial fans. However, 
this type of vacuum generation has several disadvantages. 
Having a large throughput, this type of generator must 

suck air from the gripping system using large diameter 
hoses – Lien, Davis (2008); Fantoni et al. (2014a, 2014b); 
Reinhart, Straßer (2011) (Figure 13). The disadvantage of 
this type of vacuum generators is the need for sufficient 
cooling of electric motors required for their operation – 
Reinhart et al. (2010); Reinhart, Straßer (2011). There are 
fan vacuum generators integrated in VGD  – Hernando 
et  al. (2021). This solution is used for mobile systems 
when it is impossible to supply the airline.

PCB Vacuum nozzle Component Camera
01005 
component

Vacuum nozzle

Narrow-range

Multi-position

Single-position

Wide-range

Figure 7. Schemes of the position types of the PGD (Pfeffer et al. 2011; Lien, Davis 2008)

Pair of vacuum cups

Telescopic slide-out

Flap

Additional vacuum cup
Parcel

Parcel Parcel

Figure 8. Schemes of the position types of the PGD  
(Schmalz 2021a; Fantoni et al. 2014a, 2014b)

Figure 9. Schemes of different types attachment to the robot 
(SMC Corporation 2021d; Schmalz 2021c; Schunk Inc 2021)

Change

Fast-changing

Automatically-changing



Transport, 2022, 37(3): 201–231 207

R
EV

IE
W

 A
R

TI
C

LE

Figure 10. General classification of PGDs

Pumpless Piston

Ejector

Pumping/fan

Figure 11. Methods of vacuum formation under the suction cup of the gripper

Figure 12. Different vacuum generators and their power range 
(Fleischer et al. 2016)

Figure 13. Vacuum gripper for contour-variant parts  
(Reinhart, Straßer 2011)
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In particular, the Pumping/Fan vacuum generator is 
known for its specific feature: the loss of contact at one 
of the global suction points causes a decrease in pressure 
in the entire gripping system. This problem can be solved 
by using a self-activating valve system – Andersen, Chris-
tensen (2004) (Figure 14). When the suction cup is located 
in front of the empty zone, the airflow automatically closes 
the valve. Furthermore, when the suction cup is located 
in front of the object surface, the valve remains open, 
which creates a vacuum under the suction cup. Therefore, 
a vacuum is created only where it can grip the object of 
manipulation, which prevents depressurisation of the en-
tire system. In this way, vacuum grippers can grip objects 
with holes and non-planar objects of manipulation.

Self-activating valve systems are also relevant for other 
types of vacuum grippers. In particular, Takahashi et al. 
(2013) proposed a flexible vacuum gripper with miniature 
lattice valves; the valves usually close and open when in 
contact with the object of manipulation (Figure 15).

Since the gripper is made of a flexible polymeric mate-
rial, and only the valves that come into contact with the 
object can open to suck the surface, this gripper can hold 
a surface of a free shape, such as objects with steps, holes, 
different curvatures, and so on. In particular, the valve can 
switch autonomously between open and closed areas.

However, grippers with a decentralised vacuum system 
are usually used in GDs. Therefore, the flexibility of such 
exciting systems is much higher due to their adaptability. 
Such systems include elements that use compressed air to 
form a vacuum in the cup of the gripper. These elements 
are called ejectors. Since ejectors do not contain moving 
parts, they work without wear and do not require mainte-
nance. These are the advantages of using them – Fantoni 
et al. (2014a, 2014b); Götz (1991); Hesse (2011). For jet 
vacuum grippers, a vacuum can be created using 2 effects 
(Figure 16): 

»» a Venturi ejector (Fox Venturi Products Inc 2021);
»» a Coanda (Fleischer et al. 2016).
Another advantage of using ejectors for vacuum grip-

pers is integrating ejectors into individual grippers due to 
their small size (Figure 17).

However, as can be seen from Figure 12, these 2 types 
of ejectors have opposite characteristics. In particular, the 
Venturi ejector (Liu 2014; Xu et al. 2016, 2020; Liu et al. 
2016; Hill et al. 1990, 1992; Samad et al. 2012; Olaru 2020), 
provides maximum vacuum at minimum consumption, 
while the Coanda ejector (Wu, Li 2020; Xie 1993; Fleis-
cher et  al. 2013; Lien, Davis 2008; Natarajan, Onubogu 
2012; Natarajan et  al. 2018; Dumitrache et  al. 2011; Si-
erra et al. 2017; Cîrciu, Dinea 2010; Cîrciu, Rotaru 2019), 
provides average values of vacuum at high consumption. 
Therefore, Venturi ejectors are used with vacuum grippers 
for smooth and uncontaminated objects of manipulation, 
which prevents vacuum breaking during gripping. On the 
other hand, Coanda ejectors are used with porous objects 
because vacuum breaking does not critically affect the lift-
ing force and makes it possible to grip penetrating objects 
of manipulation. However, it should be noted that these 

statements are valid for single-stage Venturi ejectors. In 
particular, multi-stage Venturi ejectors (SMC Corpora-
tion 2021a) shown in Figure 18 and high-pressure Ven-
turi ejectors, which provide a higher flow rate at a lower 
vacuum, are available on the market.

Less popular are also reciprocating vacuum grippers, 
which use a piston as a vacuum generator that increases 
the volume of air in the air chamber of the gripper drive, 
thereby providing a vacuum in the working area – Schaf-
frath et al. (2021) (Figure 19).

Design 1 (Figure 19) was developed by Freudendahl 
et al. (2019), whereas design 2 is a counterpart of what is 
discussed by Haines et al. (2014). The drive used in de-
sign 3 is described by Gümpel (2004). This design differs 
in terms of the selected drive and method of movement. 
These piston vacuum grippers can be divided into 2 sub-
species according to the method of movement:

»» variant 1 – 1, 6, 7 and 8 – according to the move-
ment of the piston; 

»» variant 2 – 2, 3, 4 and 5 – by the movement of the 
membrane.

Each of the designs has its advantages and disadvan-
tages (Figure 19). Variant 1 can work decentrally and 
vacuum several suction cups simultaneously, which has a 
positive effect on maintenance. However, in this case, the 
piston stroke will be very long, occupying much space. In 
variant 2, on the contrary, the membrane can help reduce 
the drive size; however, the manufacture of such structure 
is more expensive. A more detailed analysis of structures 
2, 3, 4, 8 is presented by Schaffrath et al. (2021).

Each VPG has a suction cup, which plays a vital role 
while gripping objects of manipulation by IRs. In general, 
there are several types of suction cups: flat, ribbed, flat 
with double grips, bellows, nozzle, area, spongy, com-
bined, special and 3D-printed (Figure 20). 

From the perspective of the gripping process, flat suc-
tion cups are most flexible, which makes it possible to fix 
the object of manipulation tightly. Ribbed suction cups are 
used to dampen the blow against the object of manipula-
tion, and when the object of manipulation is flexible and 
can block the air intake duct. The double-grip suction cup 
is used to grip objects with high roughness or protrusions 
to ensure a tighter fit of the suction cup and prevent de-
pressurisation. Bellows suction cups are used for handling 
delicate, uneven objects of indefinite height. The flexible 
vertical stroke of the bellows can be used to grip an object 
from an uneven surface or lift it directly from a depth. A 
striking example of using such grippers is described by 
Jørgensen et al. (2019). In this work, the bellows suckers 
are selected because of the variable size of the object of 
manipulation and its different shape, which allows com-
pensating the bellows (Figure 21).

The operation of the bellows can be divided into 2 
stages:

»» the suction cup is located above the object, without 
the action of external forces;

»» a vacuum is created, and the object of manipulation 
rises, reaching a state of equilibrium.
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Figure 14. Self-activating valve system  
(Andersen, Christensen 2004)

Figure 16. Types of ejectors used in vacuum grippers (Fox Venturi Products Inc 2021; Rajalakshmi et al. 2017)

Figure 17. Ejectors integrated in GDs (SMC Corporation 2021c; Fleischer et al. 2016; Schmalz 2021b)

Figure 15. Concept of flexible vacuum gripper with  
self-directed valve (Takahashi et al. 2013)
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Figure 18. Multi-stage ejector (SMC Corporation 2021a)
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Figure 19. Possible solution variants for vacuum grippers without central compressed air supply: 1 – SMA wire; 2 – dielectric 
elastomer actuator; 3 – twisted nylon fibers; 4 – electric hoisting (lifting magnet); 5 – magnetic attraction of an iron plate; 

6 – spindle drive; 7 – pinion-gear; 8 – winding up threads (Schaffrath et al. 2021)

Figure 20. Designs of suction cups of vacuum PGDs

1 2 3 4

5 6 7 8

U

U

U

M M

Flat

Bellows

Spongy

Ribbed

Nozzle

Special and 3D-printed  
(Forerunner 3D Printing Inc 2021)

Flat with double grips

Area

Combined



Transport, 2022, 37(3): 201–231 211

R
EV

IE
W

 A
R

TI
C

LE

Nozzle suckers are used for small-sized objects of ma-
nipulation. Moreover, the nozzle diameter is also selected 
depending on the size of the object. Area suction cups 
are commonly used for gripping low-weight textile and 
flexible objects, where it is crucial to have a large grip-
ping area with little force. For example, in Makarov et al. 
(2018), area suction cups are developed for gripping bags 
with their subsequent filling. Spongy suckers are used for 
gripping smooth objects such as glass, plastic, and so on. 
Special and 3D-printed ones are very widely used, as they 
are created for a specific shape and material of the object. 
Combined suction cups are used quite often and have a 
special device to ensure maximum lifting force and pre-
vent vacuum breaking under the suction cup.

From the perspective of manipulating objects with 
suction cups of different designs, the main factor is de-
forming the suction cup during accelerations and decel-
erations. Such deformations may cause the object to slip 
and hit the gripper. Therefore, depending on the suction 
cup design, there are specific recommendations for their 
use in certain movements by the IR  – Monkman et  al. 
(2007) (Figure 22). In addition, many studies have been 
conducted to determine the optimal parameters of the 
movement of vacuum grippers – Al-Hujazi, Sood (1990); 
Mantriota (1999, 2007а, 2007b).

Another critical parameter that affects the gripper and 
its application is the material from which the suction cup 
is made. Of all the known materials used in production, 
the most popular is silicone, as it has all the conformity 
certificates concerning contact with other objects (includ-
ing food). To analyse the materials of the suction cups of 
vacuum grippers, Jakymchuk et al. (2017) present Table 
with relevant data.

According to Table, one can choose the parameters 
of the suction cup material, which satisfy the technologi-
cal task and provide for minimal wear of the suction cup. 
However, at the present stage of production and devel-
opment of 3D-printing, other materials are often used 
for making both the grippers and suction cups. Flexible 
materials are typically used to provide for flexibility and 
compressibility under vacuum (Renganathan 2020): TPEs, 

TPU, TPC, TPA, soft PLA, nylon and others. However, 
non-flexible materials (plastics, composites, metals, etc.) 
are also used for making suction cups of vacuum grippers. 
A striking example of using solid material to minimise the 
price and weight of the suction cup is a metal-printed 3D-
suction cup (Figure 23) – Materialise Inc (2021).

According to all these features, one can draw a general 
scheme for classifying VPGs in Figure 24.

Knowing the classification (Figure 24), advantages and 
disadvantages of all types of vacuum grippers, it is essen-
tial to determine the lifting force of such grippers. In the 
general case, the calculation of vacuum GDs is reduced 
to providing the lifting force, which is determined by the 
Equation:

( ) ,s a a rF S K P K P K= ⋅ ⋅ ⋅ − ⋅

where: F is lifting force [N]; S is the area limited by the in-
ner contour of the suction cup [m2]; Ks is the area reduc-
tion coefficient of the suction cup due to the seal deforma-
tion (≈0.95…1.00 for the seal made of porous rubber); Pa 
is the atmospheric pressure [Pa]; Pr is the residual pressure 
inside the chamber [Pa]; Ka is the coefficient, which takes 
into account changes in atmospheric pressure (≈0.90); K 
is the lifting force reserve coefficient, which takes into ac-
count the air inflow at the point of contact between the 
chamber seal (suction cup) and the surface of the object 
of manipulation (≈1.15...1.50).

The ingress of air through the leakages in the sealing 
zone of the suction chamber reduces the speed and lifting 
force of the vacuum gripper. For certain types of VGDs 
with a sealing ring connected to a vacuum generator, 
the pressure in the inner cavity of the working chamber 
is taken to be equal to the vacuum pressure created by 
the generator. The vacuum depth in the suction chamber 
and the lifting force depend on the characteristics of the 
vacuum source.

Figure 21. Use of bellows-type vacuum grippers for 
transportation of meat products (Jørgensen et al. 2019)

Figure 22. Application of sucker designs at specific movements 
(Monkman et al. 2007): empty circle – scarce;  

1/4 – rare; 1/2 – from time to time; 3/4 – often;  
completely filled – very often
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Table. Suction cup materials and areas of their application (Jackymchuk et al. 2017)

Material of suction cup Perbunan Polyurethane Silicon Viton Perbunan antistatic

Code of material N U S F NA
Durability ++ +++ + ++ +++

Terms of use
Food +
Oiled surface + + + +
High temperature + +
Low temperature + +
Antistatic +
Thin films, prints + +

Resistance
Atmospheric conditions ++ +++ +++ +++ ++
Ozone + +++ +++ +++ +
Oil +++ +++ + +++ +++
Fuel ++ ++ + +++ ++
Solvents ++ + ++ +++ ++
Acid solutions + + + +++ +
Alcohol +++ +++ +++ ++ ++
Temperature range [°C] –10…+70 –20…+60 –30…+180 –10…+200 –10…+70
Shore hardness [A] 50 ± 5 60 ± 5 50 ± 5 60 ± 5 50 ± 5

Notes: + good; ++ very good; +++ excellent.

Figure 23. 3D-printing metal suction cup vacuum gripper (Materialise Inc 2021)

Conventional design 3D-printing design by the customer Final 3D-printing design by materialise



Transport, 2022, 37(3): 201–231 213

R
EV

IE
W

 A
R

TI
C

LE

Figure 24. Classifications of VPGDs

However, when choosing the type of VPG at the cur-
rent production stage, the most crucial factor is the en-
ergy cost of maintenance, which is related mainly to the 
parameters of the object of manipulation. In Gabriel et al. 
(2020), the authors introduce an experimental modelling 
method that considers the dynamic deformation behav-
iour of VPGs that interact with a specific combination of 
MOs (Figure 25).

Gripper deformation was also shown to be permissible 
for such specific combinations as the “gripper – object of 
manipulation”. This allows setting the gripper deforma-
tion level within its stability range. During the previous 
research, the modelling method for optimising the trajec-
tory of robots was substantiated, which will increase the 
energy efficiency of vacuum grippers by up to 85%. An-
other case of trajectory optimisation is a study presented 
in the research by Mykhailyshyn et al. (2019). The authors 
proposed to use the force of inertia generated during the 
transportation of objects for holding the MO and thus 
minimise the holding force of various pneumatic gripping 
systems. The application of this technique has reduced the 
energy costs of transporting objects to 69%, taking into 
account the cost of reorienting the object of manipulation 
by an IR.

3. Classification of JGDs 

In recent years, various devices of jet technology have 
been widely used, which perform gripping, orientation, 
transportation and control of individual parts under the 
action of compressed air. Pneumatic JGDs intended for 
gripping and orienting parts of various configurations, 
materials, and weights occupy an essential place. JGD de-
signs described by López-Arias et al. (2011); Park, Moon 
(2012); Becker et al. (2009); Brandt (1989); Huber (2006); 

Winborne et al. (1976) are based on the well-known lifting 
force effect that occurs when the airflow formed by nozzle 
elements by-passes flat, cylindrical or spherical surfaces. 
Compared with VGDs (Monkman et al. 2007), jet grippers 
have many advantages: they provide for a high-accuracy 
object basing; they can hold flexible, brittle and high-tem-
perature objects; they have the best dynamic characteris-
tics; they are structurally simple and durable. In particular, 
one can identify several main features for classifying JPGs:

»» method of using a jet of compressed air;
»» shape of nozzle elements;
»» number of nozzle elements;
»» directions of gas flows;
»» surface type of the MO.
The most crucial feature of JGDs is the method of us-

ing a compressed air jet, by which 4 groups of JGDs can 
be distinguished (Figure 26): 

»» “nozzle with a developed end surface”;
»» ejection; 
»» vortex;
»» support. 
JGD “nozzle with a developed surface of the end face” 

with a nozzle axis perpendicular to the gripping plane is 
designed for loading parts weighing up to 1 kg and hav-
ing a pronounced flat surface – Erzincanli, Sharp (1997); 
Armengol et  al. (2008); Kamensky et  al. (2019); Li, Ka-
gawa (2014); Savkiv et  al. (2018a, 2018b, 2019a, 2019b, 
2020a, 2020b, 2020c, 2021); Maruschak et al. (2019); Shi, 
Li (2016, 2018). The jet that flows from nozzle 1 towards 
body 2, which is alienated from the nozzle, acts on it by 
the forces of viscous friction created by the flow that ad-
heres to the body surface and the reactive repulsive force. 
As the distance between the nozzle end and the object 
surface decreases, the suction action of the jet becomes 
predominant in comparison with the reactive force, which 
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reaches a maximum at a distance between the interacting 
surfaces h = 0.1...0.3 mm. To avoid lateral displacements 
caused by friction forces in the end plane, the object lifted 
to the nozzle end is fixed to the base elements protrud-
ing above the nozzle end by h > 0.2 mm (friction pads 3) 
(Mykhailyshyn et al. 2021), or using lateral supports. This 
type of JPGs with deflectors are often used to have food 
gripped and transported by IRs – Davis et al. (2008); Pet-
terson et al. (2010); Sam, Buniyamin (2012).

A distinctive element of JGDs is the presence of the 
annular gap in the plane of their end face – Ozcelik, Er-
zincanli (2002, 2005); Mykhailyshyn, Xiao (2022); Ozce-
lik et al. (2003); Brun, Melkote (2006, 2009, 2012); Renn 
et al. (2008); Toklu, Erzincanli (2012); Giesen et al. (2013); 
Liu et al. (2017, 2019); Savkiv et al. (2019a, 2019b); Me-
chatronic Systemtechnik GmbH (2021). Load-bearing 
characteristics of these grippers exceed those of the pre-
vious ones; therefore, they are used for gripping parts 
weighing up to 10 kg. We consider a JGD design shown in 
Figure 26. JGD housing 1 contains a conical insert 2. The 
central hole’s chamfer forms annular conical slit 3 at the 
end of the gripper. In the process of leakage from the slit, 
the annular conical air jet, which is forced to the surface 
brought to the gripper end that handles the object, flows 
into the gap between the housing’s end surface 1 and MO 
4 in the form of a flat radial flow, causing the effect of 
lifting due to ejection. To avoid displacement, the MO is 
fixed at the gripper’s end face using friction forces caused 
by the object’s contact with the friction elements, which 
protrude above the end face of housing 1 by h > 0.15 mm. 
In their article, Liu et al. (2021) demonstrated the ability 
to increase the load capacity of JGDs due to the ejector 
with a Coanda nozzle installed at the JGD’s inlet. The use 
of JGDs in medicine has become widespread (Tromme-
len 2011; Ertürk, Samtaş 2019; Ertürk, Erzincanlı 2020) 
because these grippers can grip flexible objects such as 
organs and tissues during invasive operations.

However, JGDs are very costly due to their design fea-
tures. Therefore, Savkiv et al. (2017a, 2017b, 2017c, 2018a, 
2018b), Mykhailyshyn et al. (2017, 2018a, 2018b), propose 
having JGDs oriented by an IR during transport opera-
tions. They proposed a method for optimising the JGD 
orientation with 3 frictional elements on a straight trajec-
tory (Savkiv et al. 2017a, 2017b, 2017c) and arc trajectory 
(Savkiv et al. 2018a, 2018b). The orientation was chosen to 
have the lifting force generated by the forces of inertia and 
gravity and the force of frontal air resistance, which occur 
when transporting objects of manipulation by an IR.

Load-bearing properties of JGDs are considered by 
Dini et al. (2009). This article discusses “nozzle with a de-
veloped surface of the end face” employed by JGDs, and a 
JGD design with a branched active surface of the gripper 
end intended for gripping leather goods (Figure 27).

The research has found that depending on the leath-
er, microrelief and permeability type, the lifting force of 
each of these structures will be different. For MO with a 
smooth surface and low permeability, the lifting force will 
be greater with “nozzle with a developed surface of the end 

face”, while for more porous and non-smooth surfaces, it is 
better to use G2.2 and G3.2 designs (Figure 27), depend-
ing on the case. Since “nozzle with a developed surface of 
the end face” and JGDs employ the Bernoulli effect to cre-
ate a vacuum on the MO surface, they are often classified 
as one type and called BGDs.

Vortex JGDs have a much longer working range dur-
ing the gripping and holding of MO  – Li et  al. (2008, 
2011); Morimoto et  al. (2010, 2011); Wu et  al. (2012, 
2013); Zheng et  al. (2013); Blazhnov (2014); Xin et  al. 
(2016); Kim, Lee (2015); Zhao, Li (2016, 2021a, 2021b); 
Wang et  al. (2019); Zhao et  al. (2019); Chandran et  al. 
(2019); Konishcheva et  al. (2020). Figure 26 shows the 
principle of operation of the vortex JGD manufactured 
by SMC Corporation (2021b). The principle of operation 
of the vortex JGD is that the compressed air fed through 
the tangential nozzles made in the gripper body enters the 
cylindrical chamber. Due to the tangential displacement 
of the nozzles to the cylindrical chamber, the airflow is 
swirled and, under the action of centrifugal forces, made 
to move along the gripper end. This generates a vacuum 
in the cylindrical chamber and the difference between at-
mospheric pressure, due to which the MO is lifted to the 
gripper end or friction elements. Load-bearing character-
istics of vortex JGDs are less sensitive to the MO gripping 
(retention) distance than ejection JGDs. As a result, vortex 
JGDs are more often used when gripping and transport-
ing objects with an uneven surface (boards with soldered 
elements, objects with holes, etc.). In addition, using this 
effect, vortex JGDs are used in the construction of mobile 
robots, Figure 28, for holding them on horizontal planes 
(walls, glass, etc.) – Zhao et al. (2018).

However, not only vortex JGDs are used for holding 
a mobile robot on horizontal planes. Ejection JGDs are 
also suitable for this purpose Wagner et al. (2008); Journ-
ee et al. (2011). The Li et al. (2015) compared the ejec-
tion and vortex JGDs in terms of energy efficiency and 
load-bearing characteristic (Figure 29). They found that 
in terms of deformations and stresses in the MO gripped 
by ejection and vortex JGDs; they are identical. From the 
perspective of the effect caused by MO roughness on load-
bearing properties, ejection JGDs have better character-
istics than vortex ones with increasing MO roughness. 
In terms of energy efficiency, the authors conclude that 
when the same lifting force is provided, the ejection JGD 
has a higher compressed air consumption than the vortex 
JGD. All authors’ conclusions are correct, but it should be 
noted that the vortex JGD was chosen for the study and 
optimised by the authors themselves. At the same time, 
the ejection JGD was used by Festo Inc (2021a) without 
optimising the nozzle elements and active surface. 

In addition to vortex JGDs that use air leakage from 
the nozzle located tangentially to the inner cylindrical sur-
face of the gripping chamber, vortex JGDs are developed, 
which operate from a fan located in the gripper cham-
ber – Li, Kagawa (2013); Rahul et al. (2020); Shi, Li (2020) 
(Figure 30).
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Figure 25. According to Gabriel et al. (2020), the object geometry influences the achievable holding force significantly

Figure 26. Types of JGDs according to the method of use

1
2
3

h

1
2
3

h

4

Supply port

Work piece

Supply port

Work piece

Nozzle

1 3 2

4 4

Nozzle with a developed surface of the end face

Ejection (SMC Corporation 2021d)

Vortex (SMC Corporation 2021b) Support



R
EV

IE
W

 A
R

TI
C

LE
216 R. Mykhailyshyn. A systematic review on pneumatic gripping devices for industrial robots

Figure 29. Power characteristics of ejection and vortex: a – Bernoulli gripper (Q = 36 L/min);  
b –  Vortex gripper (Q = 15 L/min) (Li et al. 2015)
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Figure 27. Designs of the studied JGD according to Dini et al. (2009)

Figure 28. Use of vortex JGD to keep the mobile robot on a horizontal wall (Zhao et al. 2018)
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that they are an alternative to conventional vortex JGDs 
(Figure  29b) when it is impossible to bring the air line 
to the place where grippers are used. At the same time, 
vortex JGDs using swirl vanes have a lower lifting force 
than classical vortex grippers. This is because classical 
vortex JGDs have a uniform vacuum under the gripping 
chamber, while the vacuum generated in JGD using swirl 
vanes decreases from the centre to the edge of the grip-
ping chamber.

Support JGDs described by Savin-Czeizler, Lang 
(1985); Edwards, Kramer (1986); Kramp (2012); Kusano 
(2010) and Lang, Draht (2009) are widely used in preci-
sion instrumentation, electronics and related industries 
when working with flat and cylindrical small-sized ob-
jects of low weight. One of the advantages of such devices 
is the ability to complete products or accumulate objects 
and combine the gripping process with the orientation 
process. Structurally, such devices represent a housing 1 
(Figure 26), which acts as a distributor of airflow coming 
through the inlet channel 2 and moving through the sup-
ply channels 3 of working nozzles 4. The presented design 
of the support JGD is intended for gripping MO through 
openings: shunts, stators and rotors of variable capacity 
condensers, conventional and spring washers, nuts, etc. 
During gripping, working elements 5 are introduced into 
the openings of objects 6, 7, and the air stream is fed into 
working nozzles 4. The latter is made at an angle to the 
working elements 5 so that the air jets flowing from noz-
zles 4 press objects 6 and 7 to limiter 8. Support JGDs 
that serve flat objects without a through-hole may have a 
different design (Savin-Czeizler, Lang 1985). In any case, 
objects are gripped and fixed under the action of an air jet 
flowing at a certain angle to the working element’s plane. 
Typically, support JGDs have highly specialised character-
istics and applications; therefore, such GDs are not mass-
produced but are a specific solution for gripping specific 
cylindrical MO.

Another special feature of JGDs is the shape of the 
nozzle elements, namely (Figure 31): cylindrical nozzle, 
slotted rectilinear nozzle, slotted open curved nozzle, slot-
ted closed curved nozzle. Known designs of JGDs (Fig-
ure 26) most often use cylindrical or slotted closed curved 
nozzles. JGDs with a cylindrical nozzle or annular slot 
nozzle are the most technological in production.

Another essential feature of a JGD that affects the 
gripper’s characteristics is the number of nozzle elements 
(Figure 32). In particular, JGDs can be single-nozzle and 
multi-nozzle.

A JGD uses more than one nozzle element to increase 
the GD’s lifting force. Another reason for using multiple 
nozzle elements in the JGD may be providing for a more 
uniform lifting force on the MO surface. In addition, in-
creasing the number of nozzle elements in the JGD allows 
increasing the stability of the MO retention in contactless 
transportation and orientation in space. For this reason, 

Liu et al. (2020) developed a JGD equipped with 4 closed 
curved nozzles to ensure an even distribution of forces 
during the gripping of flexible objects (Figure 33).

An essential feature of JGDs, which has a critical effect 
on the gripping of brittle and easily deformable MOs, is 
the direction of gas flows relative to the MO surface. There 
are 3 types of gas flow directions (Figure 34): 

»» parallel; 
»» perpendicular;
»» at an angle to the MO. 
Using different directions of gas flows allows obtaining 

various JGD characteristics and minimising the pressure 
drop on the MO surface when using the parallel direction 
of gas flows.

Depending on the shape of the object of manipula-
tion, JGDs are classified according to the type of gripping 
surface (Figure 35): JGDs intended for flat, cylindrical or 
arbitrary (spherical) MO shapes.

Catalogues of most companies selling pneumatic 
equipment contain JGDs intended specifically for grip-
ping the MO by the flat surface. This is because gripping 
the MO by the flat surface is universal and is most com-
mon in production. In addition, GDs for cylindrical and 
other arbitrary surfaces are made for specific technological 
processes and are usually special. However, the article by 
Petterson et al. (2010) present research findings on using 
adaptive JGDs (Figure 36).

Based on all the features presented, a general scheme 
for classifying JGDs is presented in Figure 37.

It is noteworthy that BGD usually refers to the nozzle 
with a developed surface of the end face and ejection JGD. 
This is because the lifting force in these GDs is formed 
by the aerodynamic effect of lifting and is determined by 
Bernoulli’s law. Appearance and characteristics of indus-
trial designs “Bernoulli gripper OGGB” (Festo Inc 2021a) 
are shown in Figure 38.

4. Classification of CPGDs

CPGD for various handling and transport operations are 
becoming widespread. It should be noted that PGs are 
combined not only with each other but act as the principle 
and auxiliary grippers when combined with other types 
of grippers (mechanical, magnetic, adhesive and others). 
Therefore, a feature should be added to the classification 
of CPGDs – a possibility to combine with other types of 
grippers. Since CPGDs have all the classification proper-
ties of their types included in the combination, only dis-
tinctive features for such grippers will be included in the 
CPGD classification (Figure 39).

In the 1st place, we consider the CPGDs, which com-
bine only pneumatic methods to create a lifting force  – 
Mechatronic Systemtechnik GmbH (2021); Stühm et al. 
(2014); Savkiv et  al. (2017a, 2017b, 2017c). A striking 
representative of such GDs can be a JVGD (Stühm et al. 
2014) (Figure 40).
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Figure 31. JGDs with different forms of nozzle elements
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Figure 32. JGD with different numbers of nozzles, for example, 
vortex and Bernoulli grippers
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Figure 33. Pressure distribution on the contact area for multi-nozzle JGD (Liu et al. 2020): a – gap quantity 4; b – gap quantity 6; 
c – gap quantity 10; d – gap quantity 14; e – gap quantity 18; f – gap quantity ∞

Figure 34. JGD with different directions of gas flows, on the example of BGDs

Figure 35. JGD for different types of MO surface shapes, on the example of BGDs

Figure 36. Adaptive JGD (Petterson et al. 2010): a – forming of the gripper surface by pressing the gripper against the product; 
b – matrix pins protrude on the top side during forming; c – the shape is locked (in the centre of the gripper, the air inlet is circled)
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Figure 37. Classifications of pneumatic JGDs

Figure 38. Parameters of Bernoulli gripper OGGB  
(Festo Inc 2021a)

Figure 39. Classifications of CPGDs
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gripping of brittle objects of manipulation, namely, ele-
ments of batteries, boards, silicon wafers, etc. Another 
CPGD with similar characteristics is the JVGD – Savkiv 
et  al. (2017a, 2017b, 2017c) (Figure 41). It differs from 
other CPGDs because its main lifting force is provided by 
a rigid vacuum suction 1 (P0 supply of compressed air to 
the ejector and grippers). In addition, 3 Bernoulli grippers 
2 can grip the MO from a greater distance, thus ensuring 
the lack of impact during its gripping and lack of contact 
during its subsequent retention. 

Another essential type of CPGD is a combination of 
PGDs and MGDs  – Tawk et  al. (2019); Derby, Lippiatt 
(2005); Marsova et al. (2020). They have many advantages, 
as they combine all the strengths of their main types. For 
example, consider a flexible mechanical-vacuum CPGD – 
Tawk et al. (2019) (Figure 42).

The main advantages of this CPGD design (Figure 42) 
include the initial grip of the vacuum suction cup, which 
allows gripping the MO from different distances without 
damaging it. Otherwise, all the elements would simply 
bend, even when pressing the MO. Another advantage of 
this gripper is the wide-range of flexible fingers, making it 
possible to grip objects of different shapes and sizes.

Compared with the gripper (Figure 42), PGs can be 
used in the CPGD as the main holding mechanism – Der-
by, Lippiatt (2005) (Figure 43).

As can be seen from the CPGD design (Figure 43), the 
spatula, which is driven by a pneumatic cylinder, plays 
the role of an auxiliary mechanism that allows separating 
the MO from the surface, on which the gripping occurs. 
Moreover, the object of manipulation is held by VPGDs.

In addition to the holding and feeding functions, 
CPGD may include the MO orientation functions, often 
performed by PGDs. For example, consider the CPGD for 
gripping razors from the assembly line – Michalos et al. 
(2018) (Figure 44).

As can be seen from the design of the pneumatic-
mechanical CPGD (Figure 44), “manipulation module” 
is used to orient the razor in the gripper chamber, after 
which compressed air is supplied to the “|front nozzle”, 
and MO is fed to the working area “grasping module”, 
where the already oriented MO is gripped mechanically 
with a servo drive. However, there is a CPGD design in 
which the gripping and orientation functions are built on 
a pneumatic principle – Savkiv et al. (2012a) (Figure 45). 

At the core of the patent (Figure 45) is the contact-
less angular orientation of objects such as bushings, short 
tubes, etc. The device operation envisages its preliminar-
ily positioning under the object of manipulation 2. From 
pressure source 8 through air line fitting 7 and hole 6, the 
compressed air enters working chamber 5. Next, through 
a tube for injecting compressed air 12, the compressed air 
enters the additional working chamber 9. From nozzle 4 
and additional nozzle 10, compressed air flows into the 
environment. At the same time, the compressed air at-
tacks the surface of MO 2 at an angle α = 15… 45° from 

additional nozzle 10. Under the action of friction force 
generated upon contact of compressed air with MO 2 sur-
face, the latter begins rotating. As the distance h decreases, 
an elastic airbag is formed between surface 3 and MO 2. 
When fixation hole 17 and nozzle 4 coincide, an object of 
manipulation 2 is fixed in the required position for the 
start-up. Longitudinal groove 11 is designed to prevent the 
interaction between airflows coming from nozzles 4 and 
10. By changing the position of bolt 16, the MO gripping 
angle can be changed. Thus, the proposed JOGD allows for 
the contactless gripping, orientation and transportation of 
objects such as bushings, short tubes, etc. Another pos-
sible combination is magnetic and PGDs. A remarkable 
representative for gripping magnetic and non-magnetic 
MOs is a JMGD (Savkiv et al. 2012b). This combination 
makes it possible to achieve contactless transportation 
of magnetic objects, which is very relevant for coated or 
heated MO.

Another representative of combined grippers is the 
bionic gripper from Festo Inc (2021b) (Figure 46). This 
CPGD includes elements of a flexible vacuum-enclosing 
gripper, and its shape resembles the tentacles of an oc-
topus. Among its suction cups, there are 8 active suction 
cups, where a vacuum generator forms the vacuum, and 
10 passive suction cups, in which the vacuum is generated 
using deforming suction cups. This CPGD has a high grip-
ping force for capturing cylindrical objects and is usually 
used for this purpose.

In recent years, universal flexible gripping devices for 
IRs (Brown et al. 2010) have become very popular because 
they have many advantages, among which are devices 
for MO and a high weight-lifting capacity. Based on all 
the advantages of universal flexible grippers, Fujita et al. 
(2018) developed a CPGD (Figure 47), which combines a 
vacuum gripper with a universal flexible gripper. 

The design of the universal VGD (Figure 47) allows 
gripping the MO, which can not be handled using con-
ventional VPGD. This is attained due to a highly flexible 
vacuum suction cup, which is deformed under vacuum. 
Next, an external ejector or a vacuum line generates a 
vacuum in the gripper cavity. A gripper of this kind is 
very promising and can be used in many processes, which 
previously required various design gripping devices for a 
particular case.

5. Perspective directions of researches  
of gripping devices of IRs

Needless to say that promising research areas in the field 
of gripping devices of IRs will be directly related to the 
production tasks and promising research areas in the field 
of IRs. While analysing the latter research by Sanneman 
et al. (2020), we find the authors’ opinion: “<…> Robotic 
gripping in which robots can hold or pick up or manipu-
late objects is still far behind human gripping capabilities. 
A large robotic manufacturer we interviewed described 
physical gripping hardware as an enormous challenge.  
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Figure 42. Flexible mechanical-vacuum CPGD (Tawk et al. 2019)

Figure 43. Vacuum-mechanical CPGD (Derby, Lippiatt 2005)

Figure 44. Pneumatic-mechanical CPGD (Michalos et al. 2018)
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flexibility of the hardware, cited by companies and re-
search institutions, provided some hope that the technol-
ogy may benefit from emerging innovations such as deep 
learning or more robust sensing systems that can improve 
gripping performance <…>”.

A similar opinion can be found in research by Tai et al. 
(2016). Hodson (2018) in his article formulates the main 
idea: “<…> Designing machines that can grasp and ma-
nipulate objects with anything approaching human levels 
of dexterity is 1st on the to-do list for robotics <…>”.

This statement can only confirm the general idea that 
robotics develops faster than gripping systems. In the con-
clusions to the article by Sanneman et al. (2020), the au-
thors point out: “<…> Along with perception challenges, 
gripping remains one of the most limiting factors of auto-
mation in factories today <…>”.

Robotics now has 2 directions in terms of gripping and 
manipulating objects. The 1st (Figure 48), when the ro-
bot knows exactly the position of all objects in space and 
he needs to gripped the object in a specific place with a 
specific geometry. This is typical of IRs that have accurate 
reproducible cells for work. As a result, the accuracy and 
efficiency of gripping objects of manipulation are devel-
oped in this direction. That is why scientists and manu-
facturers of grippers are trying to optimize the design of 
grippers by giving them higher accuracy, multitasking or 
efficiency. However, it is also important for medical robots 
that perform operations and where you need to accurately 
gripping and manipulate organs or tissues of living organ-
isms. Such trends will be accompanied by the introduction 
of modular solutions that will have several high-precision 
grippers for different tasks. In particular, the use of new 
materials will improve the technical characteristics of 
grippers devices. 

The 2nd (Figure 49), when the robot is in an unknown 
space, has certain sensors (artificial vision and/or oth-
ers), and captures without the exact coordinates of the 
object of manipulation and its geometry. This is typical 
for warehousing operations, household robots and others.  Figure 46. Tentacle gripper (Festo Inc 2021b)

Figure 45. JOGD (Savkiv et al. 2012a)
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Therefore, for this type of task, flexible and universal grip-
pers are being actively developed, which make it possible 
to gripped the object of manipulation with a significant er-
ror in the positioning of the end-effector. In addition, the 
question of human safety in cooperation with the robot 
arises in everyday tasks, so collaborative grippers will de-
velop and become a trend as the development of human-
machine interface. This trend accompanies the introduc-
tion of new materials, effects and encourages the use of 
additive manufacturing to create new types of grippers.

Both of these areas will be characterized by research, 
accompanied by modeling and rendering of the processes 
of gripping and manipulation of objects. Such studies are 
relevant in terms of predicting the performance of grip-
pers, optimizing their characteristics and using these mod-
els to teach artificial intelligence. Which allows to quickly 
develop and accumulate new knowledge in this area.

Despite the general statements, this industry is actively 
developing. It allows identifying some areas that are prom-
ising and have the potential of bridging many gaps with 
new technologies (inclusion in the list does not affect the 
importance of each area):

»» optimising the designs of grippers (load-bearing 
characteristics, minimising energy consumption for 
maintenance, etc.);

»» flexible grippers (minimising deformation of MOs 
and a wide-range of the gripping process);

»» additive manufacturing (3D-printing) when design-
ing grippers (minimising the price of grippers and 
the ability to reproduce structural elements that can-
not be reproduced by conventional technologies);

»» collaborative grippers (intelligent grippers with hu-
man presence sensors and the ability of educational 
programming);

»» modular grippers (add flexibility in using combined 
designs and adapting to specific production needs);

»» universal grippers (possibility of adapting the object 
of manipulation and gripping force);

»» grippers based on new materials (using friction 
properties, materials with shape memory, new ma-
terials for 3D-printing);

»» new effects in grippers (using still unexplored or un-
used gripping effects and principles);

»» bionic and medical grippers (using natural forms to 
achieve maximum gripping efficiency);

»» simulation and rendering of the gripping process 
(necessary for both researchers and designers of au-
tomated systems on the production site).

The primary purpose of all advanced research tenden-
cies is to obtain maximum productivity and flexibility in 
operations performed by GDs. More problems arise when 
we are trying to grip MOs that could not be gripped be-
fore. Therefore, there is a tendency to use flexible grippers 
with unknown MOs. Moreover, special grippers have been 
designed lately for this type of MOs to ensure greater pro-
ductivity. Given the above, it is hard to achieve maximum 
productivity and sufficient flexibility at the same time. 
This will be the next challenge faced by researchers in the 
future.

It is now proposed to use an anthropomorphic (hu-
man-like hand with fingers) gripper to develop a produc-
tive and flexible gripper. However, a GD of this kind has 
many complexities and disadvantages the scientists are 
trying to eliminate: complex control, complex implemen-
tation of feedback to reproduce tactile sensations, artificial 
vision, the difficulty of gripping thin, brittle, flexible MOs 
easily handled by PGDs. Therefore, combined anthro-
pomorphic GDs with the effects of flexible, pneumatic, 
magnetic grippers will be produced on a large scale in the 
future. This will be due to the rapid development and use 
of artificial intelligence for MO recognition and training 
of robotic systems.

Figure 48. Challenges exactly the surrounding space is known

Figure 49. Callenges unknown surrounding space
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Based on the review of GDs for IRs, the task of improv-
ing the classification of PGDs is found to be relevant. In 
addition, it needs further development. GDs of IRs are 
grouped according to common functional features in the 
classification schemes. Therefore, the article analyzes the 
classifications and designs of well-known PGDs, in which 
the lifting force is formed under the direct static or dy-
namic air flow that acts on the surface of the MO. For a 
more detailed classification, PGs are divided into types: 
VPGs; JPGs; CPGs. A general classification of PGs is pro-
posed with features that are common to all subtypes: type 
of PG; contact type; object base type; object centering 
type; type of specialization; working range; availability of 
additional devices; number of grippers; type of control; 
type of attachment to the robot. A usage example of PGDs 
is given along with the analysis of positive aspects of each 
feature of PGDs. 

The analysis of publications and designs of VGDs al-
lowed finding their main features that distinguish them 
from other PGs: vacuum creation method, effect/actuator, 
stepwise nozzle, suction cup type, suction material type. 
For each type of vacuum grippers, the analysis of their pa-
rameters is performed, and recommendations are given as 
to how they should be applied for gripping various objects 
of manipulation.

The analysis of publications and designs of JGDs al-
lowed finding their main features that distinguish them 
from other PGs: method of using a jet of compressed air, 
shape of nozzle elements, number of nozzle elements, di-
rection of gas flows, type of surface of the MO. The analy-
sis of the main characteristics of jet grippers is made, and 
recommendations are given as to how they should be ap-
plied to certain types of MOs.

The analysis of publications and designs of CPGDs al-
lowed finding their main features that distinguish them 
from other PGs: type of combination, performed function. 
Examples are given that demonstrate the main advantages 
and disadvantages of this type of GDs. In particular, exam-
ples of integrating additional control functions into PGs 
are given, along with recommendation on the orientation 
and performance of some technological operations, which 
allow improving their universal nature. 

The relationship between tendencies and prospects 
for the development of GDs for IRs is established, and 
directions for improving roboticsare outlined. The opin-
ions of the leading companies are given, which emphasize 
the importance of developing GDs at the present stage of 
mass robotization in the manufacturing industry, surgery, 
everyday life, prosthetics, etc. According to the data pre-
sented, a conclusion can be made concerning the basic 
lines of research, which will be actively developed in the 
near future: optimizing designs of grippers, flexible grip-
pers, additive manufacturing (3D-printing) when devel-
oping grippers, collaborative grippers, modular grippers, 
universal grippers, grippers based on new materials, new 
effects in grippers, bionic and medical grippers, simula-

tion and rendering of the gripping process. In addition, a 
detailed classification of all major types of PGs will allow 
engineers and scientists to clearly distinguish and find op-
timal solutions for the robotization of different processes.
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