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Introduction 

Today air transport industry is influenced indirectly 
by the economic recession, increase of fuel cost, stiff 
competition and political instability. Airline companies 
(carriers) have a big responsibility to satisfy people’s 
needs and in the end to gain a profit. The most impor-
tant thing for them is to have efficient routes without 
empty seats. The major change in trends of air transport 
development is to increase operating efficiency, produc-
tivity and profitability, so more and more routes with 
multiple stops (landings) are introduced. In other hand 
the people wants to be transported for the shortest pe-
riod of time and for the lowest price. The scheduling of 
multi-stop flight routes is the crucial element and very 
delicate problem, especially in the relation to airplane 
capacity, the airport slots, the airplane rental charges, 
flight clearances and landing permits, airport handling 
costs, agent’s fees and other cost elements and their in-
fluence to profit (Barnhart et al. 2009; Carey 2007). 

Potential passenger contingents are waiting to be 
transported with one or more airline carriers, using lim-
ited capacity (one or more airplanes). Efficient transfer 
of passengers between airports is very demanding prob-
lem for the carrier (operator). Such problem exists for 
any direction and for any contingent. 

However, the general problem can be seen in two 
ways. In the first case, the passenger demands are direct-
ed to definite carrier (operator) and for existing routes. 
In that case, the route planning on the operational level 
has to fulfil all demands (bookings etc.). If demands 
increase in time, the carrier has to expand transport 
capacity (bigger airplane or more units) that is very ex-
pensive. If demands for some directions are decreasing, 
the sufficient capacity appears. The routes are firmly de-
fined and cannot be instantly changed. However, poten-
tially, some of point-to-point oriented routes could be 
switched to multi-stop routes. The space for re-routing 
on operational level is very small, mostly caused by jour-
ney prolongation and restrictions of time scheduling. In 
general, the route modification (re-routing) includes the 
new airport on the route or eliminating of the existing 
airport from the route. In the last option carrier has to 
ensure the alternative route (another airplane) to fulfil 
all demands, of course, if it possible in severe limita-
tions in route scheduling. Switching to multi-stop routes 
could be attractive to passengers only if it ensures sig-
nificantly lower transport prices (ticket discounts) or in 
exceptional cases when alternative does not exist.

In the route, planning on strategic level new routes 
can be introduced or some existing routes can be re-
routed. Creation of multi-stop (multi-hop) routes and 
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definition of appropriate airplane capacity can be a cru-
cial part of it. The airline operator (carrier) can plan to 
transport only a part of demands from the potential 
market (statistically data + forecasting). In other words, 
the carrier has to decide about the share it wants to par-
ticipate in transport for each passenger contingent that 
potentially exists on the market. Of course, it has to be 
in relation to available capacity (airplane seats). 

Introduction of multi-stop routes is in firm cor-
relation to the flight efficiency of each airplane and 
whole carrier fleet. Therefore, it could be the key for 
better capacity utilization and transport cost reduction. 
Multi-stop routes can be very effective; especially in the 
case of small contingents, that carrier wants to serve. 
Prolongation of the journey really appears, but it has to 
be announced in advance. It is less critical factor than 
expenses nowadays. 

In advance this paper deals with the capacity man-
agement problem extended to transportation problem 
of different contingents transported by one transport 
mean on the route with multiple sources (loading ports) 
and multiple destinations (ports of discharge). We call 
it multi-stop (multi-hop) transportation problem. The 
special case is the point-to-point route where passengers 
can load the whole airplane without empty seats. 

In such strategic planning, we are looking for the 
set of airports on the route that can ensure the best profit 
to carrier (operator), in the first case the reduction of 
transport cost per passenger. In advance all transport 
elements and costs have to be known: Ticket prices 
(freight cost) are projected in advance, too. They have 
to be concurrent on the existing market so carrier has 
to find space for such cuttings.

For an example the network of airports and dis-
tances between them are shown on Fig. 1. Here we have 
five potential airports and distances between them in 
km or miles. Passenger wishes (demands) are shown 
in respect to transport capacity (in percentage of total 
airplane capacity that carrier use) (Fig. 2). If transport 
cost (and profit) depends only of distances it is clear that 
the airplane will avoid airport 3 and 4, to reduce the 
transportation cost, as it is shown with dotted line on 
Fig. 1. The airport 2 has to be on the route because the 
efficiency is increased with load 2–5. As we can see on 
Figs 3–4. the airplane is barely empty. However, if we 
increase flight tickets for some directions e.g. for con-

tingent 3–4 (for only 10%) the optimal routing sequence 
will include the airports 3 and 4, see full line on Fig. 1. 
Details are shown on figures in chapter 5.

In the chapter 1 we explained the role of optimiza-
tion in airline industry through recent years and same 
important papers with that thematic are mentioned. In 
the chapter 2 the mathematical model for the routing 
problem on strategic level is explained. In the chapter 3 
the algorithm development is shown. In the chapter 4 
we talk about costs and objective function that is non-
linear. In the chapter 5 we can see one test-example and 
capabilities of algorithm through illustrated results. As 
the algorithm has some limitations, the algorithm im-
provements are proposed in the chapter 6.Fig. 1. Distances between airports

Fig. 2. Potential loads of passengers (contingents) in percent 
of total airplane capacity

Fig. 3. The optimal route with passengers on board (loads) in 
percent of total capacity of airplane

Fig. 4. Efficiency of the route
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1. Previous Work

Operational decisions are divided on the route defini-
tion, flight frequency, departure time, type of airplane, 
fleet size with the aim to provide efficient transportation 
at the lowest possible cost. Complicated process has to 
be supported by the computers and informatics that are 
capable to optimize it and find out the appropriate and 
acceptable solution. 

The most important issues to enhance the airline 
operation efficiency are flight routing and fleet schedul-
ing. Generalized approach to multi-commodity trans-
portation problem we can find in the early paper of 
Wollmer (1970). Wollmer finds out that capacity of the 
air corridors are virtually unlimited; however, the num-
ber of flight assignments would be constrained by num-
ber of planes, pilots, same as with upper bound of seats 
for defined airplane type (capacity). 

Many network flow techniques and models exist to 
solve the complex mathematical problem in flight rout-
ing (Ouorou et  al. 2000; Trochim 2006; Vasigh et  al. 
2008). Model for fleet routes is based on the Multiple 
Commodity Network Flow Problem (MCNFP) intro-
duce in paper by Yan and Tseng (2002). 

Allocation of the expenses and revenue are the ba-
sic things that must be considered to evaluate the route 
profitability. Some costs can be caused directly and some 
indirectly. These data are very important to determine 
the correct calculation and profitability of the each route 
(Chang, Schonfeld 2004).

In fleet routing and multi-stop flight scheduling the 
crucial elements are the setting the available airplanes, 
the airport slots, the airplane rental charges, airport ser-
vice cost (quota), fuel consumption, maintenance cost 
and other cost elements, which lead to the minimization 
of all expenses and maximization of the company’s profit 
(Yan, Young 1996). 

Short-term flight scheduling model is developed 
and applied to Taiwan airlines. Such model is defined as 
a non-linear integer program that is known as NP-hard 
problem. Non-linear problem is more difficult to solve 
than the traditional flight-scheduling problem that is de-
fined as integer linear program. The heuristic methods 
and algorithms can improve such approach significantly 
(Yan et al. 2007b).

In the paper by Yan and Chen (2002) is developed 
the model for Taiwan inter-city bus carriers. The model 
is based on integer multiple commodity network flow 
problem, too. They solve the problem of bus movements 
and passenger flows by interconnecting the passenger 
trip demands on each bus stop and bus capacity defining 
the time schedule for the route. 

In the literature, many papers have been already 
devoted to ship routing in marine industry. Ferry fleet 
routing problem is solved by time space network tech-
nique that is specified to the defined time period (one 
day in this paper). In that technique represented by 
network structure, horizontal axis symbolizes airport 
locations and vertical axis represents the time duration 
(distance). Each arc between airports represents activity 
of ferry transport (Yan et al. 2007a).

Another group articles are concerned by vehicle 
routing problems. In the paper of Garaix et al. (2010) the 
optimization of routing vehicles in freight or passenger 
transport is presented. In that, approach the road net-
work is represented as weighted complete graph. Each 
arc stands for the shortest route for a potential pair of 
stops. One arc can be determined by numerous charac-
teristic like travel duration, travel cost, etc. With the con-
sideration of alternatives routes, they evaluate an impact 
on solution algorithms and values through the graph of 
the road network. During this representation for vehicle 
routing problem the fixed sequence arc selection prob-
lem is raised. They proposed a dynamic programming 
solution method for solving that problem. The base 
element in such approach is to determine the shortest 
path with resource constraints like vehicle transporta-
tion capacity and maximal travel duration. Alternative 
paths offer a compromise between these components but 
some of them cannot comply with defined constraints 
and have to be eliminated from optimal solution. 

In the article written by Stojković et  al. (2002), 
DAYOPS (DAY of OPerations Scheduling) model is pre-
sented. Every arc presents each flight leg, which means 
a distance between departure and arrival. Additional 
arcs present maintenance and ground service transfer 
between airplane and rest, passenger connections, and 
crew movements. In this research, four phases of plan-
ning process are presented and includes flight schedul-
ing, fleet assignment, airplane routing, and crew sched-
uling. DAYOPS model can be applicable as fifth phase 
when these four phases are completed. Model can be 
used to re-optimize the route schedule at the high level 
and at the lower level. At the higher level, some flights 
can be cancelled or at the lower level, the model will find 
out a new best and profitable flight route. 

The load factors, airline frequency, airplane size are 
necessary issues that must be taken in consideration for 
making the airline profitable. Choosing an appropriate 
airplane size for the flight route must be appropriate to 
the level of demand. This factor can influence a lot on 
the optimization of the flight route and optimum load 
occupancy of the airplane (Givoni, Rietveld 2006).

To determine the profitability of the route some op-
erating cost must be verified. These costs are fixed direct 
operating costs, variable direct operating costs, and indi-
rect costs. Maintenance cost, airplane rental, fuel and oil 
per airplane, airport services cost have an influence on 
the revenue and finally on the profitability of the flight. 
Maintenance costs include engine repair, consumption 
parts for airplane, technical support, technical docu-
mentation, maintenance staff, and other maintenance 
costs (Gomm 2005).

Airport service cost include landing cost and han-
dling cost for airplane, transhipment of passengers, gas-
oline, luggage and freight on the airport. Each airport 
determines the cost for using the airport for landing and 
handling their airplanes (Tatalović et al. 2009).

Many carriers installed the route planning software 
with the goal to optimize their existing routes, to in-
crease profit and decrease expenses. With such systems, 



we can clearly see the picture of the costs that influence 
on the route profitability and the way how to improve it. 
In addition, the software helps the pilots to find a better 
balance of fuel usage, flight speed and flight path. The 
efficiency today is the most important element and the 
costs must be minimized wherever it is possible. Such 
optimization tool could be the crucial thing in any in-
telligent transportation and it influences on the airline 
profitability significantly. 

2. Mathematical Model 

One of the most important problems in airline trans-
portation is to find the sequence of passenger distribu-
tion between multiple sources and multiple destinations 
(stops), minimizing the transportation cost and looking 
for better utilization of the airplane capacity. 

Amounts of different passenger contingents are in 
firm correlation because the total capacity of airplane 
is limited. Taking into account passenger demands for 
each airport and each destination (sufficient amount of 
passengers waiting to be transported), we need optimal 
transportation plan to minimize shipping and loading/
unloading expenses, transportation cost and cost of air-
port costs (connected with expenses at airport handling 
and loading process). It can help in definition of optimal 
airplane capacity arrangement or for evaluate the route 
efficiency. The problem of optimal transportation from 
multiple (several) airports of loading (sources) to multi-
ple destinations (sinks) is very hard (NP-hard) optimiza-
tion (combinatorial) problem (Wollmer 1970).

Different passenger contingents are differentiated 
with i for i = 1, 2, ..., N. The plane with defined capacity 
is shipping from the first to the last airport marked with 
M+1, with possible set of intermediate ports marked 
with K. The objective is to find a loading and transporta-
tion strategy that minimizes the total cost incurred over 
the whole voyage route consisting of M airports on the 
path (M  ≤  K). We need the loading plan for various pas-
senger contingents waiting in each airport, so the route 
will be capable to serve the N passenger loads from load-
ing airport to destinations (landing point). The starting 
airport on the route can be only for loading and the last 
airport on the route can be only for unloading; other 
airports on the route may be for both. We can change 
the starting and the ending point, too. That case is more 
appropriate in definition of new flight routes.

The transportation technique explained above can 
be seen as the Capacity Expansion Problem (CEP). 
Transmission portions of the airplane space are capable 
to serve N different passenger loads (multi-commodity) 
for i = 1, 2, ..., N. For each passenger load, we need a part 
of airplane capacity, so it looks like CEP on the path, 
from zero to maximum (Castro, Nabona 1996). 

New capacity portion on the board of aircraft can 
be assigned to appropriate passenger load up to the giv-
en limit (maximal capacity). Used capacity can be di-
mensioned in two forms: by expansion or by reduction. 
Expansions/reductions can be done separately for each 
passenger contingent (load). Fig. 2 gives an example of 
network flow representation for multiple contingents 

N and M airports on the route. So, the transportation 
problem can be represented by a flow diagram of ori-
ented acyclic network. 

Let G(V, E) denote a network topology, where V 
is the set of vertices/nodes, representing capacity states 
on the board and A, the set of arcs (links) represent-
ing traffic changes (loading/unloading, transporta-
tion, airport services etc.) between airports. Each link 
on the route (path) is characterized by z-dimensional 
link weight vector, consisting of z-nonnegative weights 
(Fleischer 2000). In general we have Multi-Constrained 
Problem (MCP) with multi-dimensional link weight 
vectors for M+1 links on the path {wi,m, m ∈ A, i = 1, 
…, N}. The constraints for capacity bounds are denoted 
with Li,m (L1,m, L2,m, …, LN,m). For an additive meas-
ure (load of passengers) definition of the constrained 
problem is to find a path from the starting to the end 
airport with minimal weight to satisfy maximal traffic 
load. It is equivalent with minimal cost that is the func-
tion of all expenses. Shorter distance gives lower weight 
(Fonoberova, Lozovanu 2004). In addition, the weight 
of each link corresponds to the amount of used capacity. 
In addition, more people on board causes lower trans-
portation cost of one passenger. The objective is to find 
the optimal routing/loading sequence that minimizes 
the total cost with maximal passengers on-board. In the 
context of MCP we can easily introduce the adding con-
straints e.g. maximal length of the route. 

In the mathematical model of CEP the following 
notation is used:

 – i, j and k – indices for passenger load. The N fa-
cilities are not ranked, just present different types 
of passenger contingents from 1, 2, ..., N.

 – m – indices the airport of boarding and landing. 
The number of air of calls on the route including 
departure airport M (m = 1, …, M).

 – u, v – indices for airports in sub-problem, 1  ≤  u, 
..., v  ≤  M. All airports on the route are tranship-
ment ports except 1 and M.

 – xi,m – quantity of i-th load (e.g. passenger contin-
gent) being loaded on board in airport m. Total 
loading amount in airport m: 

   =
=∑ ,

1

N

m i m
i

X x .  (2.1)

 – Lxi,m – capacity limitation for each airport and 
for each contingent. For convenience, the xi,m is 
assumed to be integer. For multi-stop routing we 
suppose that amount of passengers that can be 
loaded in airport is much lower than total air-
plane capacity. In opposite the point-to-point 
routing is more appropriate.

 – ri,m – unloading of passengers i-th contingent in 
airport m. For convenience, the ri,m is assumed to 
be integer. All unloading demands must be satis-
fied after unloading in last airport on the route. 
Total unloading amount in the airport m:

   =
=∑ ,

1

N

m i m
i

R r .  (2.2)
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 – Ii,m – the total amount of passengers transported 
from airport m to m +1. The amount of passenger 
load i at departure from airport m is equivalent 
to arrival at airport m +1. Before the first airport 
of loading, Ii,1= 0 . After last airport Ii,M+1 = 0 
for i =1, …, N. Before the first airport of loading, 
Ii,m= 0. After last airport Ii,M+1 = 0 for i =1, …, N. 
Capacity values cannot be negative.

   +
=

= + −∑1, , , ,
1

N

m i m i i m i m
i

I I x r ,  (2.3)

   for i = 1, …, N; m = 1, …, M.

 – step Ii – the lowest step of possible capacity load-
ing and unloading for capacity type i. In numeri-
cal examples it can be set e.g. step Ii = 10% of total 
capacity of the airplane.

 – zm – the total loading/unloading amount for all 
types of contingents in airport m, related to cal-
culation of airport taxes. 

 – lonm  – maximal length of the each hop, not to 
exceed the length of the whole route LON.

   =
= +∑ , ,

1

N

m i m i m
i

z x r ;  (2.4)

   =
=∑ ,

1

N

m i m
i

W W
 
– airplane transport capacity;  (2.5)

=
=∑ ,

1

N

m i m
i

I I
 
– used capacity between airports; m  

and m + 1;                                                 (2.6)

= m
m

m

I
e

W  
– the shipping efficiency between air-

port m and airport m + 1;                           (2.7)

IDLEm= Wm – Im – unused airplane capacity after 
loading/unloading in airport m.                   (2.8)

3. Algorithm Development

Instead of a non-linear convex (polynomial) optimiza-
tion (Garaix et al. 2010), that can be very complicated 
and time-consuming, the network optimization meth-
odology is efficiently applied here (Fig. 5). In addition, 
many different techniques exist, e.g. minimum cost flow-
based genetic algorithm (Xie, Jia 2012). 

The main reason for our approach is the possibility 
of discrete capacity values for limited number of con-
tingent loads, so the optimization process can be sig-
nificantly improved. The multi-constrained routing can 
be formulated as minimum cost multi-commodity flow 
problem. Such problem (NP-complete) can be easily 
represented by multi-commodity the single (common) 
source multiple destination network. 

Definition of the single-constrained problem is to 
find a path P from starting to end airport such that: 

( ) ( )
+

= =
= ∑ ∑

1

, , , ,
1 1

min , ,
M N

i m i m i m i m
m i

w P w I x r ,  (3.1)

where: Ii,m  ≤  Li,m ,                                                (3.2)

satisfying condition: 

max distance of = ≤∑
2

1

m

i
m

P lon LON ,
  

(3.3)

for i = 1, …, N ; m = 1, …, M.
A path obeying the above conditions is said to be 

feasible. Note that there may be multiple feasible paths 
between starting and ending airport (node). 

Generalizing the concept of the capacity states after 
loading/unloading each passenger contingent (load) m 
between airports on the route we define as a capacity 
point – αm:

( )= 1, 2, ,, ,  ...,m m m N ma I I I ;                              (3.4)

( )+= =1 1 0,  0,  ...,  0Ma a .                                 (3.5)

Fig. 5. Transportation problem can be represented by a flow diagram of oriented acyclic network
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In formulation (3.4) αm denotes the vector of ca-
pacities Ii,m for each load i and for each airport m, and 
we call it capacity point. On the flow diagrams (Fig. 5) 
each column represents a capacity point, consisting 
of N capacity state values (for i-th passenger load). 
Formulation (3.5) implies that zero values are before 
loading on the starting point same as after unloading 
on the ending point. Let Cm be the number of possi-
ble capacity point values at airport m (passenger load 
values for each contingent after departure from airport) 
(Fig. 6). Only one capacity point is for starting and only 
one for end airport on the route: C1  = CM+1  = 1. The 
total number of capacity points is:

+

=
= ∑

1

1

M

p m
m

C C .  (3.6)

Horizontal links (branches) are representing capac-
ity flows between two neighbour airports on the route. 

The network optimization can be divided in two 
steps. At the first step the minimal transportation weights 
du,v between all pairs of capacity points (neighbour air-
ports on the route) are calculated. It is obvious that in 
CEP we have to find many cost values ( )+, 1,u v u vd a a  
that emanate two capacity points of neighbour links 
(common router), from each node ( ), uu a  to node 
( )++ 11, vv a  for v ≥ u. Calculation of such value is the 
Capacity Expansion Sub-problem (CES). 

The most of the computational effort is spent on 
computing of the sub-problem values. That number de-
pends on the total number of capacity points, see (3.6). 
The total number of all possible ( )+, 1,u v u vd a a  values 
representing CES between two capacity points is: 

+
=

= ⋅∑ 1
1

.
M

d m m
m

N C C  (3.7)

At the second step we are looking for the short-
est path in the network with former calculated weights 
(Fig. 6). 

As the number of all possible ( )+, 1,u v u vd a a  values 
depends on the total number of capacity points it is very 
important to reduce that number Cp and that can be 
done through imposing of appropriate capacity bounds 
or by introduction of adding constraints (e.g. max. ship-
ment delay). Through numerical test-examples we’ll see 
that many loading/unloading solutions cannot be a part 
of the optimal expansion sequence. It is the way how 
algorithm can be significantly improved. Therefore, we 
can obtain the near-optimal result with significant com-
putational savings.

4. Objective Function Leads to Non-Linear Problem

The total cost over time includes:
a) Transhipment cost on distance between airports m 

and m + 1: 

    
= ,m

m m
d

c C
s

  (4.1)

where: Cm – transportation cost during voyage [per 
day]; dm  – distance [nautical miles or km]; s  – air-
plane speed [knots]. Here it is not correlated with 
number of passengers on board, influence on speed, 
oil consumption, agent taxes and freight expenses but 
it could be easily incorporated. In that case, we have 
non-linear function instead. In our test-examples 
the constant speed of airplane is incorporated in the 
value Cm. 

b) Loading/unloading cost in airport m:

=

+ 
= =  

 
∑ , ,

1

N
i m i m m m

m m
m mi

x r H z
h H

lo lo
,  (4.2)

where: Hm – cost of loading/duration of airplane stay 
at airport m [minutes]; lom  – operation capacity of 
airport m.

c) Freight cost fi,m for shipment of contingent type i is 
making profit to airlines company. We want to in-
corporate the maximal revenue with minimization 

Fig. 6. The CEP problem can be seen as the shortest path problem for an acyclic network in which the nodes represent all 
possible values of capacity points (the links connecting neighbour airports on the route are representing CES values)
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of expenses within the same optimization process. 
Therefore, we have to introduce freight cost (airline 
tickets). We can do that by the exponential cost func-
tion showing the economy of scale: 

= + ⋅ ,
, , , ,

i ma
i m i m i m i mf A B I ,  (4.3)

where: ai,m represents the factor of concavity for ap-
propriate contingent type i and for appropriate ship-
ment conditions on the route. The amount of contin-
gent to be transported is in firm correlation with that 
cost. If we have lower ticket price for some contingent 
we can expect less passengers on board and vice ver-
sa. Optimization process will find out the most attrac-
tive cargo plan that is in correlation with all potential 
contingents waiting to be transported. 

The objective function for CEP problem can be for-
mulated as follows:

( ) ( ) ( ) ( ) ( )
+

=

 
− − − −  

 
∑

1

1
max , ,

M

m m m m m m m m m m
m

f I c d h z lo g z idle W I
 
, 

(4.4) 

so that we have: ( )+ = +, 1 , , , ,,i m i m i m i m i mI I D x r        (4.5)

( )
=

= −∑, , ,
1

N

i m k m l m
i

D x r ; k ≠ l  (4.6) 

for m = 1, 2, ..., M + 1; k, l = 1, 2, ..., N.
As we can see from (4.4) the objective function 

(total cost) includes some different costs. In fact, we 
have min-max problem. Freight cost (passenger tickets) 
is denoted with ( ), ,i m i mf I  and we have to differenti-
ate freight cost for each passenger load (contingent). All 
expenses have negative polarity. It means that profit will 
be reduced by transportation cost ( ), , ,–i m i m i mc x r  and 
transhipment (load/unload) cost ( )m mg z . The airport 
taxes has to be introduced, too. In gm we can include all 
airport expenses.

The idle capacity cost ( )– midle W I  could be taken 
in account, but only as a penalty cost to force the usage 
of maximal capacity (prevention of unused/idle capac-
ity). In our test-examples it is not included. Costs are 
often represented by the fix-charge cost or with constant 
value. It should be assumed that all cost functions are 
concave and non-decreasing (some of them reflecting 
economies of scale) and they differ from one airport to 
another. The objective function is necessarily non-linear 
and exponential. With different cost parameters the op-
timization process could be strongly influenced, looking 
for benefits of the most appropriate transportation solu-
tion (Gomm 2005). 

Instead of maximization of the profit we can use 
minimization of the negative value, so in such way we 
have simplification of very complicated mini-max trans-
portation problem; see (4.4). In both cases, it leads to 
maximization of the profit. 

CES with the similar objective function as (4.4). At 
second step, we search for the shortest path in the net-
work with former calculated weights between node pairs 
(capacity points). Suppose that all links (sub-problems) 
in diagram on Fig. 6 are calculated, the optimal solution 

for CEP can be found by searching for the optimal se-
quence of capacity points and their associated link state 
values. It is well-known shortest path problem for an 
acyclic network in which the nodes represent all pos-
sible values of capacity points. Then Dijkstra’s or Floyd’s 
algorithm or any similar algorithm can be applied (Krile 
2004, 2005, 2011; Zangwill 1968). 

As we said before, the network optimization is di-
vided in two steps. At first step the minimal transpor-
tation weights du,v are calculated between all pairs of 
capacity points (neighbour airports on the route). The 
calculation of each weight value between any couple of 
capacity points has been named: capacity. 

For every CES many different solutions can be de-
rived depending on Di values. Each of them represents 
the capacity state of each contingent on-board the air-
plane with loading and unloading values (amounts) in 
appropriate airport. 

The complexity of the proposed algorithm is 
( )2

pO C . As we said before Cp is in a strong correlation 
with number of ports M and number of contingents N 
but also with capacity increment step Ii that can be varia-
ble from contingent to contingent. We have the problem 
of large number of capacity states. To simplify the prob-
lem we use contingent amounts given in the percentage 
of the total airplane capacity (Fig. 2). 

In our optimization process the number of passen-
gers on board does not influence on voyage speed nei-
ther to oil (gasoline) consumption but it could be easily 
incorporated. The loading strategy consists of loading/
unloading plan for each airport and for each contingent. 
The starting airport on the route can be only for loading 
purpose and the last airport is only for unloading; other 
transhipment airports may be for both. 

Some limitations on the capacity can exist, but 
today the most airports have loads under the airplane 
capacity.

5. Results of Trivial Approach

Here we discus strategic planning for the numerical test-
example from Figs 1–2. In the new route definition for 
test-example, we have starting airport 1 and ending air-
port 5, but any of three middle airports can be included 
in the route. 

From Fig.  2 we can see traffic demands (possible 
transfer of contingents) given in the percentage of the 
total airplane capacity. That information is gathered 
through market research or from statistics. From input 
data we can see seven contingents waiting for transport. 
It is obvious that the potential loads that can be trans-
ported on relations: 1–2 (30%), 1–4 (40%), 1–5 (30%), 
2–3 (50%), 2–5 (40%), 3–4 (45%) and 4–5 (30%), but 
e.g. we have no demands from airport 2 to airport 4. 
For simplicity all costs elements are equal (Ai,m  =  0, 
Bi,m = 10.0/% of capacity; Ci,m = 0.1/km; Hi,m=2.0/% of 
capacity; Gi,m = 0; and concavity for all costs ai,m = 0.85. 
In addition, we have no limitation on flight duration. For 
the next test-example we slightly changed ticket price 
(freight cost) only for contingent 6 (3–4), so B6,m = 12.0 
instead of 10.0. In such example, we want to force travel-

Transport, 2015, 30(3): 361–371 367



ling across airports 3 and 4. According to revenue and 
all transport costs (transportation price, oil consump-
tion, airport transhipment cost, airport taxes etc.) we 
can design the route which will be the most profitable. 
In Figs 7–8 the resulting (the best) route is presented. 
Fig. 7 shows passengers of each contingent on board the 
airplane during the voyage. The Fig. 8 shows the loading 
and unloading amounts of every contingent in particular 
airport on the route. Now the profit 48.94 is significantly 
higher than 36.61 from beginning (Figs 2–4). 

For the trivial option, we used the same capacity 
increment step Ii for all contingents and it is 10%. We 
know such capacity resolution is not satisfactorily and, 
in general, we should be far away for optimal result. In 
that case, we have 1455 capacity states and 1455 × 1455 
CES values. For our test-example the best routing option 
is from airport 1 to airport 2, to airport 3, to airport 4 
and finally to airport 5. The solution does not extract the 
airports 3 and 4 as before, because it is more profitable 
to go this way (in spite of longer distance). 

Fig. 9 presents the efficiency of the route. Idle ca-
pacity during the voyage is obvious but it is lower than 
before (Fig. 4). Only on the path from airport 3 to 4 we 
have no idle capacity (100%). For this example the costs 
element are similar but it can be differentiated from air-
port to airport and from contingent to contingent. Low 
transport efficiency between airports 2–3 is caused of 
passenger contingents going between airports 1–4 and 
1–5, that is more profitable (higher distance) than trans-
port from airports 2–3.

6. Algorithm Limitations and Possible Improvement

As we said before the crucial element is the number of 
capacity points Cp. In previous numerical test-example 
the starting capacity increment step Ii was 10% and the 
number of capacity points was 1455. Calculation of so 
many CES values; see (3.7) could be very demanding but 
it is still acceptable.

If we decide to have smaller capacity increment 
e.g. step Ii  = 5% or step Ii  =1% the number of capac-
ity points drastically raises, e.g. it could be more than 
10 000 × 10 000 CES values and we need super computer. 
Therefore, we can shorten the range of capacity points 
using some techniques of artificial intelligence. For ex-
ample, the calculated routing sequence defines that the 
second contingent is in amount of 20% so we can use 
the range from 15–25% only, it means Delta = ±5%. In 
that case we have significantly less capacity points Cp = 
3786. The complexity is still acceptable (Table). From 
Figs 10 and 11 we can see the routing sequence differs 
from previous result and the profit is slightly raising. 
From Fig. 12 it is obvious that the idle capacity is still 
on the similar level, but, in fact, we transported more 
passengers with profit of 55.76. 

In the next step we can apply the smaller range 
of capacity e.g. for contingent five we can use ±3% e.g. 
0–6% of airplane capacity only. In addition, we can use 
smaller increment step Ii = 1% (that is connected with 
airplane type and number of seats). Number of CES 
values increase on 5821 but now we are very close to 
optimal result (maximal profit). In that case we have 
profit  = 56.66. With this step-by-step method we can 
significantly increase the resolution of the capacity states 
and because of that we can be much closer to the opti-
mum. Of course, we can decrease step Ii to smaller value 
e.g. 0.5% or less, but it has to be an acceptable value. For 
example: if airplane has 200 seats step Ii = 0.5% means 1 
(one) passenger. 

Through many test examples it is clear that such 
approach functions good and calculation complexity of 
the optimization process is under control. Without step-
by-step calculation the complexity of such approach may 
be too big. 

Fig. 7. Airplane’s occupancy on the route for  
each passenger contingent

Fig. 8. Loads and unloads in each airport on the route

Fig. 9. Efficiency of airplane capacity on the route
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Conclusions 

Optimizing the existing flight routes (re-routing) or in-
troducing the new one is the crucial part of strategic 
planning in airline industry. The transportation problem 
is extended to capacity management problem of differ-
ent passenger contingents transported by one airplane 
on the route with multiple loadings points (boarding) 
and multiple unloading points (landing destinations). 

The proposed heuristic algorithm shows ability to solve 
very complex non-linear transportation problem. This 
approach consisting of successive iterations decreases 
complexity to acceptable level. In the same time, it en-
sures to airline operators (carriers) very fine modulation 
of many input values, leading optimization process in 
wanted direction.

Multi-stop (multi-hop) routes can be more profit-
able than point-to-point oriented routing. Such optimi-
zation tool can create such routes and can help in siz-
ing of appropriate airplane. In addition, the carrier can 
check the efficiency in opposite direction of the route. 
With smaller airplanes, the lower number of passengers 
can be transported if the demand for that particular re-
turning flight is not so high. With comparing the data 
from both directions, the most efficient routes could be 
created. Another one possibility in route definition is the 
change of starting or ending airport, but it is appropriate 
only in definition of new routes. 
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