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Abstract. The paper presents a new approach to the treatment of uncertainty and subjectivity in the decision-making 
process based on the modification of Multi-Attributive Border Approximation area Comparison (MABAC) and an Ob-
jective–Subjective (OS) model by applying Linguistic Neutrosophic Numbers (LNN) instead of traditional numerical val-
ues. By integrating these models with LNN it was shown that it is possible to a significant extent to eliminate subjective 
qualitative assessments and assumptions by decision makers in complex decision-making conditions. On this basis, a new 
hybrid LNN–OS–MABAC model was formed. This model was tested and validated on a case-study in which the optimal 
unmanned aircraft were selected to combat forest fires. After defining the criteria and their attributes, they were prioritized 
using the LNN–OS model, in which the weights of the criteria and their attributes are a combination of the objective values 
obtained by the method of maximum deviation and the subjective values of the criteria obtained by expert examination us-
ing LNN. The ranking and selection of the optimal unmanned aircraft from those on offer with similar characteristics was 
carried out using the LNN–MABAC model. Testing of the model showed that the proposed model based on LNN provides 
an objective expert evaluation by eliminating subjective assessments when determining the numerical values of criteria. A 
sensitivity analysis of the LNN–OS–MABAC model, carried out through 54 scenarios of changes in the weight coefficients, 
showed a high degree of stability in the solutions obtained when the alternatives were ranked. The results were validated by 
comparison with LNN extensions of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) model.

Keywords: firefighting UAV, LNN, MABAC, MCDM, objective–subjective (OS) model, TOPSIS.

Notations

AHP – analytic hierarchy process;
BAA – border approximation area;

ELECTRE – elimination and choice translating reality (in 
French: ELimination Et Choice Translating 
REality);

IFN – intuitive fuzzy numbers;
IT – information technology;

LIFN – linguistic IFN;
LNN – linguistic neutrosophic numbers;

LNNWAA – LNN weighted arithmetic averaging;
LNNWGA – LNN weighted geometric averaging;

MABAC – multi-attributive border approxima-
tion area comparison;

MCDM – multi-criteria decision-making;
MMD – model of maximum deviation;

MULTIMOORA – multi-objective optimization by a ra-
tio analysis;

OS – objective–subjective;
SC – Spearman’s coefficient;
SD – standard deviation;

SVNLN – single-valued neutrosophic linguistic 
numbers; 
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Introduction

Because of the ambiguity of human thinking in complex 
decision-making conditions, it is difficult to represent 
the reasoning of experts and their preferences using nu-
merical values. It is much more convenient and realistic 
to make it possible to present the preferences of experts 
using linguistic terms, particularly when it comes to the 
qualitative attributes that are used to describe certain 
phenomena (Nikolić et al. 2018). Therefore, in this paper, 
LNN are used to show expert preferences. Since modelling 
expert preferences in decision-making problems using lin-
guistic terms is an interesting field of research, the authors 
of this paper present an original multi-criteria model for 
the evaluation and selection of optimal unmanned aircraft 
intended for detecting and fighting against forest fires that 
is based on LNN. 

The multi-criteria model is based on the modification 
of the traditional MABAC method (Pamučar, Ćirović 
2015) using the LNN approach. In the hybrid OS–MABAC 
model expert preferences are represented using LNN. In 
this way, it is possible to present qualitative expert prefer-
ences, even in cases when they are not clear and precise. 
The LNN–OS model was used to determine the weight 
values of the evaluation criteria; in the model the weights 
of the criteria are a combination of the objective and sub-
jective values of the weight coefficients of the criteria. The 
objective values of the criteria weights are obtained by 
the method of maximum deviation, while the subjective 
values of the weights are obtained on the basis of expert 
evaluation. By integrating the OS–MABAC model with 
LNN it was shown that it is possible to take into account 
the uncertainty and indeterminacy in qualitative expert 
assessments that arise in complex decision-making condi-
tions. The LNN–OS–MABAC model was tested and vali-
dated using the case study of selecting optimal unmanned 
aircraft for fighting forest fires.

An UAV is an aircraft that, using aerodynamics and 
propulsion force flies a fixed path without a pilot on-
board (Odido, Madara 2013). The aerodynamic surfaces 
that serve to create aerodynamic forces and moments that 
control the flight of a UAV are built in the form of fixed 
or rotary wings. The flight of this type of aircraft is con-
trolled from a ground center system via a data link in 2 
ways: by means of a pilot controlling the flight path using 

a camera and a joystick or tracking landmarks during the 
flight based on a programmed automatic mode of flight 
(Ceruti et al. 2013; Arola, Akhloufi 2019). A wide range 
of applications in many different activities have been made 
possible by these aircraft, including the fight against fires, 
due to: technological advancements in their design, the 
capabilities and technical performance, the absence of a 
person in the aircraft, relatively simple control modes, 
significantly smaller dimensions than manned aircrafts 
(easier storage and transport), and the possibility of car-
rying different types of payloads (Ambrosia, Zajkowski 
2015). The use of unmanned aircraft in the fight against 
fires is a result of the fact that these aircraft together with 
an appropriate sensor and computer system, secure the 
fast, unhindered and relatively inexpensive monitoring 
and detection of fires on inaccessible terrain over a longer 
period of time (Bosch et al. 2013). Using unmanned air-
craft for the monitoring and detection of fires is carried 
out from air space, which eliminates the negative effects of 
extinguishing and detecting fires in the form of obstacles 
related to the terrain, vegetation, hydrography, and the 
like. All of this has resulted in the increasing applicability 
of unmanned aircraft in the fight against forest fires in 
the last decade, which, according to available data, destroy 
millions of hectares of forests every year world wide, while 
hundreds of millions of dollars are spent on extinguishing 
them (Martinez-de-Dios et al. 2008). These fires, besides 
destroying the natural balance in the biosphere, cause 
priceless damage to material goods and the environment 
around the world. They most commonly occur in inac-
cessible and poorly populated areas, spread rapidly and 
have along combustion cycle (Lin et al. 2014). In order to 
reduce the destructive effects of such fires, early detection, 
monitoring and rapid neutralization are crucial, which the 
application of modern UAVs can provide (Zhang et  al. 
2019).

This paper has several objectives:
»» the 1st objective is to improve the methodology for 

treating uncertainty in the field of group MCDM;
»» the 2nd goal of the paper is to prioritize the crite-

ria and form a model that will enable an objective, 
scientifically based approach to the selection of op-
timal unmanned aircraft for the detection and fight 
against forest fires;

»» the 3rd objective of this paper is to bridge the gap 
that exists in the methodology for the evaluation of 
unmanned aircraft designed for the detection and 
fight against forest fires through a new approach to 
the treatment of uncertainty that is based on LNN. 

One of the contributions of this paper is an original 
MCDM model in which modifications of the MABAC 
method were carried out using LNN. Another contribu-
tion is the LNN–OS model for determining the weight 
coefficients of criteria that has been developed by the au-
thors and which improves MCDM techniques. The 3rd 
contribution of the paper is to improve the methodol-
ogy for selecting optimal unmanned aircraft intended to 
detect and fight forest fires by means of a new approach 

SVNN – single-valued neutrosophic number;
TODIM – interactive multi-criteria decision-making (in 

Portuguese: TOmada de Decisão Interativa 
Multicritério);

TOPSIS – technique for order of preference by similarity 
to ideal solution;

UAV – unmanned aerial vehicle;
VIKOR – multi-criteria optimization and compromise 

solution (in Serbian: Višekriterijumska opti-
mizacija I KOmpromisno Rešenje);

WASPAS – weighted aggregated sum product assessment.
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to the treatment of uncertainty based on LNN. Its practi-
cal contribution can be seen in the possibility of apply-
ing the proposed criteria and model in the development 
of documents for the selection of unmanned aircraft for 
fighting forest fires. Also, bearing in mind the possibility 
of transferring technology (the upgrade of technologies 
adopted for the development of unmanned aircraft) and 
knowledge in this field (particularly in the IT sector), the 
defined criteria and proposed model can be the basis for 
improving the design of unmanned aircraft for the fight 
against forest fires. 

The rest of the paper is organized in the following way. 
The Section 1 is a literature review, which includes the 
application of linguistic variables and the theory of un-
certainty in the field of MCDM. The Section 2 presents 
the algorithm for the hybrid LNN–OS–MABAC model, 
which is later tested in Section 3 through the real case-
study of selecting optimal unmanned aircraft for the de-
tection and fight against forest fires in the Republic of 
Serbia. The Section 4 includes a discussion of the results 
for the LNN–OS–MABAC model. This discussion is in the 
form of a sensitivity analysis and comparison of the results 
with LNN extensions of the TOPSIS and VIKOR models. 
Finally, last section presents concluding considerations 
with a special emphasis on directions for future research.

1. Literature review

Modelling expert preferences in decision-making prob-
lems using linguistic terms (Naeini et al. 2019) is an in-
teresting field of research, which has been the subject of 
studies by numerous authors in the last decade. 

Zadeh (1975) 1st introduced the concept of linguistic 
variables and their application in fuzzy logic. Later, the 
possibility of using linguistic information in mathemati-
cal models for decision-making was presented (Herrera 
et  al. 1996; Herrera, Herrera-Viedma 2000). Then, goal 
programming models were developed with a linguistic 
hybrid arithmetic averaging operator for group MCDM 
using linguistic information (Xu 2006). In order to keep as 
much linguistic information as possible in an evaluation 
of the attributes, a number of models have been proposed 
that allow the use of linguistic variables (Table 1). 

Table 1 shows the most commonly used linguistic ap-
proaches from the literature for presenting the qualitative 
values of the attributes in MCDM. A total of 9 approaches 
are included that represent an evaluation of the linguistic 
approaches from their emergence in fuzzy theory (Zadeh 
1975) to linguistic neutrosophic variables (Liang et  al. 
2017). As can be seen from Table 1, 2-dimensional un-
certain linguistic sets (Liu, Teng 2016) and operators to 
aggregate their values are proposed, and the possibility 
of their application in group decision-making is dem-
onstrated. After this, other approaches are also shown to 
present uncertainty using linguistic variables: intuitionis-
tic linguistic sets (Szmidt, Kacprzyk 2003), hesitant fuzzy 
linguistic term sets (Rodriguez et  al. 2012), hesitant in-

tuitionistic fuzzy linguistic variables (Yang et  al. 2017), 
probabilistic linguistic term sets (Pang et al. 2016), rough 
sets (Pamučar et al. 2018) and so on. By combining IFN 
(Atanassov 1986) and fuzzy linguistic variables (Zadeh 
1975), LIFN are proposed (Meng et al. 2019). Then, based 
on that approach, improved LIFN aggregators were intro-
duced, which are used in MCDM (Liu, Wang 2017). 

Since LIFN cannot successfully cope with all types of 
uncertainty in different real problems (such as problems 
with indeterminate information) a SVNLN was introduced 
(Ye 2015) which is made up of SVNN (Ye 2013). With 
SVNLN, a linguistic variable represents the assessment of 
the decision maker concerning the object of the evalua-
tion, and a SVNN expresses the reliability of the given lin-
guistic variable (Ye 2015). In addition to the basic SVNLN 
model, the traditional TOPSIS method was expanded and 
the possibility of its application in group decision-making 
using SVNLN was demonstrated (Ye 2015). 

However, SVNLN cannot be successfully used to rep-
resent truth, indeterminacy and falsity based on linguis-
tic variables (Liang et al. 2017). In order to overcome the 
above-mentioned disadvantages of IFN, LIFN and SVNLN, 
one of the solutions is to independently represent the de-
gree of truth, indeterminacy and falsity of the object being 
evaluated using 3 independent linguistic variables. On the 
other hand, it is necessary in human reasoning when mak-
ing decisions to use linguistic information on the degree 
of truth, indeterminacy and falsity, since SVNN already 
holds this information. On the basis of these ideas, the 
concept of a LNN is proposed, which is a combination of 
SVNN and linguistic variables. LNN uses independent lin-
guistic variables to represent the degree of truth, indeter-
minacy and falsity, and not crisp values like in SVNN, that 
is, linguistic variables and SVNN, as with SVNLN. We can 
present the concept of LNN using the example of selecting 
providers for transport services. Suppose that the decision 
makers evaluate unmanned aircraft using a set of linguis-
tic expressions { 0 exceedingly lows s= −  , 1 pretty lows −  , 

2 lows − , 3 mediums − , 4 highs − , 5 pretty highs − , }6 exceedingly highs − }6 exceedingly highs − . If expert E1 evaluates unmanned air-
craft A2 according to criterion K1 with a score of s5 for the 
truth membership degree, s3 for the indeterminacy mem-
bership degree and s3 for the falsity membership degree, 
then on the basis of the LNN concept, we can present the 
assessment in the form 5 3 3, ,e s s s= . On the basis of this 
example it is obvious that LIFN and SVNLN cannot repre-
sent this kind of linguistic evaluation, while by extending 
the concept of SVNN and LIFN, that is, by means of the 
LNN concept we can represent these evaluations simply. 
For this reason, LNN is a very interesting concept to study 
since it allows the presentation of the uncertain and in-
consistent linguistic information that is present in human 
reasoning. LNNs are very suitable for presenting linguistic 
information about the complex attributes of a decision, 
especially when it comes to qualitative attributes, since 
LNN simultaneously exploits the advantages of SVNN and 
linguistic variables.
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Table 1. Linguistic approach

Uncertainty 
approach Reference Methods Applications

Fuzzy 
linguistic 
variable

Zadeh (1975) fuzzy linguistic variable application fuzzy linguistic variable to approximate 
reasoning

Herrera et al. 
(1996)

linguistic assessments a consensus model in group decision-making under 
linguistic assessments

Bordogna et al. 
(1997)

fuzzy linguistic ordered weighted average 
operators

fuzzy linguistic model for group decision-making 
based on ordered weighted average operators

Herrera, Herrera-
Viedma (2000)

a MCDM model based on linguistic 
information

steps for solving MCDM problems under linguistic 
information

Chang et al. 
(2006) 

fuzzy multiple attribute decision-making 
model

applying fuzzy linguistic quantifier to select supply 
chain partners

Xu (2006) multi-attribute group decision-making 
with linguistic information

linguistic hybrid arithmetic averaging operator 
in multiple attribute group decision-making with 
linguistic information

Yan et al. (2013) quality function deployment fuzzy 
linguistic model

prioritizing engineering design requirements in 
quality function deployment

Lin et al. (2013) balanced scorecard and fuzzy linguistic 
method

balanced scorecard and fuzzy linguistic method for 
evaluating operating room performance.

2-dimension 
uncertain 
linguistic 
variable

Liu, Teng (2016) 2-dimension linguistic TODIM method extension of the TODIM method to 2-dimensions, 
uncertain linguistic information 

Liu et al. (2015) 2-dimension linguistic average operators 2-dimension linguistic average operators are applied 
to MCDM

Liu, You (2018) 2-dimension linguistic weighted Hamy 
mean aggregation operator

application in group decision-making

Intuitionistic 
linguistic 
variables

Szmidt, Kacprzyk 
(2003)

degrees of consensus under intuitionistic 
fuzzy preferences

a new concept of a distance from consensus under 
intuitionistic fuzzy preferences is introduced

Xu (2006) group decision-making model based on 
intuitionistic preference relations

the intuitionistic fuzzy arithmetic averaging 
operators are used to aggregate intuitionistic 
preference information

Chen et al. (2015) group decision-making model based 
on intuitionistic linguistic aggregation 
operators

application and validation of proposed intuitionistic 
linguistic group decision-making model 

Meng et al. 
(2019)

intuitionistic linguistic ordered weighted 
averaging operator and consistency-
based linear programming model

group decision-making with intuitionistic linguistic 
preference relations

Liu, Wang (2017) intuitionistic linguistic aggregation 
operators

based on proposed aggregators fuzzy intuitionistic 
linguistic MCDM model is developed

Hesitant 
fuzzy 
linguistic 
variables

Rodriguez et al. 
(2012)

a multi-criteria linguistic decision-
making model

hesitant fuzzy linguistic MCDM model is presented 

Beg, Rashid 
(2013)

hesitant fuzzy linguistic TOPSIS method hesitant fuzzy linguistic TOPSIS method with 
illustrative examples is proposed

Gou et al. 
(2017b)

Bonferroni means with hesitant fuzzy 
linguistic information

2 Bonferroni means operators for hesitant fuzzy 
linguistic term sets are introduced

Wang et al. 
(2016)

hesitant fuzzy linguistic TOPSIS and 
TODIM methods

2 hesitant fuzzy linguistic MCDM methods are 
proposed, which are based on the Hausdorff 
distance measure

Tüysüz, Şimşek 
(2017)

a hesitant fuzzy linguistic term sets-
based AHP method

analysing the performance evaluation factors: an 
application in the cargo sector

Gou et al. (2017a) hesitant fuzzy linguistic MULTIMOORA 
method

comparisons between the MULTIMOORA method 
and the hesitant fuzzy linguistic TOPSIS method

Hesitant 
intuitionistic 
fuzzy 
linguistic 
variables

Yang et al. (2017) hesitant intuitionistic fuzzy linguistic 
TOPSIS method

application of the TOPSIS method based on the 
generalized linguistic hesitant intuitionistic fuzzy 
correlated averaging operator 

Faizi et al. (2017) hesitant intuitionistic fuzzy linguistic 
based outranking method

an outranking method for group decision-making 
using hesitant intuitionistic fuzzy linguistic term sets

Rashid et al. 
(2018)

hesitant intuitionistic fuzzy linguistic 
ELECTRE method

application of the hesitant intuitionistic fuzzy 
linguistic ELECTRE method based on directional 
Hausdorff distance
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2. A multi-criterial model based on LNN

The following section (Section 2.1) gives the basic frame-
work of the linguistic neutrosophic concept, as well as the 
basic arithmetic operations with LNN (Figure 1). After 
this, the OS–MABAC multi-criteria model based on the 
concept of LNN is presented in Sections 2.2 and 2.3.

2.1. Some concepts of LNN

Definition 1. Assume that { }0 1, , ..., tS s s s=  is a linguistic 
set with odd cardinality t + 1. If , ,p q re s s s=  is defined 
for , ,p q rs s s S∈  and , , 0,p q r t ∈ , where: sp, sq and sr rep-
resent linguistic expressions, which independently express 
the degree of truth, indeterminacy and falsity, then e is 
called the LNN.

Definition 2. Let , ,p q re s s s= , 
1 1 11 , ,p q re s s s=  and 

2 2 22 , ,p q re s s s=  be three LNNs in S and k > 0, then we 
can define the arithmetic operations for LNN (Liang et al. 
2017):

»» addition of LNN “+”: 

   1 1 1 2 2 21 2 , , , ,p q r p q re e s s s s s s+ = + =
   

1 2 1 2 1 2
1 2

, ,p p q q r r
p p

t t t

s s s⋅ ⋅ ⋅
+ − ;  (1)

»» multiplication of LNN “×”:

Uncertainty 
approach Reference Methods Applications

Probabilistic 
linguistic 
variables

Pang et al. 
(2016); 
Bai et al. (2017) 

probabilistic linguistic TOPSIS method proposed an extended TOPSIS method and an 
aggregation-based method for MCDM with 
probabilistic linguistic information

Zhang, She 
(2017)

the probabilistic linguistic MCDM model the probabilistic linguistic method is applied in the 
service quality in wireless sensor networks

Single-valued 
neutrosophic 
number

Zavadskas et al. 
(2015)

single-valued neutrosophic linguistic 
WASPAS method

sustainable assessment of waste incineration plant 
construction site alternatives by single-valued 
neutrosophic linguistic WASPAS method

Biswas et al. 
(2016)

single-valued neutrosophic TOPSIS 
Method

application of single-valued neutrosophic TOPSIS 
method in uncertainty environment

Ye (2013, 2014); 
Biswas et al. 
(2014); Deli, 
Şubaş (2017)

a MCDM model application of single-valued neutrosophic MCDM 
method

SVNLN Ye (2015) single-valued neutrosophic linguistic 
TOPSIS method

extension of TOPSIS method based on single-
valued neutrosophic linguistic approach

Wang et al. 
(2018); Tan et al. 
(2017); 
Garg, Nancy 
(2018); 
Wu et al. (2018)

single-valued neutrosophic linguistic 
aggregation operators

application of proposed single-valued neutrosophic 
linguistic aggregation operators in group MCDM 
methods

LNN Liang et al. 
(2017) 

LNN–TOPSIS method evaluating investment risks of a gold mine using the 
proposed TOPSIS method

Fang, Ye (2017); 
Fan et al. (2017); 
Liu, You (2018)

linguistic neutrosophic aggregation 
operators

application of proposed linguistic neutrosophic 
aggregation operators in group MCDM methods

She, Ye (2017) a MCDM model MCDM method based on the cosine similarity 
measures under an linguistic neutrosophic 
environment

End of Table 1

Figure 1. Framework of the proposed model

Expert evaluation of the alternatives 
according to the criteria

Expert evaluation of the alternatives according to the evaluation criteria using LNN 

Normalization of the LNN 
correspondence matrices of the experts

Aggregation of the normalized LNN 
correspondence matrices

Determining the objective values of 
the weight coefficients

Determining the subjective values of 
the weight coefficients

The final values of the weight 
coefficients of the criteria

Calculating the elements of the border approximation area matrix

Calculating the matrix of the distance of the alternatives from the border 
approximation areas

Ranking the alternatives, sensitivity analysis and validation of the 
LNN–OS–MABAC model
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   1 1 1 2 2 21 2 , , , ,p q r p q re e s s s s s s× = × =

   
1 2 1 2 1 2

1 2 1 2

, ,p p q q r r
q q r r

t t t

s s s⋅ ⋅ ⋅
+ − + − ;                         (2)

»» multiplying LNN by a scalar, where k > 0:

   
, ,p q rk e k s s s× = × =

   

1
, ,k k kp q rt t t t

t t t

s s s
     − ⋅ − ⋅ ⋅     
     

;                             (3)

»» LNN power, where k > 0:

   
, ,

kk
p q re s s s= =

   

1 1
, ,k k kp q rt t t t t

t t t

s s s
     ⋅ − ⋅ − − ⋅ −     
     

.                          (4)

Definition 3. Let , ,p q re s s s=  be the LNN in S, then 
we can define the score function and the accuracy func-
tion according to the following (Fang, Ye 2017):

( ) 2
3

t p q rQ e
t

⋅ + − −
=

⋅
, 

( ) 0,1Q e  ∀ ∈  ;  (5)

( ) p rT e
t
−

=

( ) 1,1T e  ∀ ∈ −  .  (6)

Definition 4. Let 
1 1 11 , ,p q re s s s=  and 

2 2 22 , ,p q re s s s=  
be 2 LNNs in S, then their relations of comparison can be 
defined as:

»» if ( ) ( )1 2Q e Q e< , then e1 < e2;
»» if ( ) ( )1 2Q e Q e> , then e1 > e2;
»» if ( ) ( )1 2Q e Q e=  and ( ) ( )1 2T e T e< , then e1 < e2;
»» if ( ) ( )1 2Q e Q e=  and ( ) ( )1 2T e T e> , then e1 > e2;
»» if ( ) ( )1 2Q e Q e= and ( ) ( )1 2T e T e= , then e1 = e2.

Definition 5. If with , ,
j j jj p q re s s s= , j = 1, 2, …, n, 

we denote n LNN in S, then we can define the LNNWAA 
operator in the following way: 

( )1 2
1

, , ...,
n

n j j
j

LNNWAA e e e w e
=

= ⋅∑ ,  (7)

where: 0,1jw  ∈  represents the weight coefficient of ej, 

j = 1, 2, …, n, which satisfies the condition that 
1

1
n

j
j

w
=

=∑ . 

Then on the basis of Definitions 2 and 5 we can intro-
duce the following theorem.

Theorem 1. Let , ,
j j jj p q re s s s= , j = 1, 2, …, n, we 

denote n LNN in S, then the aggregation of the results 
that we obtain using Equation (7) represents the LNN. The 
aggregated LNN is obtained using the following equation 
(Liang et al. 2017):

( )1 2
1

, , ...,
n

n j j
j

LNNWAA e e e w e
=

= ⋅ =∑

1 1 1
1

, ,w w wj j jn n n
j j j

j j j

p q r
t t t t

t t t

s s s

= = =

     
− ⋅ − ⋅ ⋅          

     
∏ ∏ ∏

,  (8)

where: 0,1jw  ∈   represents the weight coefficient of ej, 

j = 1, 2, …, n, which satisfies the condition that 
1

1
n

j
j

w
=

=∑ . 

Definition 6. If with , ,
j j jj p q re s s s= , j = 1, 2, …, n, 

we denote n LNN in S, then we can define the LNNWGA 
operator in the following way:

( )1 2
1

, , ..., j
n

w
n j

j

LNNWAA e e e e
=

=∏ ,  (9)

where 0,1jw  ∈   is the weight coefficient of ej, j = 1, 2, 

…, n, which satisfies the condition that 
1

1
n

j
j

w
=

=∑ . 

Then on the basis of Definitions 2 and 6 we can pre-
sent the following theorem.

Theorem 2. Let , ,
j j jj p q re s s s= ; ( )1,2,...,j n=  we de-

note n LNN in S, then the aggregation of the results that 
we obtain using Equation (9) represents the LNN. The ag-
gregated LNN is obtained using the following equation:

( )1 2
1

, , ..., j
n

w
n j

j

LNNWGA e e e e
=

= =∏

1 1 1
1 1

, ,w w wj j jn n n
j j j

j j j

p q r
t t t t t

t t t

s s s

= = =

     
⋅ − ⋅ − − ⋅ −          

     
∏ ∏ ∏ ,  (10)

where: 0,1jw  ∈   represents the weight coefficient of ej, 

j = 1, 2, …, n, which satisfies the condition that 
1

1
n

j
j

w
=

=∑ . 

If the condition is satisfied that 1
jw

n
=  for j  = 1, 2, 

…, n, then the LNNWGA operator is transformed into an 
LNN geometric averaging operator.

Definition 7. Let 
1 1 11 , ,p q re s s s=  and 

2 2 22 , ,p q re s s s=  

be 2 cases of LNN. Let { }| 0,iS s i t = ∈   be a linguistic set 

and let ( )i
if s
t

=
 
be a linguistic function. Then we can 

determine the distance between e1 and e2 using the fol-
lowing equation:

( ) ( ) ( )1 21 2
1,
3 p pd e e f s f s

j= ⋅ − +
 

( ) ( )1 2t q t qf s f s
j

− −− +

( ) ( )1 2

1

,t r t rf s f s
j j

− −


− 
j > 0.  (11)

By transforming Equation (11) we can easily obtain 
equations for determining the Hamming, Euclidean and 
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Hausdorff distances between 2 LNNs (Fang, Ye 2017):
»» if j  = 1 we obtain the equation for the Hamming 

distance:

( ) ( ) ( )( 1 21 2
1,
3Hm p pd e e f s f s= ⋅ − +

( ) ( )1 2t q t qf s f s− −− +

( ) ( ) )1 2t r t rf s f s− −− ;  (12)

»» if j  = 2 we obtain the equation for the Euclidean 
distance:

   
( ) ( )2 2 2

1 2
1,
3Edd e e a b c= ⋅ + + ,  (13)

where:

( ) ( )1 2p pa f s f s= − ;

( ) ( )1 2t q t qb f s f s− −= − ;

( ) ( )1 2t r t rc f s f s− −= − ;

»» Hausdorff distance:

( )1 2,Hdd e e =

( ) ( )( 1 2
max p pf s f s− +

( ) ( )1 2t q t qf s f s− −− +

( ) ( ) )1 2t r t rf s f s− −− .  (14)

For any three LNNs , ,p q re s s s= , 
1 1 11 , ,p q re s s s=  

and 
2 2 22 , ,p q re s s s=

 
from the linguistic set { }0 1, , ..., tS s s s=

 
{ }0 1, , ..., tS s s s=  with odd cardinality t + 1, where for , ,p q rs s s S∈  

and , , 0,p q r t ∈   the following properties apply:

»»  ( )1 20 , 1d e e≤ ≤ ;

»»  ( ) ( )1 2 2 1, ,d e e d e e= ;

»»  ( )1 2, 0d e e = , if e1 = e2;

»»  ( ) ( ) ( )1 1 2 2, , ,d e e d e e d e e= + .

2.2. The LNN–OS model for determining  
the weight coefficients of the criteria

In this paper, a new approach for obtaining the weights 
of the criteria was used when determining the weight 
coefficients of the evaluation criteria, which includes a 
combination of subjective and objective elements. Meth-
ods that subjectively determine the weight coefficients of 
the criteria focus on information obtained based on the 
preferences of the decision makers (Zavadskas et al. 2015; 
Karabašević et al. 2019), while ignoring objective infor-
mation. Methods of objectively determining the weight 
coefficients do not take into account the preferences of 
the decision makers, namely, these methods do not take 
into account the subjective attitudes of the decision mak-
ers (Biswas et al. 2016; Marković et al., 2020). The advan-
tage of the OS model is that it simultaneously takes into 

account subjective and objective information. OS model 
considers 2 aspects of information, which can influence 
decision-making. The 1st aspect means that the model 
takes into account preferences by decision-makers (sub-
jectivity information), while the 2nd aspect means includ-
ing objective information based on real quantitative data. 
The integration of such information helps to obtain more 
precise criteria weights, which including all relevant infor-
mation, considering both aspects. Therefore, by combin-
ing the subjective and objective weights we obtain the final 
values of the weight coefficients of the evaluation criteria.

The model is implemented in 2 phases: in the 1st phase 
the objective values of the criteria are determined using 
the method of maximum deviation; in the 2nd phase, ex-
perts evaluate the criteria and determine the subjective 
values of the weight coefficients. After calculating the ob-
jective and subjective values of the weight coefficients of 
the criteria we obtain combined values of the weights that 
are further used in the multi-criteria model.

2.2.1. Phase I: determining the objective  
values of the weight coefficients
Determining the objective values of the weight coefficients 
is based on the model of maximum deviation (MMD). 
It begins with the assumption that the process of deci-
sion-making involves m experts who evaluate the set of 
alternatives { }1 2, , ..., bA a a a=  according to the criteria 

{ }1 2, , ..., nC c c c= . The alternatives are evaluated based on 
a predefined set of linguistic variables { }| 0,iS s i t = ∈  . 
So for each expert, we construct an initial decision corre-

spondence matrix ( ) ( )ll
ij

b n
N

×

 = x  
. After normalization of 

the expert correspondence matrix, we obtain aggregated 
normalized decision matrix ˆ ˆij b n

Y y
×

 =   . The aggregated 
normalized decision matrix Ŷ is further transformed into 
weighted matrix ij b n

D d
×

 =   , ˆ ˆ ˆ, ,
ij ij ijij j p q rd w s s s= ⋅ . 

In matrix D we can calculate the degree of deviation 
of the observed element in relation to the other elements 
within criterion cj, j = 1, 2, …, n:

( ) ( )
1

,
b

ij j ij uj
u

D w d d d
=

= =∑ ( )
1

ˆ ˆ,
b

ij uj j
u

d y y w
=

⋅∑ ,  (15)

where: ( )ˆ ˆ,ij ujd y y  represents the distance between ˆijy  and 
ˆujy .

From Equation (15) we can clearly see that for greater 
values of ( )ij jD w  alternative ai, i = 1, 2, …, b is better. 
The MMD model is based on the following starting points: 
(1) if there are small deviations between the observed val-
ue xij and all other values within the evaluation criteria 
cj, j = 1, 2, …, n, then criterion cj has little impact on the 
ranking of the alternatives (cj has a low value of weight co-
efficient wj); (2) in contrast to this, if there are significant 
deviations between the observed value xij and all other 
values within the evaluation criteria cj, j = 1, 2, …, n, then 
criterion cj has a high impact on the ranking of the al-
ternatives (cj has a high value of weight coefficient wj);  
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(3) if all the values of ˆijy  are identical within the evalua-
tion criteria cj, j = 1, 2, …, n, then criterion cj has no influ-
ence on the ranking of the alternatives (cj has the value of 
the weight coefficient wj = 0). 

In the next step the degree of deviation is calculated 
between all of the elements within the framework of the 
observed criterion cj, j = 1, 2, …, n:

( ) ( )
1

b

j j ij j
i

D w D w
=

= =∑ ( )
1 1

ˆ ˆ,
b b

ij uj j
i u

d y y w
= =

⋅∑∑ .  (16)

That is, the total deviation of all the alternatives ac-
cording to the criterion:

( ) ( )
1 1

n b

ij j
j i

D w D w
= =

= =∑∑

( )
1 1 1

ˆ ˆ,
n b b

ij uj j
j i u

d y y w
= = =

⋅∑∑∑ .  (17)

The weight coefficients wj are obtained by solving the 
optimization model that is based on maximum deviation:

( ) ( )
1 1 1

ˆ ˆmax ,
n b b

ij uj j
j i u

D w d y y w
= = =

= ⋅∑∑∑  

subject to:

2

1

1;

0 1;  1, 2, ..., .

n

j
j

j

w

w j n
=


 =

 ≤ ≤ =

∑

 

(18)

In order to obtain a solution to the model – Equation 
(18) – the Lagrange function was introduced:

( ) ( )
1 1 1

ˆ ˆ, ,
n b b

ij uj j
j i u

L w p d y y w
= = =

= ⋅ +∑∑∑

2

1

1
2

n

j
j

p w
=

 
 ⋅ −
 
 
∑ .  (19)

After partial deviation, 2 equations are obtained 

( ) 0jD w p w+ ⋅ =  and 2

1

1
n

j
j

w
=

=∑ , we obtain:

1

2
j

a
w

a
= ,  (20)

where:

( ) ( )1
1 1

1 ˆ ˆ
3 uj

b b

pij p
i u

a f s f s
j

= =

 
= ⋅ − + 

∑∑

( ) ( )ˆ ˆ
ij ujt q t qf s f s

j

− −− +

( ) ( )
1

ˆ ˆ
ij ujt r t rf s f s

j j

− −


− 

;

( )
2

2 21 22 23
1 1 1

1
3

n b b

j i u

a a a a
= = =

 
 = ⋅ + +
 
 

∑ ∑∑ ,

where:

( ) ( )21 ˆ ˆ
ujpij pa f s f s

j
= − ;

( ) ( )21 ˆ ˆ
ujpij pa f s f s

j
= − ;

( ) ( )23 ˆ ˆ
ij ujt r t ra f s f s

j

− −= − .

By normalizing the values – Equation (20) – we obtain 
the final values of the objective weight coefficients:

*

1

j
j n

j
j

w
w

w
=

=

∑
.  (21)

2.2.2. Phase II: determining the subjective  
values of the weight coefficients 
Suppose that each expert el from the set of experts 
{ }1 2, , ..., me e e , l  = 1, 2, …, m, constructs a subjective 
vector of the weight coefficients of the criteria ( ) ( ) ( ) ( ){ }1 2, , ...,l l l l

njw w w w=
 ( ) ( ) ( ) ( ){ }1 2, , ...,l l l l

njw w w w= , l  = 1, 2, …, m, where ( )

1

1
n

l
j

j

w
=

=∑
 

, 

( )0 1l
jw≤ ≤ . We obtain the aggregated (final) values of the 

subjective weight coefficients using equation:
( )

( )
1

1 1

m
l

j
l

j n m
l

j
j l

w

w

w

=

= =

′ =
∑

∑∑
,  (22)

where: ( )l
jw , 1 l m≤ ≤ , j = 1, 2, …, n represents the subjec-

tive value of the weight coefficient of criterion cj assigned 
by expert l; jw′  represents the final values of the subjective 
weight coefficients. 

Finally, on the basis of the objective and subjective 
values of the weight coefficients, we obtain the combined 
values of the weight coefficients:

*

*

1

j j
j n

j j
j

w w
w

w w
=

′⋅
=

′⋅∑
,  (23)

where: *
jw  represents the objective and jw′  represents the 

subjective values of the weight coefficients of the criteria.
The objective and subjective weights are aggregated by 

means of a non-linear model in which higher values of 
the subjective and objective weights give a higher com-
bined value of the weight coefficient and vice versa. The 
use of Equation (23) goes beyond the restrictions of the 
one-sided application of subjective or objective factors. In 
addition, Equation (23) enables a simultaneous display of 
the influence of subjective and objective information on 
the ranking of the alternatives.

2.3. The LNN–MABAC model

The MABAC method falls into the category of more recent 
MCDM methods. It was developed at the Center for Re-
search in the Field of Logistics Defence at the University 
of Defence in Belgrade (Pamučar, Ćirović 2015). Due to 
its robustness and stability, its results have so far found 
wide application and modifications, with the purpose of 
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solving numerous problems from the field of MCDM: ma-
terial selection with incomplete weight information (Xue 
et al. 2016), investment problems (Peng, Dai 2018), manu-
facturing (Nunić 2018) military problems (Bojanic et al. 
2018; Božanić et  al. 2018), renewable energy (Gigović 
et  al. 2017), website selection (Yu et  al. 2017), logistics 
(Pamučar, Božanić 2019) and so on. The basic method for 
the MABAC model is that it defines the distance of the 
criterion function of each of the given alternatives from 
the BAA. In the following section, the algorithm of the 
modified LNN–MABAC method is presented, which con-
sists of 7 steps:

Step 1. Forming the expert correspondence matrices 
( )lN . Starting from the assumption that in the process 

of decision-making m experts are involved who evalu-
ate the set of alternatives { }1 2, , ..., bA a a a=  (where: b 
denotes the final number of alternatives) in relation to 
the defined set of evaluation criteria { }1 2, , ..., nC c c c=  
(where: n represents the total number of criteria). The 
experts { }1 2, , ..., me e e  are assigned weight coefficients 

{ }1 2, , ..., md d d , 0 1l≤ d ≤  , 1, 2, ...,l m=  and 
1

1
m

l
l=

d =∑ . 

The alternatives are evaluated based on a predefined set 
of linguistic variables { }| 0,iS s i t= ∈   . 

In order to achieve the final ranking of the alterna-
tives ai, i = 1, 2, …, b, from the set of alternatives A, each 
expert el, l = 1, 2, …, m, evaluates the alternatives accord-
ing to the defined set of criteria { }1 2, , ..., nC c c c= . So for 
each expert we construct a correspondence initial decision 
matrix:

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

11 12 1

21 22 2

1 2

...

...

...

l l l
n

l l lll nij
b n

l l l
b b bn

N
×

 x x x 
   x x x= x = =     
 x x x 

   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 11 11 12 12 12 1 1 1

21 21 21 22 22 22 2 2 2

1 1 1 2 2 2

, , , , ... , ,

, , , , ... , ,

, , , , ... , ,

n n n

n n n

b b b b b b bn bn bn

l l l l l l l l l
p r q p r q p r q

l l l l l l l l l
p r q p r q p r q

l l l l l l l l l
p r q p r q p r q

s s s s s s s s s

s s s s s s s s s

s s s s s s s s s

 
 
 
 
 
 
 
  

   

 

, 

(24)

where the basic elements of matrix ( ) ( )ll
ijN  x 

 
 represent 

the linguistic variables from the sets { }| 0,iS s i t = ∈   
, 

( ) ( ) ( ), ,
ij ij ij

l l l
p q rs s s S∈  and , , 0,ij ij ijp q r t ∈  . Linguistic expres-

sions ( ) ( ) ( ) ( ), ,
ij ij ij

l l l l
ij p q rs s sx = , that is ( )

ij

l
ps , ( )

ij

l
qs  and ( )

ij

l
rs  inde-

pendently provide information on the degree of truth, in-
determinacy and falsity when evaluating the alternatives 
ai, i = 1, 2, …, b, according to the defined set of criteria 

{ }1 2, , ..., nC c c c= . 

Step 2. Calculating the elements of the normalized ex-
pert correspondence matrix ( )ˆ lY . The elements of normal-

ized matrix ( ) ( )ˆ ˆ ll
ij

b n
Y y

×

 =   
 are calculated using equation:

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, ,
ij ij ij

l l l l
ij p q ry s s s= =

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ, , , if ;

ˆ ˆ ˆ ˆ, , , if ,
ij ij ij ij ij ij

ij ij ij ij ij ij

l l l l l l l
ijp t p q t q r t r

l l l l l l l
ijp p q q r r

s s s s s s y C

s s s s s s y B

− − −
 = = = ∈


= = = ∈
  

 (25)

where: B, C respectively represent sets of criteria of the 

benefit and cost type; ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, ,
ij ij ij

l l l l
ij p q ry s s s=  represents the 

elements of the normalized matrix ( )ˆ lY .

Step 3. Calculating the elements of the aggregated nor-
malized matrix. The final aggregated decision matrix N is 

obtained by averaging the elements ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, ,
ij ij ij

l l l l
ij p q ry s s s=  

of matrix ( ) ( )ˆ ˆ ll
ij

b n
Y y

×

 =   
 using Equations (27) or (28):

11 12 1
21 22 2

1 2

ˆ ˆ ˆ...
ˆ ˆ ˆ...ˆ ˆ

ˆ ˆ ˆ...

n
n

ij b n

b b bn

y y y
y y yY y

y y y
×

 
 

 = = =    
  

   

11 11 11 12 12 12 1 1 1

21 21 21 22 22 22 2 2 2

1 1 1 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ... , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ... , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ... , ,

n n n

n n n

b b b b b b bn bn bn

p r q p r q p r q

p r q p r q p r q

p r q p r q p r q

s s s s s s s s s

s s s s s s s s s

s s s s s s s s s

 
 
 
 
 
 
 

   

 

,

 (26)

where we obtain elements ˆ ˆ ˆ ˆ, ,
ij ij ijij p q ry s s s=  using the 

LNNWAA operator:
( ) ( ) ( )1 2ˆ ˆ ˆ ˆ, , ..., m

ij ij ij ijy LNNWAA y y y = = 
 

( )

1

ˆ
m

l
lij

l

y
=

⋅d =∑

1 1 1
1

ˆ ˆ ˆ, ,l l lm m mij ij ijl l l

l l l

p q r
t t t t

t t t

s s sd d d

= = =

     
     − ⋅ − ⋅ ⋅     
     

∏ ∏ ∏ ,           (27)

or using an LNNWGA operator:

( ) ( ) ( )1 2ˆ ˆ ˆ ˆ, , ..., m
ij ij ij ijy LNNWGA y y y = = 

 
( )

1

ˆ l

m
l

ij
l

y d

=

=∏

1 1 1
1 1

ˆ ˆ ˆ, ,l l lm m mij ij ijl l l

l l l

p q r
t t t t t

t t t

s s sd d d

= = =

     
     ⋅ − ⋅ − − ⋅ −     
     

∏ ∏ ∏ ,        (28)

where elements ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, ,
ij ij ij

l l l l
ij p q ry s s s=  are elements of the 

expert correspondence matrix – Equation (24).
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Step 4. Calculating the elements of weighted ma-
trix D. We obtain the elements of weighted matrix 

* * *, ,
ij ij ijij p q rb n b n

D d s s s
× ×

  = =    
 using equation:

* * *, ,
ij ij ijij p q rd s s s= = ˆ ˆ ˆ, ,

ij ij ijj p q rw s s s⋅ =

* * *

1

, ,w w wj j j
ijp q rt tt t t tt

s s s
     ⋅ ⋅− ⋅ −           

.                         (29)

Step 5. Calculating the elements of the BAA ma-
trix G. We obtain the elements of matrix 

1 1
, ,

ij ij ijj p q rn n
G g s s s

× ×

  = =     
  

 
1 1

, ,
ij ij ijj p q rn n

G g s s s
× ×

  = =     
    using equation:

( )
1

1

b
b

j ij
i

g d
=

= =∏
1/ 1/ 1/

1 1 1
1 1

, ,b b bb b b
ij ij ij

i i i

p q r
t t t t t

t t t

s s s

= = =

     
− − − −          

     
∏ ∏ ∏

  

.       (30)

Step 6. Calculating the matrix of the distance of the 
alternatives from the BAA Q. We obtain the elements of 
matrix ij b n

S s
×

 =    using equation:

( )

( )

, , if  ;
0, if  ;

, , f  ,

Ed ij j ij j

ij ij j

Ed ij j ij j

d d g d g
s d g

d d g i d g

 >= =
− <

  (31)

where: gj represents the BAA for criterion Cj; * * *, ,
ij ij ijij p q rd s s s=

 * * *, ,
ij ij ijij p q rd s s s=  represents the elements of weighted ma-

trix D.
Alternative ai can belong to the BAA G, to the upper 

approximation area G+ or to the lower approximation area 
G–, that is { }ia G G G+ −∈ ∨ ∨ . The upper approximation 
area G+ is the area in which the ideal alternative is located 
A+, while the anti-ideal alternatives found in the lower ap-
proximation area A– (Figure 2). 

If the value of 0ijs > , that is ijs G+∈ , then alternative 
ai is close to or equal to the ideal alternative. The value 

0ijs < , that is ijs G−∈ , shows that alternative ai is close to 
or equal to the anti-ideal alternative. In order for alterna-
tive ai to be selected as the best from the set it is necessary 
for as many criteria as possible to belong to the upper ap-
proximation area G+.

Step 7. Ranking the alternatives. Based on the criterion 
functions of the alternatives Qi, i = 1, 2, …, b, the alter-
natives are ranked. The criterion functions are obtained 
using equation:

1

n

i j
j

Q s
=

=∑ ,

i = 1, 2, …, b; j = 1, 2, …, n.  (32)
Ranking of the alternatives is determined based on the 

value of Qi, whereby it is preferable for an alternative to 
have as high a value as possible of criterion function Qi.

3. Application of the LNN–OS–MABAC model

The application of the LNN–OS–MABAC model was 
demonstrated on the case-study of selecting unmanned 
aircraft for the fight against forest fires in Serbia. In the 
period 2010–2014 in the territory of the Republic of Ser-
bia 428 fires were registered, during which 10844 hectares 
of forest area were burned (Aleksić, Jančić 2011). There 
are different types of unmanned aircraft, such as: target 
and decoy, reconnaissance, research and development and 
civil and commercial UAVs (Gupta et  al. 2013; Jalayer 
et  al. 2019; Daly, Paul, 2019; Sudhakar et  al. 2020). For 
the purpose of evaluating the criteria and selecting un-
manned firefighting aircraft according to the established 
requirements and the necessary (similar) technical char-
acteristics, the paper considers civil and commercial tacti-
cal short–medium range UAVs (Vidović, Diminić 2014). 
The unmanned aircraft under consideration have the fol-
lowing technical characteristics: short range (to 100 km),  
maximum take-off weight 200 kg, maximum flight alti-
tude 5000 m, endurance of 6-10 hours, data link range of 
30–100 km. The payload of these aircraft allows the instal-
lation of firefighting equipment for the stages of firefight-
ing that are discussed in this paper.

UAVs need to satisfy many requirements in order to 
fight fires effectively. For example, the requirements relat-
ing to capability are: detection, diagnosis of the type of 
fire and prognosis of its spread, as well as the possibility 
of a coordinated fight against a fire with a large number of 
aircraft in the affected area (Yuan et al. 2015).The possibil-
ity of calculating the fire front shape and other parameters 
of fire propagation is a very important requirement that 
needs to be met by UAVs in the fight against fires (Merino 
et al. 2012).The efficiency of a UAV in the detection and 
monitoring of fires depends on: the propulsion system, the 
navigation and communication system, and the systems 
for managing the technical and operational tasks (Vidović, 
Diminić 2014). There are also general requirements that 
UAVs need to satisfy in the fight against fire. These re-
quirements relate to adequate: aerodynamics, mission 
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profile flight safety, costs, operational requirements, etc. 
(Ceruti et al. 2013; Calantropio 2019). On the basis of the 
above, the criteria and attributes for selecting unmanned 
firefighting aircraft were introduced. The selected criteria 
are as follows (Table 2): affordability C1, construction and 
general system C2, aerodynamics and ability to process 
data C3, ability to monitor and detect C4, ability for diag-
nosis and prognosis C5.

4 experts ei, i = 1, 2, …, 4, from the Ministry of Defence 
in the Republic of Serbia were involved in the research 
who have a minimum of 10 years’ experience in the field 
of fire protection and who are familiar with the method 
of use and the capabilities of using unmanned aircraft in 
the fight against forest fires. The experts { }1 2 4, , ...,e e e  were assigned weight coefficients 1 0.284d = , 2 0.267d = , 

3 0.241d =  and 3 0.207d = . 
During the evaluation of the unmanned aircraft 

there were no indications given as to the manufactur-
ers of the aircraft, but rather the unmanned aircraft 
were assigned symbols A1 to A7. Evaluation of the al-
ternatives according to the criteria was carried out 
using a set of linguistic variables { }| 0, 8iS s i  = ∈   

, 
in which { 0 exceedingly lows s= −  , 1 pretty lows −  , 

2 lows −  , 3 slightly lows −  3 slightly lows − , 4 mediums −  , 5 slightly highs −  
5 slightly highs − , 6 highs −  , 7 pretty highs − , }8 exceedingly highs −  }8 exceedingly highs − . 

3.1. Determining the weight coefficients  
of the criteria – the LNN–OS model
The OS model involves determining the objective values 
of the criteria using the maximum deviation method and 
combining the obtained values with the subjective values 
of the weight coefficients defined by the experts. Since the 
OS model is carried out in 2 phases (phase I – determining 
the objective values and phase II – determining the subjec-
tive values) the following section presents the application 
of the OS model through the 2 phases.

3.1.1. Phase I: determining the objective  
values of the weight coefficients
The objective values of the weight coefficients are deter-
mined based on the initial decision matrix. Since 4 experts 
were involved in the research, each of them evaluated the 
alternatives according to the criteria (Appendix, Table A1). 
Equation (25) was used to calculate the elements of the 
normalized expert correspondence matrix ( ) ( )ˆ ˆ ll

ij
b n

Y y
×

 =     
,  

l = 1, 2, …, 4; b = 1, 2, …, 7; n = 1, 2, …, 18. The expert 
correspondence matrices are presented in Table A1. 

The normalized expert matrices ( )ˆ lY  were aggregated 
using LNNWGA, Equation (10). The aggregated normal-
ized initial decision matrix is shown in Table 4.

Table 2. Explanation of the criteria

Criteria/sub-criteria Description of the criteria/sub-criteria
Affordability ‒ C1 (min)

Maintenance cost ‒ C11 (min) includes the cost of basic and technical maintenance and general overhaul
Acquisition cost ‒ C12 (min) procurement costs of the UAV
Operator training ‒ C13 (min) includes the cost of training operators
Operation cost ‒ C14 (min) personnel and equipment costs during the life cycle of the UAV
Disposal cost ‒ C15 (min) cost of disposing of the UAV after completion of its life-cycle

Construction and general system ‒ C2 (max)
Wing mechanization ‒ C21 (max) technological solution for the parameters and shape of the wings
Vehicle external configuration ‒ C22 (max) materials and structure of the framework
Remote via ground central system ‒ C23 (max) ability to manage and control via the ground central system
Propulsion system ‒ C24 (max) relates to the type of (electric, fuel or gas) reliability and the engine’s thrust

Aerodynamics and ability to process data‒ C3 (max)

Flight performance ‒ C31 (max) speed, altitude, loiter time, cruise distance, manoeuvring and stability 
performance

Payload capacity ‒ C32 (max) the load capacity is in line with the other requirements
Ability of data ‒ telemetry and processing ‒ C33 (max) speed and reliability of data - telemetry and processing

Ability to monitor and detect‒ C4 (max)

Detection method ‒ C41 (max) application used for the detection of fire (fuzzy logic, support vector 
machine, wavelet analysis, neural network, etc.)

Camera performance ‒ C42 (max) spectra and resolution of cameras, adopted features of smoke – colour, 
motion and geometry, ability of image vibration elimination

Ability of detection object ‒ C43 (max) ability to detect flame – smoke
Fusion of images ‒ C44 (max) ability of fusion of visual and infrared images

Ability for diagnosis and prognosis ‒ C5 (max)
Ability to measure geometrical features of fire ‒  
C51 (max)

fire front location, fire site width and perimeter, flame length and height, 
inclination angle, coordinates of burnt areas and location of hotspots

Propagation prediction ‒ C52 (max) ability to calculate the rate of spread, fire intensity and flame front geometry
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Using Equations (15)–(19) the deviations were calcu-
lated between the observed values ˆijy  and the remaining 
values from the aggregated normalized matrix (Table 3) 
within the framework of the evaluation criteria cj, j = 1, 2, 
…, 18. Based on the deviations obtained, Equations (20) 
and (21) were used to obtain the final objective values of 
the weight coefficients ( )* , 1, 2, ..., 18jw j = :

*
11 0.0647Cw = ;

*
12 0.0529Cw = ;

*
13 0.0704Cw = ;

*
14 0.0459Cw = ;

*
15 0.0600Cw = ;

*
21 0.0431Cw = ;

*
22 0.0725Cw = ;

*
23 0.0575Cw = ;

*
24 0.0359Cw = ;

*
31 0.0557Cw = ;

*
32 0.0530Cw = ;

*
33 0.0380Cw = ;

*
41 0.0616Cw = ;

*
42 0.0479Cw = ;

*
43 0.0710Cw = ;

*
44 0.0655Cw = ;

*
51 0.0401Cw = ;

*
52 0.0641Cw = .

3.1.2. Phase II: determining the subjective  
values of the weight coefficients
The subjective values of the weight coefficients were as-
signed by the experts as shown in Table 5. The local values 
of the weight coefficients were obtained from the subjec-
tive assessment of the experts. The global weights of the 
criteria were obtained by multiplying the weight coeffi-
cient of the clusters (C1, C2, C3, C4 and C5) with the 
weight coefficients of the sub-criteria. 

Table 3. Experts’ characteristics

Age Gender Education Expert’s field Experience’s years 
on UAVs Expert’s field

47 male PhD mechatronics 15 UAV’s construction 
43 male Engineer mechatronics and computing 12 UAV’s construction and software support
35 male Engineer mechatronics and computing 12 UAV’s construction and software support
37 male Engineer electrical engineering and computing 14 UAV’s construction and software support

Table 4. Aggregated normalized initial decision matrix

Criteria/
sub-criteria

Alternative

A1 A2 A3 A4 A5 A6 A7

C11 4.92 1.99 3.00,  ,  s s s 1.39 5.23 7.75,  ,  s s s 6.00 2.97 3.77,  ,  s s s 7.75 4.77 6.89,  ,  s s s 3.00 3.90 2.68,  ,  s s s 7.26 1.16 4.00,  ,  s s s 1.39 6.48 3.22,  ,  s s s

C12 3.98 2.20 1.41,  ,  s s s 3.91 3.39 5.09,  ,  s s s 1.21 1.43 3.44,  ,  s s s 3.19 3.77 7.78,  ,  s s s 1.51 2.44 1.18,  ,  s s s 1.34 2.30 6.00,  ,  s s s 1.00 2.33 7.43,  ,  s s s

C13 4.98 3.48 5.53,  ,  s s s 1.00 1.97 1.00,  ,  s s s 4.42 1.22 3.44,  ,  s s s 4.45 7.46 2.43,  ,  s s s 4.16 1.21 7.78,  ,  s s s 4.46 1.22 2.23,  ,  s s s 6.48 7.48 1.16,  ,  s s s

C14 3.39 1.57 3.20,  ,  s s s 4.00 1.00 4.45,  ,  s s s 4.00 3.71 6.37,  ,  s s s 6.64 4.16 6.92,  ,  s s s 1.84 2.18 6.53,  ,  s s s 1.16 3.72 4.99,  ,  s s s 1.64 4.23 5.51,  ,  s s s

C15 4.92 3.75 4.45,  ,  s s s 0.00 1.72 1.16,  ,  s s s 5.68 1.00 6.00,  ,  s s s 5.19 4.45 4.45,  ,  s s s 3.22 1.00 5.00,  ,  s s s 7.03 1.91 5.00,  ,  s s s 0.00 5.70 2.00,  ,  s s s

C21 4.80 5.19 1.22,  ,  s s s 2.21 4.70 5.09,  ,  s s s 7.17 1.41 1.37,  ,s s s 4.74 5.48 6.49,  ,  s s s 4.17 6.23 6.46,  ,  s s s 4.10 2.72 5.00,  ,  s s s 5.90 0.00 2.43,  ,  s s s

C22 1.00 2.37 5.49,  ,  s s s 7.78 4.32 7.04,  ,  s s s 1.64 2.13 4.00,  ,  s s s 1.66 6.51 7.51,  ,  s s s 5.19 4.49 2.40,  ,  s s s 6.02 7.43 3.19,  ,  s s s 4.74 2.11 6.23,  ,  s s s

C23 4.66 6.25 6.23,  ,  s s s 6.72 7.72 4.45,  ,  s s s 4.50 1.21 3.19,  ,  s s s 1.91 7.78 5.91,  ,  s s s 1.66 2.62 5.49,  ,  s s s 5.53 1.16 6.70,  ,  s s s 1.44 2.15 2.25,  ,  s s s

C24 2.03 5.18 1.16,  ,  s s s 4.71 7.40 3.73,  ,  s s s 3.52 1.90 7.51,  ,  s s s 5.03 2.12 3.26,  ,  s s s 1.43 1.51 1.16,  ,  s s s 3.77 5.34 3.73,  ,  s s s 4.19 1.59 3.00,  ,  s s s

C31 5.49 3.95 1.74,  ,  s s s 1.69 1.69 4.71,  ,  s s s 5.19 2.43 3.48,  ,  s s s 3.71 5.6 5.49,  ,  s s s 7.72 2.86 2.25,  ,  s s s 2.43 7.54 2.72,  ,  s s s 5.78 7.72 1.00,  ,  s s s

C32 1.37 2.42 7.23,  ,  s s s 3.33 4.91 5.78,  ,  s s s 4.42 3.60 6.00,  ,  s s s 6.72 2.33 4.19,  ,  s s s 2.17 6.91 2.21,  ,  s s s 5.01 2.50 5.72,  ,  s s s 1.18 4.00 5.74,  ,  s s s

C33 1.84 1.97 5.72,  ,  s s s 3.52 1.41 4.22,  ,  s s s 1.64 5.93 2.44,  ,  s s s 5.03 1.75 1.66,  ,  s s s 1.00 6.79 1.00,  ,  s s s 2.55 3.47 1.91,  ,  s s s 1.21 2.85 4.74,  ,  s s s

C41 1.18 5.44 5.00,  ,  s s s 2.48 1.90 7.11,  ,  s s s 3.88 1.87 1.41,  ,  s s s 3.26 3.58 3.89,  ,  s s s 5.03 1.81 1.18,  ,  s s s 7.53 2.00 6.00,  ,  s s s 1.00 1.44 6.51,  ,  s s s

C42 5.74 7.17 3.00,  ,  s s s 4.74 5.70 1.22,  ,  s s s 2.00 6.00 6.27,  ,  s s s 1.37 1.69 6.70,  ,  s s s 4.45 4.68 2.00,  ,  s s s 6.00 6.16 1.18,  ,  s s s 3.69 2.86 4.17,  ,  s s s

C43 1.18 5.71 3.73,  ,  s s s 1.39 1.79 6.20,  ,  s s s 8.00 1.47 1.41,  ,  s s s 1.43 2.10 4.22,  ,  s s s 7.17 2.00 7.27,  ,  s s s 3.26 4.36 7.27,  ,  s s s 3.71 2.68 2.96,  ,  s s s

C44 3.26 1.91 6.04,  ,  s s s 1.64 2.43 1.44,  ,  s s s 7.03 6.98 1.64,  ,  s s s 1.21 2.38 1.64,  ,  s s s 1.74 2.25 7.51,  ,  s s s 7.70 7.03 8.00,  ,  s s s 3.13 6.700 1.39,  ,  s s s

C51 2.12 2.31 2.00,  ,  s s s 2.48 1.64 2.48,  ,  s s s 5.59 5.44 6.51,  ,  s s s 1.37 4.71 0.00,  ,  s s s 3.71 7.78 2.50,  ,  s s s 1.64 1.43 6.46,  ,  s s s 4.00 3.48 6.00,  ,  s s s

C52 6.25 1.81 2.18,  ,  s s s 1.69 1.22 6.49,  ,  s s s 7.27 0.00 2.21,  ,  s s s 5.50 7.11 3.77,  ,  s s s 1.00 1.47 7.23,  ,  s s s 4.30 6.47 4.45,  ,  s s s 6.94 2.18 2.18,  ,  s s s
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Equation (21) was used to carry out the aggregation 
of the subjective values of the weight coefficients of the 
criteria from which we obtained the local values of the 
weights. For criterion C11 we obtained the local value of 
the weight coefficient (Equation (21)):

( )

( )
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11
1

11 5 4

11
1 1

l
C

l
C

l
C

j l

w

w

w

=

= =

′ = =
∑

∑∑
0.218+0.214+0.2+0.206 0.206

0.218+0.214+...+0.071+0.169+0.088
= .

After calculating the objective and subjective values of 
the weight coefficients of the criteria using Equation (22) 
we obtained the combined values of the weights that we 
further used in the multi-criteria model, Table 6.

On the basis of the subjective and objective values of 
weight coefficients, using Equation (22) we obtained the 
final value of the weight coefficient of criterion C11:

*
11 11

11 18
*

11 11
1

C C
C

C C
j

w w
w

w w
=

′⋅
= =

′⋅∑
0.0235 0.0647 0.0283

0.001521+0.001439+...+0.007427
⋅

= .

The remaining values of the final weights of the criteria 
were calculated in a similar way, as shown in Table 5.

Table 6. The final values of the weight coefficients

Criteria/
sub-criteria

Subjective 
wj

Objective  
wj

Final 
wj 

Rank

C11 0.0235 0.0647 0.0283 14
C12 0.0272 0.0529 0.0268 15
C13 0.0172 0.0704 0.0225 16
C14 0.0336 0.0459 0.0287 13
C15 0.0126 0.0600 0.0141 18
C21 0.0546 0.0431 0.0438 11
C22 0.0423 0.0725 0.0571 9
C23 0.0308 0.0575 0.0329 12
C24 0.0221 0.0359 0.0148 17
C31 0.0454 0.0557 0.0470 10
C32 0.0650 0.0530 0.0641 7
C33 0.1000 0.0380 0.0708 6
C41 0.0812 0.0616 0.0930 3
C42 0.0873 0.0479 0.0778 5
C43 0.0647 0.0710 0.0854 4
C44 0.0484 0.0655 0.0590 8
C51 0.1282 0.0401 0.0957 2
C52 0.1159 0.0641 0.1382 1

Table 5. The subjective values of the weight coefficients

Criteria/
sub-criteria Expert 1 Expert 2 Expert 3 Expert 4

Subjective weights
Rank

local global 
C1 0.107 0.067 0.144 0.138 0.114 – 5

C11 0.218 0.214 0.200 0.206 0.206 0.0235 15
C12 0.233 0.286 0.215 0.235 0.238 0.0272 14
C13 0.141 0.143 0.185 0.147 0.151 0.0172 17
C14 0.288 0.357 0.231 0.324 0.295 0.0336 12
C15 0.120 0.071 0.169 0.088 0.110 0.0126 18
C2 0.128 0.133 0.184 0.154 0.150 – 4

C21 0.419 0.344 0.357 0.338 0.364 0.0546 8
C22 0.306 0.281 0.286 0.257 0.282 0.0423 11
C23 0.160 0.219 0.214 0.230 0.206 0.0308 13
C24 0.115 0.156 0.143 0.176 0.147 0.0221 16
C3 0.218 0.200 0.208 0.215 0.210 – 3

C31 0.180 0.167 0.262 0.255 0.216 0.0454 10
C32 0.236 0.333 0.333 0.333 0.309 0.0650 6
C33 0.585 0.500 0.405 0.412 0.475 0.1000 3
C4 0.292 0.333 0.240 0.261 0.282 – 1

C41 0.313 0.280 0.276 0.283 0.288 0.0812 5
C42 0.375 0.220 0.329 0.317 0.310 0.0873 4
C43 0.205 0.240 0.224 0.250 0.230 0.0647 7
C44 0.107 0.260 0.171 0.150 0.172 0.0484 9
C5 0.255 0.267 0.224 0.231 0.244 – 2

C51 0.597 0.518 0.478 0.508 0.525 0.1282 1
C52 0.403 0.482 0.522 0.492 0.475 0.1159 2
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3.2. Application of the LNN–MABAC model

After determining the final values of the weight coeffi-
cients of the criteria, the alternatives were evaluated using 
the LNN–MABAC model. 4 experts carried out an evalu-
ation of 7 unmanned aircraft denoted as A1 to A7. As with 
the OS model, the experts evaluated the alternatives by 
assigning a certain value from a set of linguistic variables,  

{ }| 0, 8iS s i  = ∈  , in which { 0 exceedingly lows s= −  { 0 exceedingly lows s= −  , 1 pretty lows − 
1 pretty lows −  , 2 lows − , 3 slightly lows − , 4 mediums −  ,  

5 slightly highs −5 slightly highs −  , 6 highs −  , 7 pretty highs −  , s8 – exceed-
ingly hight}.

Step 1. Forming the expert correspondence matrix. 
The expert evaluations of the alternatives according to the 
criteria are shown in Table A1. 

Step 2. Calculating the elements of the normalized 
expert correspondence matrix. Using Equation (25) nor-
malization of the expert correspondence matrices was car-
ried out. The normalized expert correspondence matrices 
are shown in Table A2. 

Step 3. Calculating the elements of the aggregated nor-
malized matrix. Based on the normalized expert corre-
spondence matrices (Appendix, Table A2), using Equation 
(28) aggregation of the values was carried out and an ag-

gregated normalized matrix obtained, Table 4. The element 
in position C11–A1 was aggregated using Equation (28):

( )
4

11 11
1

ˆ ˆ l
l

l

y y d

=

= =∏

( ) ( ) ( ) ( )( )0.284 0.267 0.241 0.2078 5/8 5/8 4/8 6/8
ˆ ,s
⋅ ⋅ ⋅ ⋅

( ) ( ) ( ) ( )( )0.284 0.267 0.241 0.2078 8 1 1/8 1 3/8 1 2/8 1 3/8
ˆ ,s
− ⋅ − ⋅ − ⋅ − ⋅ −

( ) ( ) ( ) ( )( )0.284 0.267 0.241 0.2078 8 1 3/8 1 3/8 1 3/8 1 3/8
ŝ
− ⋅ − ⋅ − ⋅ − ⋅ −

=

4.923 1.993 3.003ˆ ˆ ˆ, , ,s s s

where: dl ( 1 0.284d = , 2 0.267d = , 3 0.241d =  and )3 0.207d = )3 0.207d =  are the weight coefficients of the experts. Aggrega-
tion of the remaining elements of the aggregated normal-
ized matrix was carried out in the same way (Table 4).

Step 4. Calculating the elements of the weighted ma-
trix. The elements of the weighted matrix (Table 6) were 
obtained by multiplying the final values of the weight co-
efficients (Table 6) with the elements of the aggregated 
normalized matrix (Table 4). Using Equation (29) we ob-
tained the elements of the weighted matrix (Table 7).

Table 7. The weighted matrix

Criteria/
sub-criteria

Alternative

A1 A2 A3 A4 A5 A6 A7

C11 0.21 7.69 7.78,  ,  s s s 0.04 7.90 7.99,  ,  s s s 0.31 7.78 7.83,  ,  s s s 0.74 7.88 7.97,  ,  s s s 0.11 7.84 7.76,  ,  s s s 0.52 7.57 7.84,  ,  s s s 0.04 7.95 7.80,  ,  s s s

C12 0.15 7.73 7.64,  ,  s s s 0.14 7.82 7.90,  ,  s s s 0.03 7.64 7.82,  ,  s s s 0.11 7.84 7.99,  ,  s s s 0.04 7.75 7.60,  ,  s s s 0.04 7.74 7.94,  ,  s s s 0.03 7.74 7.98,  ,  s s s

C13 0.17 7.85 7.93,  ,  s s s 0.02 7.75 7.63,  ,  s s s 0.14 7.67 7.85,  ,  s s s 0.15 7.99 7.79,  ,  s s s 0.13 7.67 8.00,  ,  s s s 0.15 7.67 7.77,  ,  s s s 0.29 7.99 7.66,  ,  s s s

C14 0.13 7.63 7.80,  ,  s s s 0.16 7.54 7.87,  ,  s s s 0.16 7.83 7.95,  ,  s s s 0.40 7.85 7.97,  ,  s s s 0.06 7.71 7.95,  ,s s s 0.04 7.83 7.89,  ,  s s s 0.05 7.86 7.91,  ,  s s s

C15 0.11 7.92 7.93,  ,  s s s 0.00 7.83 7.79,  ,  s s s 0.14 7.77 7.97,  ,  s s s 0.12 7.93 7.93,  ,  s s s 0.06 7.77 7.95,  ,  s s s 0.23 7.84 7.95,  ,  s s s 0.00 7.96 7.85,  ,  s s s

C21 0.31 7.85 7.37,  ,  s s s 0.11 7.82 7.84,  ,  s s s 0.76 7.41 7.40,  ,  s s s 0.31 7.87 7.93,  ,  s s s 0.25 7.91 7.93,  ,  s s s 0.25 7.63 7.84,  ,s s s 0.46 0.00 7.59,  ,  s s s

C22 0.06 7.46 7.83,  ,  s s s 1.49 7.72 7.94,  ,  s s s 0.10 7.42 7.69,  ,  s s s 0.11 7.91 7.97,  ,  s s s 0.46 7.74 7.47,  ,  s s s 0.61 7.97 7.59,  ,s s s 0.40 7.41 7.89,  ,  s s s

C23 0.23 7.94 7.93,  ,  s s s 0.47 7.99 7.85,  ,  s s s 0.21 7.52 7.76,  ,  s s s 0.07 7.99 7.92,  ,  s s s 0.06 7.71 7.90,  ,  s s s 0.30 7.51 7.95,  ,  s s s 0.05 7.66 7.67,  ,  s s s

C24 0.03 7.95 7.77,  ,  s s s 0.10 7.99 7.91,  ,  s s s 0.07 7.83 7.99,  ,  s s s 0.12 7.84 7.89,  ,  s s s 0.02 7.81 7.77,  ,  s s s 0.07 7.95 7.91,  ,  s s s 0.09 7.81 7.89,  ,  s s s

C31 0.42 7.69 7.44,  ,  s s s 0.09 7.44 7.80,  ,  s s s 0.38 7.56 7.69,  ,  s s s 0.23 7.87 7.86,  ,  s s s 1.17 7.62 7.54,  ,  s s s 0.13 7.98 7.60,  ,  s s s 0.47 7.99 7.26,  ,  s s s

C32 0.10 7.41 7.95,  ,  s s s 0.27 7.75 7.83,  ,  s s s 0.40 7.60 7.85,  ,  s s s 0.89 7.39 7.68,  ,  s s s 0.16 7.92 7.37,  ,  s s s 0.49 7.42 7.83,  ,  s s s 0.08 7.65 7.83,  ,  s s s

C33 0.15 7.25 7.81,  ,  s s s 0.32 7.07 7.65,  ,  s s s 0.13 7.83 7.36,  ,  s s s 0.54 7.18 7.16,  ,  s s s 0.08 7.91 6.91,  ,  s s s 0.21 7.54 7.23,  ,  s s s 0.09 7.44 7.71,  ,  s s s

C41 0.12 7.72 7.66,  ,  s s s 0.27 7.00 7.91,  ,  s s s 0.48 6.99 6.81,  ,  s s s 0.38 7.42 7.48,  ,  s s s 0.70 6.97 6.70,  ,  s s s 1.86 7.03 7.79,  ,  s s s 0.10 6.82 7.85,  ,  s s s

C42 0.75 7.93 7.41,  ,  s s s 0.54 7.79 6.91,  ,  s s s 0.18 7.82 7.85,  ,  s s s 0.12 7.09 7.89,  ,  s s s 0.49 7.67 7.18,  ,  s s s 0.82 7.84 6.89,  ,  s s s 0.38 7.38 7.60,  ,  s s s

C43 0.11 7.77 7.50,  ,  s s s 0.13 7.04 7.83,  ,  s s s 8.00 6.92 6.90,  ,  s s s 0.13 7.14 7.58,  ,  s s s 1.41 7.11 7.94,  ,  s s s 0.35 7.60 7.94,  ,  s s s 0.41 7.29 7.00,  ,  s s s

C44 0.24 7.35 7.87,  ,  s s s 0.11 7.46 7.23,  ,  s s s 0.94 7.94 7.29,  ,  s s s 0.08 7.45 7.29,  ,  s s s 0.11 7.42 7.97,  ,  s s s 1.41 7.94 8.00,  ,  s s s 0.23 7.92 7.22,  ,  s s s

C51 0.23 7.10 7.01,  ,  s s s 0.28 6.88 7.15,  ,  s s s 0.87 7.78 7.84,  ,  s s s 0.14 7.60 0.00,  ,  s s s 0.46 7.98 7.16,  ,  s s s 0.17 6.78 7.84,  ,  s s s 0.51 7.39 7.78,  ,  s s s

C52 1.52 6.52 6.68,  ,  s s s 0.26 6.17 7.77,  ,  s s s 2.25 0.00 6.70,  ,  s s s 1.19 7.87 7.21,  ,  s s s 0.15 6.33 7.89,  ,  s s s 0.81 7.77 7.38,  ,  s s s 1.95 6.68 6.68,  ,  s s s
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The element in the position C11–A1 was normalized 
using Equation (29):

11 11 1111 11 ˆ ˆ ˆ, ,C p q rd w s s s= ⋅ =

0.0283 0.0283 0.0283
* * *

4.923 1.993 3.0038 8 1 8 8
8 8 8

, ,s s s
     − ⋅ − ⋅ ⋅     
     

=

* * *
0.21 7.69 7.78, ,s s s ,

where: 11 0.0283Cw =  represents the weight coefficient 
of criterion C11; 

11 11 11
ˆ ˆ ˆ, ,p q rs s s  represents the element 

in position C11–A1 of the aggregated normalized matrix 
(Table 4).

Step 5. Calculating elements of the BAA matrix. Us-
ing equation (30) we obtained the elements of the BAA 
matrix, Table 8.

The element in position C11 was calculated using 
Equation (30):

( )
7

1/7
11 11

1
C

i

g d
=

= =∏

( ) ( ) ( )( )0.143 0.143 0.1438 0.21/8 0.05/8 ... 0.04/8
,s

⋅ ⋅ ⋅ ⋅


( ) ( ) ( )( )0.143 0.143 0.1438 8 1 7.69/8 1 7.9/8 ... 1 7.95/8
,s

− ⋅ − ⋅ − ⋅ ⋅ −


( ) ( ) ( )( )0.143 0.143 0.1438 8 1 7.78/8 1 7.99/8 ... 1 7.8/8
s
− ⋅ − ⋅ − ⋅ ⋅ − =


0.17 7.84 7.91, ,s s s   .

Step 6. Calculating the matrix of the distance of the al-
ternatives from the BAA. We used Equation (31) to deter-
mine the distance of the alternatives from the BAA (Table 9).

The element in position C11–A1 was obtained using 
Equation (31):

( ) ( )
11 11 1 1 2 3

1, 0.014
3Edd d g a a a= ⋅ + + = − ,

where:

( ) ( )11 1

2 2
1 0.027 0.022p pa f s f s= − = − ;

( ) ( )11 1

2 2
2 8 8 0.039 0.020q qa f s f s− −= − = − ;

( ) ( )11 1

2 2
3 8 8 0.027 0.012r ra f s f s− −= − = − ,

where: we obtain the elements of equation ( )11 11 1,Edd d g  
from the condition ( )i

if s
t

= , that is:

( )11

0.21 0.027
8pf s = = ;

( )118
8 7.69 0.039

8qf s −
−

= = ;

( )118
8 7.78 0.027

8rf s −
−

= = ;

( )1

0.17 0.022
8pf s = = ;

( )18
8 7.84 0.020

8qf s −
−

= = ;

( )18
8 7.91 0.012

8rf s −
−

= = .

Step 7. Ranking the alternatives. Based on the distance 
of the alternatives from the BAA (Table 9), using Equation 
(32),we obtained the final values of the criterion functions 
of the alternatives and the final ranking of the alternatives 
(Table 10).

4. Discussion of results

The research results clearly indicate that the use of the 
MCDM selected is justified. On one hand, the LNN–OS–
MABAC model is based on a complex mathematical ap-
paratus and as such its application can cause an aversion 
with its user. However, on the other hand, this model 
makes it possible to obtain credible results when mak-
ing decisions under conditions of uncertainty and when 
the data on which a decision is based are only partially 
known. And in addition to the data on the UAV offered 
being based on the technical characteristics of the aircraft 
and intended payload, its capabilities in the fight against 
forest fires are evaluated on the basis of the experiments 
presented and the performance of the aircraft in the fight 
against specific fires. Each fire, particularly a forest fire, is 

Table 8. BAA matrix

Criteria/sub-criteria BAA

C11 0.17 7.84 7.91,  ,  s s s

C12 0.06 7.76 7.92,  ,  s s s

C13 0.12 7.89 7.88,  ,  s s s

C14 0.10 7.77 7.92,  ,  s s s

C15 0.00 7.88 7.93,  ,  s s s

C21 0.30 7.66 7.79,  ,  s s s

C22 0.27 7.76 7.85,  ,  s s s

C23 0.15 7.90 7.88,  ,  s s s

C24 0.06 7.92 7.91,  ,  s s s

C31 0.30 7.86 7.65,  ,  s s s

C32 0.25 7.66 7.82,  ,  s s s

C33 0.17 7.58 7.49,  ,  s s s

C41 0.36 7.21 7.60,  ,  s s s

C42 0.38 7.74 7.55,  ,  s s s

C43 0.44 7.35 7.73,  ,  s s s

C44 0.25 7.77 8.00,  ,  s s s

C51 0.32 7.59 7.39,  ,  s s s

C52 0.81 6.95 7.40,  ,  s s s
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an occurrence with unique characteristics that affect the 
way it is neutralized. Under such conditions it is difficult 
to say which method of detection is best applied to dis-
cover a fire, which type of camera has the optimal charac-
teristics or which expansion estimation models are most 
reliable. 

Based on the above, it can be concluded that besides 
the numerous objective indicators, the selection of optimal 
UAVs carries with it a certain risk based on uncertainty, 
which is additionally present because of the subjective as-
sessment of the managers – decision makers. Therefore, 
the application of this model is significant. 1st, it helps 
managers to fight against their own subjectivity when pri-
oritizing criteria and attributes. 2nd, when prioritizing, 
the LNN–OS model applied also reduces the uncertainty 
of the objective values of the weights of the criteria and 
attributes obtained. 3rd, the application of the LNN–
MABAC approach significantly reduces uncertainty in 
the selection of the optimal UAV resulting from informa-
tion about the characteristics of the criteria of the aircraft 
offered not being completely reliable. Finally, the LNN–

OS–MABAC model applied makes it possible to favour 
specific criteria when selecting UAVs in accordance with 
the requirements of the managers. For example, if manag-
ers consider that the monitoring and timely detection of 
the source of a fire are more important than prognosis 
of the spread of the fire and determining its other char-
acteristics, this model ensures that managers can choose 
the most suitable product – the type of UAV in line with 
current requirements while minimizing the risk during 
decision-making. 

In addition, the results of the research indicate the 
optimal solutions required when selecting unmanned air-
craft. Namely, it is evident that the expansion in the devel-
opment of technology in the production of unmanned air-
craft has made the product cheaper. Yet it should be em-
phasized that this type of aircraft is highly specialized and 
that modern hardware and software solutions on which 
the total process of monitoring, detection, forecasting and 
predicting forest fires are based can significantly increase 
the price of the aircraft (Yuan et al. 2015). However, based 
on the results, it can be concluded that the experts con-
sider that the purchase of high-quality unmanned aircraft 
is far more economically acceptable than the extent of the 
damage caused by forest fires. 

Forest fires mainly occur in inaccessible terrain be-
cause of which the following criteria are very important: 
the ability to monitor and detect and the ability for di-
agnosis and prognosis (Yuan et al. 2015). The usefulness 
of the technologically developed aircraft depends largely 
upon the performance of the camera, the method of de-
tection applied and the ability to locate different types of 
fire (Merino et al. 2012; Yuan et al. 2017). In addition, the 
ability to diagnose and make a prognosis has particular 

Table 9. Distance of the alternatives from the BAA

Criteria/sub-criteria
Alternative

A1 A2 A3 A4 A5 A6 A7
C11 –0.014 0.012 –0.012 0.041 –0.012 0.032 –0.015
C12 –0.022 0.007 –0.012 0.008 –0.023 –0.003 0.005
C13 0.006 –0.022 –0.016 0.010 –0.018 –0.018 0.021
C14 –0.013 –0.018 0.006 0.022 –0.006 –0.007 0.007
C15 0.008 –0.011 0.013 0.009 –0.009 0.017 –0.008
C21 –0.033 0.018 –0.046 0.018 0.021 –0.006 –0.553
C22 –0.027 0.088 –0.030 0.018 –0.031 0.034 –0.027
C23 0.007 0.024 –0.029 0.009 –0.015 –0.031 –0.024
C24 –0.011 0.006 –0.008 –0.007 –0.013 0.003 –0.008
C31 –0.021 –0.036 –0.022 0.016 0.065 –0.015 –0.032
C32 –0.023 0.007 0.012 0.051 –0.038 0.024 –0.012
C33 –0.034 –0.040 0.021 –0.046 –0.049 –0.019 –0.020
C41 0.040 –0.026 –0.063 0.019 –0.075 0.109 –0.037
C42 0.031 –0.048 0.027 –0.057 –0.028 –0.057 –0.026
C43 –0.042 –0.032 0.550 –0.029 0.074 0.024 –0.028
C44 –0.032 –0.061 0.072 –0.058 –0.027 0.084 –0.058
C51 –0.045 –0.055 0.052 –0.534 0.034 –0.068 0.035
C52 –0.079 –0.074 –0.515 0.073 –0.075 0.059 0.099

Table 10. Criterion functions and ranking of the alternatives

Alternative Qi Rank
A1 –0.303 5
A2 –0.258 4
A3 –0.001 2
A4 –0.433 6
A5 –0.225 3
A6 0.164 1
A7 –0.680 7
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significance in the development of a strategic fight against 
forest fires (Ghamry et al. 2017). The monitoring, early de-
tection and quality diagnosis and prognosis of the spread 
of a fire ensure the optimum engagement of all forces in 
preventing its and in extinguishing it. In this way, the 
loss of material goods and of human lives is reduced. It is 
not possible to control the state of a fire or extinguish it 
without a valid determination of the front of the advanc-
ing fire, the fire site width and perimeter, the shape of the 
flames and inclination angle, and the exact coordinates of 
the area affected by the fire. Prognosis of the spread of for-
est fires significantly affects the use of all forces designed 
to neutralize them. At the same time, the quality of these 
criteria has the greatest impact on the price of unmanned 
aircraft of this type.

The high speed of processing and transmission of 
information from unmanned aircraft to the command 
center shortens the reaction time of the whole fire fight-
ing system, secures better monitoring of the situation and 
improves the coordination of all the forces involved in 
firefighting (Merino et al. 2015). 

The construction of an unmanned aircraft is essentially 
a platform for upgrading the firefighting system (Freeman 
et al. 2012; Aydin et al. 2019). For this reason the criteria 
Construction and general system and Aerodynamics and 
ability to process data were evaluated as less significant 
by the experts. Modern technological solutions make it 
relatively easy to manage unmanned aircraft with a remote 
via ground central system. However, it should be empha-
sized that the possibility of making the maximum use of 
the firefighting system with which the aircraft is equipped 
depends on the platforms and quality of the solutions for 
the wing mechanization, the reliability and engine’s thrust, 
the materials from which the UAV is designed and the 
flight performance (Ceruti et  al. 2013). Therefore, im-
proving the performance of these criteria has been the 
subject of many studies relating to defining the criteria 
for selecting optimal fire fighting UAV, as discussed in 
the literature analysis. In addition, having an optimal re-
lationship between the configuration, the general system 
and the aerodynamics of the unmanned aircraft makes it 
possible to have a greater payload capacity, which ensures 
that unmanned aircraft with firefighting systems are better 
equipped (Choi, Kim 2019).

The following section of the discussion of the results 
has 2 parts. The 1st section is a comparison of the results 
with the MCDM models based on an LNN approach that 
have already been developed. The analysis of the literature 
presented in Table 1 shows that there have been 2 MCDM 
models developed so far based on an LNN approach: (1) 
the LNN–TOPSIS model (Liang et al. 2017), which is an 
extension of the traditional TOPSIS model using LNN, 
and (2) the LNN–MCDM model (Fang, Ye 2017), which is 
a new MCDM model based on an LNN approach. The 2nd 
part of the discussion of the results is a sensitivity analy-
sis of the LNN-OS-MABAC model through 54 scenarios. 
A more detailed analysis of the 1st and 2nd part of the 
discussion of the results is presented in the next section.

4.1. Sensitivity analysis of the LNN–OS–MABAC 
model to changes in the weight coefficients  
of the criteria

Changes in the weight coefficients can significantly affect 
the ranks of the alternatives, and for this reason an analy-
sis of the weight coefficients and their influence on the 
ranks of the alternatives as a rule goes alongside decision-
making models. This section of the paper presents a sensi-
tivity analysis of the ranks of the alternatives to changes in 
the weight coefficients of the criteria through 54 scenarios, 
which are divided into three groups. In the 1st group there 
are 18 scenarios, denoted as S1 to S18. In each scenario 
one criterion was favoured, the value of which was in-
creased by 1.25, while the values of the remaining criteria 
were reduced by 0.25. In the 2nd group of scenarios de-
noted with S19 to S36 the same process was repeated, and 
in each scenario the favoured criterion was increased by 
1.45, while the remaining criteria were reduced by 0.25. 
In the 3rd group of scenarios (scenarios from S37 to S54) 
the value of the favoured criterion was increased by 1.65, 
while the remaining values, as with the previous 2 groups 
of scenarios, were reduced by 0.25. Changes in the ranks 
of the alternatives through the 54 scenarios are shown in 
Figure 3. 

The results (Figure 3) show that assigning different 
weights to the criteria through the scenarios leads to a 
change in the ranks of individual alternatives, which con-
firms that the model is sensitive to changes in the weight 
coefficients. By comparing the 1st-ranked alternatives 
(A6 and A3) through the scenarios with the initial ranks 
from Table 10, we see that the initial rank is confirmed. 
Alternative A6 remains in 1st place in 46 of the 54 sce-
narios, that is, 96.3% of the scenarios. Alternative A6 is in 
2nd place in 5 scenarios, while in three scenarios it is in 
3rd place. This is similar to the case with alternative A3 
(the 2nd-ranked alternative). In 32 scenarios alternative 
A3 retains 2nd rank, while in the remaining scenarios it 
is ranked 1st or 3rd. During changes in the weights of the 
criteria through the scenarios there were changes in the 
ranks of the remaining alternatives. However, we can con-
clude that these changes were not drastic, which also con-
firms the SD of the ranks through the scenarios, Figure 4.

Figure 3. Analysis of the changes in the ranks of the 
alternatives through 54 scenarios
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The values of the SD of the ranks through the sce-
narios were obtained by comparing the initial rank from 
the LNN–OS–MABAC model (Table 9) with the ranks 
obtained through the scenarios. In Figure 3 we see that 
through all of the scenarios there is no deviation in the 
ranks for alternatives A4 and A7. For the remaining al-
ternatives the SD values are no greater than 0.6, and for 
5 of the 7 alternatives (in all 54 scenarios) the value does 
not exceed 0.45. The mean SD value of all alternatives is 
0.25, indicating that the correlation of the ranks is very 
high through the scenarios. Since all SDD values are sig-
nificantly less than 0.6, we can conclude that there is a 
very high correlation (closeness) of ranks and that the 
proposed ranking is confirmed and credible (Stević et al. 
2017b).

Changing certain parameters of decision-making ma-
trix, such as introducing a new or eliminating the exist-
ing alternative, can lead to changes in preferences. In the 
following part, therefore, several scenarios are formed in 
which the change of the elements of decision-making ma-
trix is simulated. For each scenario, a change in the num-
ber of alternatives is made, after which in newly created 
conditions the LNN–OS–MABAC model is applied. The 
scenarios are formed in such a way that in each scenario 
the worst alternative is eliminated from subsequent con-
sideration. At the same time, for each scenario the remain-
ing alternatives are ranked according to the new initial 
decision-making matrix. This analysis has 2 objectives: (1) 
understanding the robustness of the solution obtained in 
uncertain conditions, and (2) the analysis of the perfor-
mances of the LNN–OS–MABAC model in the conditions 
of a dynamic initial matrix of decision-making. The initial 
solution applying the LNN–OS–MABAC model is gener-
ated as A6 > A3 > A5 > A2 > A1 > A4 > A7. 

Alternative A7 is identified as the worst, so in the 1st 
scenario alternative A7 is eliminated from the set. Thus, a 
new decision-making matrix is obtained with a total of 7 
alternatives. A new solution is generated and the follow-
ing preferences are obtained: A6 > A3 > A5 > A2 > A1 > 
A4. The preferences from the 1st scenario shows that A6 
remains the best alternative, while A4 remains the worst 
alternative. The preferences throughout the remaining 5 

scenarios are obtained by further implementation of the 
procedure and the effects are shown in Figure 5.

From Figure 5, it is observed that there are no rank 
reversals throughout the scenarios. In LNN–OS–MABAC 
model, alternative A6 remains the best-ranked in all sce-
narios. This establishes the robustness and stability of 
LNN–OS–MABAC model in a dynamic environment.

4.2. Comparing the ranks of MCDM methods

In this section, the LNN–OS–MABAC model is validated 
by comparing the results with those shown by LNN mod-
els in the literature so far: (1) the LNN–TOPSIS model 
(Liang et  al. 2017), and (2) the LNN–MCDM model 
(Fang, Ye 2017). A comparison of the results for the LNN–
MCDM models is presented in Figure 6.

To determine the relationship between the results ob-
tained by different approaches, SC of the correlation of 
ranks was used, as one of the most reliable measures of 
the correlation of ranks (Stević et al. 2017a). The results of 
the comparison of ranks using SC show an exceptionally 
high correlation between the models applied. Correlation 
between the LNN–OS–MABAC and the LNN–TOPSIS 
models was 0.964, while the correlation between the 
LNN–OS–MABAC and the LNN–MCDM models was 
0.961. Based on the results shown we can conclude that 

Figure 4. SD of the ranks through the scenarios
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the proposed ranking is confirmed and credible. Based on 
the presented analysis, in addition to the confirmation of 
the credibility of the ranking, we can conclude that an ap-
proach based on LNN successfully exploits the uncertainty 
that arises in group decision-making.

Conclusions

In group decision-making, experts are expected to make 
objective and impartial decisions while taking uncertainty 
into account. Therefore, the appreciation of the uncertain-
ty that exists in the decision-making process is the prereq-
uisite for objective decision-making. This paper presents 
a novel approach to the treatment of uncertainty that is 
based on the application of LNN. The approach based on 
LNN represents an integration of linguistic variables into 
the neutrosophic theory of decision-making. Integrating 
linguistic variables into neutrosophic theory eliminates 
the subjectivity that prevails when determining numerical 
values. The LNN approach eliminates these constraints, 
since for every rating the decision maker uses only lin-
guistic variables from a predefined set of variables. The 
application of LNN in MCDM models uses exclusively lin-
guistic variables from a predefined set of variables. This 
eliminates subjective assessments when determining the 
numerical values of the attributes.

The LNN approach was tested on a case study of the 
selection of unmanned aircraft for the detection and fight 
against forest fires. In the OS–MABAC multi-criteria 
model an original modification of the MABAC method 
was made using LNN. In addition to this modification, the 
paper presents an original OS model for determining the 
weight coefficients of the criteria. Finally, validation of the 
model was carried out by comparing the results with exist-
ing MCDM models based on LNN. The discussion of the 
results and validation showed significant stability of the 
results and indicated significant possibilities for applying 
the LNN–OS–MABAC model. 

Research has shown that the selection of the optimal 
UAV, in addition to being influenced by predictable in-
dicators, is also influenced by numerous unknown and 
partially known indicators. The LNN–OS–MABAC model 
takes all parameters into consideration that affect the fi-
nal decision, regardless of the degree and nature of their 
uncertainty. This model makes it possible to process quali-
tative subjective expert preferences, even when decisions 
are made on the basis of data that are partially known 
or even not very well known at all. In this way, it makes 
it easier for decision makers to express their own prefer-
ences, while taking into account subjectivity and the lack 
of information about certain occurrences. In addition, 
the LNN–OS model for determining the weight coeffi-
cients of the criteria introduces objective values of weight 
coefficients, which reduces the subjective impact of the 
expert preferences on the final values of the weights of 
the criteria. Bearing in mind the given advantages, one of 
the improvements of this model will be the creation and 
implementation of software for real-world applications, 

which now can be one of the limitations and managerial 
implications. This will make the model much closer to 
users and will enable full exploitation of all the benefits 
stated in the paper. 

Based on the above, it can be concluded that besides 
the numerous objective indicators, the selection of optimal 
UAVs carries with it a certain risk based on uncertainty, 
which is additionally present because of the subjective as-
sessment of the managers – decision makers. Therefore, 
the application of this model is significant. 1st, it helps 
managers to fight against their own subjectivity when pri-
oritizing criteria and attributes. 2nd, when prioritizing, 
the LNN–OS model applied also reduces the uncertainty 
of the objective values of the weights of the criteria and 
attributes obtained. 3rd, the application of the LNN–
MABAC approach significantly reduces uncertainty in 
the selection of the optimal UAV resulting from informa-
tion about the characteristics of the criteria of the aircraft 
offered not being completely reliable. Finally, the LNN–
OS–MABAC model applied makes it possible to favour 
specific criteria when selecting UAVs in accordance with 
the requirements of the managers. For example, if manag-
ers consider that the monitoring and timely detection of 
the source of a fire are more important than prognosis 
of the spread of the fire and determining its other char-
acteristics, this model ensures that managers can choose 
the most suitable product – the type of UAV in line with 
current requirements while minimizing the risk during 
decision-making. 

Bearing in mind the stated advantages, one of the im-
provements to this model would be the development and 
implementation of software for real-world applications. 
This would make the model much more within the reach 
of users and enable full exploitation of all the benefits 
stated in the paper.

The sensitivity analysis of the LNN–OS–MABAC mod-
el to changes in the weight values of the evaluation criteria 
showed the robustness of the model. It was shown that 
the model is sensitive to changes in the weight coefficients 
of the criteria. In addition, the results obtained showed 
remarkable stability. The model was validated by compar-
ing the results with those obtained by the LNN–MCDM  
models developed so far that can be found in the lit-
erature. The results showed that the LNN–OS–MABAC 
model gives similar results, with negligible deviation com-
pared to the existing 2 models developed on the basis of 
the LNN approach. 

As shown in Table 1, there are only 5 papers that con-
sider the application of the LNN concept in MCDM. In 
view of this, the LNN–OS–MABAC model is an original 
MCDM approach that has not been considered so far in 
the literature and which gives promising results. The au-
thors suggest that one of the directions for future research 
should be directed towards the application of LNN in oth-
er traditional MCDM models for determining the weight 
coefficients of the criteria and evaluation of the alterna-
tives. Further integration of the LNN approach in tradi-
tional MCDM models, such as in the best–worst and AHP 
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methods, would make it possible to determine the degree 
of consistency of the expert comparisons. This would in-
directly be able to determine the degree of reliability of the 
results obtained, which would significantly contribute to 
the validation of the model. In addition, future research 
should include extension of the LNN–OS–MABAC model 
with a stability analysis determining the weight stability 

intervals. That research should include determination of 
the weight stability interval for each criterion. In addition, 
applications of the proposed hybrid MCDM method can 
be explored to tackle practical problems in other decision-
making areas, such as project portfolio selection, inven-
tory problems, supply chain management and location 
problems. 

Appendix
Table A1. Expert correspondence matrices

Expert 1

Criteria/sub-criteria
Alternative

A1 A2 A3 A4 A5 A6 A7

C11 3 7 5,  ,  s s s 7 1 0,  ,  s s s 2 6 4,  ,  s s s 0 2 2,  ,  s s s 5 3 6,  ,  s s s 1 7 4,  ,  s s s 7 2 5,  ,  s s s

C12 3 7 6,  ,  s s s 4 4 4,  ,  s s s 7 7 5,  ,  s s s 5 4 0,  ,  s s s 7 7 7,  ,  s s s 7 5 1,  ,  s s s 7 4 1,  ,  s s s

C13 3 5 2,  ,  s s s 7 7 7,  ,  s s s 4 6 5,  ,  s s s 4 0 6,  ,  s s s 4 7 0,  ,  s s s 4 6 6,  ,  s s s 2 0 7,  ,  s s s

C14 4 7 4,  ,  s s s 4 7 4,  ,  s s s 4 4 2,  ,  s s s 2 4 2,  ,  s s s 6 6 1,  ,  s s s 3 27 ,  ,  s s s 7 2 3,  ,  s s s

C15 3 3 4,  ,  s s s 8 5 7,  ,  s s s 3 7 2,  ,  s s s 3 4 4,  ,  s s s 5 7 3,  ,  s s s 1 6 3,  ,  s s s 8 3 6,  ,  s s s

C21 4 5 2,  ,  s s s 2 4 4,  ,  s s s 8 2 1,  ,  s s s 6 7 6,  ,  s s s 5 8 6,  ,  s s s 5 3 5,  ,  s s s 6 1 2,  ,  s s s

C22 1 2 5,  ,  s s s 8 3 8,  ,  s s s 1 2 4,  ,  s s s 2 7 8,  ,  s s s 5 3 2,  ,  s s s 6 7 3,  ,  s s s 5 4 6,  ,  s s s

C23 6 6 6,  ,  s s s 7 8 4,  ,  s s s 5 1 3,  ,  s s s 2 8 5,  ,  s s s 2 2 5,  ,  s s s 6 1 6,  ,  s s s 2 3 3,  ,  s s s

C24 3 6 1,  ,  s s s 5 6 4,  ,  s s s 4 3 8,  ,  s s s 6 1 4,  ,  s s s 1 1 1,  ,  s s s 4 5 4,  ,  s s s 4 2 3,  ,  s s s

C31 5 4 2,  ,  s s s 2 2 5,  ,  s s s 5 2 3,  ,  s s s 4 5 5,  ,  s s s 8 3 3,  ,  s s s 2 8 3,  ,  s s s 6 8 1,  ,  s s s

C32 1 7 7,  ,  s s s 4 4 7,  ,  s s s 4 3 6,  ,  s s s 7 4 4,  ,  s s s 3 7 2,  ,  s s s 5 1 6,  ,  s s s 1 4 6,  ,  s s s

C33 2 1 6,  ,  s s s 4 2 4,  ,  s s s 1 6 3,  ,  s s s 6 1 2,  ,  s s s 1 8 1,  ,  s s s 3 5 2,  ,  s s s 1 7 5,  ,  s s s

C41 1 5 5,  ,  s s s 3 1 6,  ,  s s s 4 3 2,  ,  s s s 4 6 3,  ,  s s s 6 1 1,  ,  s s s 8 2 6,  ,  s s s 1 2 7,  ,  s s s

C42 6 6 3,  ,  s s s 6 5 2,  ,  s s s 2 6 7,  ,  s s s 1 2 6,  ,  s s s 4 4 2,  ,  s s s 6 5 1,  ,  s s s 3 7 5,  ,  s s s

C43 1 6 4,  ,  s s s 1 1 7,  ,  s s s 8 2 2,  ,  s s s 1 7 4,  ,  s s s 8 2 8,  ,  s s s 4 5 8,  ,  s s s 4 2 3,  ,  s s s

C44 4 2 7,  ,  s s s 2 2 2,  ,  s s s 7 8 1,  ,  s s s 1 7 1,  ,  s s s 2 3 8,  ,  s s s 7 7 8,  ,  s s s 4 6 1,  ,  s s s

C51 3 2 2,  ,  s s s 3 1 3,  ,  s s s 6 5 7,  ,  s s s 1 4 2,  ,  s s s 4 8 3,  ,  s s s 1 1 6,  ,  s s s 4 3 6,  ,  s s s

C52 7 2 2,  ,  s s s 2 2 6,  ,  s s s 8 3 2,  ,  s s s 6 6 4,  ,  s s s 1 2 7,  ,  s s s 5 7 4,  ,  s s s 2 27 ,  ,  s s s

...
Expert 4

Criteria/sub-criteria
Alternative

A1 A2 A3 A4 A5 A6 A7

C11 2 5 5,  ,  s s s 6 4 0,  ,  s s s 2 3 5,  ,  s s s 0 4 0,  ,  s s s 5 6 5,  ,  s s s 1 6 4,  ,  s s s 6 3 5,  ,  s s s

C12 4 5 6,  ,  s s s 3 6 2,  ,  s s s 7 7 4,  ,  s s s 4 5 1,  ,  s s s 5 3 7,  ,  s s s 7 7 2,  ,  s s s 7 7 0,  ,  s s s

C13 3 5 3,  ,  s s s 7 5 7,  ,  s s s 3 7 4,  ,  s s s 3 0 5,  ,  s s s 4 7 1,  ,  s s s 4 7 6,  ,  s s s 2 0 6,  ,  s s s

C14 4 7 5,  ,  s s s 4 7 3,  ,  s s s 5 4 0,  ,  s s s 0 5 1,  ,  s s s 6 5 2,  ,  s s s 6 5 3,  ,  s s s 6 5 0,  ,  s s s

C15 2 5 3,  ,  s s s 7 5 6,  ,  s s s 2 7 2,  ,  s s s 2 1 3,  ,  s s s 5 7 3,  ,  s s s 2 7 3,  ,  s s s 7 2 6,  ,  s s s

C21 5 6 1,  ,  s s s 2 5 6,  ,  s s s 8 2 2,  ,  s s s 4 5 6,  ,  s s s 4 6 7,  ,  s s s 3 3 5,  ,  s s s 7 0 3,  ,  s s s
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Expert 4

Criteria/sub-criteria
Alternative

A1 A2 A3 A4 A5 A6 A7

C22 1 2 5,  ,  s s s 7 4 6,  ,  s s s 2 1 4,  ,  s s s 2 6 7,  ,  s s s 6 6 3,  ,  s s s 5 8 4,  ,  s s s 5 1 6,  ,  s s s

C23 5 5 6,  ,  s s s 6 8 5,  ,  s s s 3 1 4,  ,  s s s 1 7 6,  ,  s s s 2 3 5,  ,  s s s 5 2 7,  ,  s s s 1 1 2,  ,  s s s

C24 3 6 2,  ,  s s s 5 8 4,  ,  s s s 3 2 7,  ,  s s s 4 4 3,  ,  s s s 1 2 2,  ,  s s s 3 7 4,  ,  s s s 5 1 3,  ,  s s s

C31 5 4 1,  ,  s s s 2 2 5,  ,  s s s 6 3 3,  ,  s s s 4 7 5,  ,  s s s 8 4 2,  ,  s s s 3 7 3,  ,  s s s 5 8 1,  ,  s s s

C32 2 2 7,  ,  s s s 4 5 5,  ,  s s s 5 5 5,  ,  s s s 7 1 5,  ,  s s s 1 8 2,  ,  s s s 4 4 6,  ,  s s s 1 4 6,  ,  s s s

C33 2 3 6,  ,  s s s 3 2 4,  ,  s s s 2 6 3,  ,  s s s 4 1 2,  ,  s s s 1 6 1,  ,  s s s 4 3 1,  ,  s s s 1 3 5,  ,  s s s

C41 1 4 5,  ,  s s s 2 4 8,  ,  s s s 2 2 2,  ,  s s s 3 3 4,  ,  s s s 4 2 1,  ,  s s s 6 2 6,  ,  s s s 1 1 6,  ,  s s s

C42 6 7 3,  ,  s s s 4 5 1,  ,  s s s 2 5 6,  ,  s s s 2 2 6,  ,  s s s 5 4 2,  ,  s s s 6 6 1,  ,  s s s 4 2 5,  ,  s s s

C43 1 5 4,  ,  s s s 2 3 7,  ,  s s s 8 1 2,  ,  s s s 1 1 4,  ,  s s s 8 2 7,  ,  s s s 3 5 7,  ,  s s s 4 3 2,  ,  s s s

C44 3 1 5,  ,  s s s 1 3 1,  ,  s s s 6 7 2,  ,  s s s 1 2 2,  ,  s s s 1 2 7,  ,  s s s 8 6 8,  ,  s s s 3 6 2,  ,  s s s

C51 2 4 2,  ,  s s s 2 2 2,  ,  s s s 6 4 6,  ,  s s s 2 4 2,  ,  s s s 4 7 2,  ,  s s s 2 1 7,  ,  s s s 4 3 6,  ,  s s s

C52 6 3 3,  ,  s s s 2 1 6,  ,  s s s 7 0 2,  ,  s s s 5 8 3,  ,  s s s 1 1 7,  ,  s s s 6 5 5,  ,  s s s 7 4 3,  ,  s s s

Table A2. Normalized expert correspondence matrices

Expert 1

Criteria/sub-criteria
Alternative

A1 A2 A3 A4 A5 A6 A7

C11 5 1 3,  ,  s s s 1 7 8,  ,  s s s 6 2 4,  ,  s s s 8 6 6,  ,  s s s 3 5 2,  ,  s s s 7 1 4,  ,  s s s 1 6 3,  ,  s s s

C12 5 1 2,  ,  s s s 4 4 4,  ,  s s s 1 1 3,  ,  s s s 3 4 8,  ,  s s s 1 1 1,  ,  s s s 1 3 7,  ,  s s s 1 4 7,  ,  s s s

C13 5 3 6,  ,  s s s 1 1 1,  ,  s s s 4 2 3,  ,  s s s 4 8 2,  ,  s s s 4 1 8,  ,  s s s 4 2 2,  ,  s s s 6 8 1,  ,  s s s

C14 4 1 4,  ,  s s s 4 1 4,  ,  s s s 4 4 6,  ,  s s s 6 4 6,  ,  s s s 2 2 7,  ,  s s s 1 5 6,  ,  s s s 1 6 5,  ,  s s s

C15 5 5 4,  ,  s s s 0 3 1,  ,  s s s 5 1 6,  ,  s s s 5 4 4,  ,  s s s 3 1 5,  ,  s s s 7 2 5,  ,  s s s 0 5 2,  ,  s s s

C21 4 5 2,  ,  s s s 2 4 4,  ,  s s s 8 2 1,  ,  s s s 6 7 6,  ,  s s s 5 8 6,  ,  s s s 5 3 5,  ,  s s s 6 1 2,  ,  s s s

C22 1 2 5,  ,  s s s 8 3 8,  ,  s s s 1 2 4,  ,  s s s 2 7 8,  ,  s s s 5 3 2,  ,  s s s 6 7 3,  ,  s s s 5 4 6,  ,  s s s

C23 6 6 6,  ,  s s s 7 8 4,  ,  s s s 5 1 3,  ,  s s s 2 8 5,  ,  s s s 2 2 5,  ,  s s s 6 1 6,  ,  s s s 2 3 3,  ,  s s s

C24 3 6 1,  ,  s s s 5 6 4,  ,  s s s 4 3 8,  ,  s s s 6 1 4,  ,  s s s 1 1 1,  ,  s s s 4 5 4,  ,  s s s 4 2 3,  ,  s s s

C31 5 4 2,  ,  s s s 2 2 5,  ,  s s s 5 2 3,  ,  s s s 4 5 5,  ,  s s s 8 3 3,  ,  s s s 2 8 3,  ,  s s s 6 8 1,  ,  s s s

C32 1 7 7,  ,  s s s 4 4 7,  ,  s s s 4 3 6,  ,  s s s 7 4 4,  ,  s s s 3 7 2,  ,  s s s 5 1 6,  ,  s s s 1 4 6,  ,  s s s

C33 2 1 6,  ,  s s s 4 2 4,  ,  s s s 1 6 3,  ,  s s s 6 1 2,  ,  s s s 1 8 1,  ,  s s s 3 5 2,  ,  s s s 1 7 5,  ,  s s s

C41 1 5 5,  ,  s s s 3 1 6,  ,  s s s 4 3 2,  ,  s s s 4 6 3,  ,  s s s 6 1 1,  ,  s s s 8 2 6,  ,  s s s 1 2 7,  ,  s s s

C42 6 6 3,  ,  s s s 6 5 2,  ,  s s s 2 6 7,  ,  s s s 1 2 6,  ,  s s s 4 4 2,  ,  s s s 6 5 1,  ,  s s s 3 7 5,  ,  s s s

C43 1 6 4,  ,  s s s 1 1 7,  ,  s s s 8 2 2,  ,  s s s 1 7 4,  ,  s s s 8 2 8,  ,  s s s 4 5 8,  ,  s s s 4 2 3,  ,  s s s

C44 4 2 7,  ,  s s s 2 2 2,  ,  s s s 7 8 1,  ,  s s s 1 7 1,  ,  s s s 2 3 8,  ,  s s s 7 7 8,  ,  s s s 4 6 1,  ,  s s s

C51 3 2 2,  ,  s s s 3 1 3,  ,  s s s 6 5 7,  ,  s s s 1 4 2,  ,  s s s 4 8 3,  ,  s s s 1 1 6,  ,  s s s 4 3 6,  ,  s s s

C52 7 2 2,  ,  s s s 2 2 6,  ,  s s s 8 3 2,  ,  s s s 6 6 4,  ,  s s s 1 2 7,  ,  s s s 5 7 4,  ,  s s s 7 2 2,  ,  s s s

...

End of Table A1
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Expert 4
Criteria/

sub-criteria
Alternative

A1 A2 A3 A4 A5 A6 A7

C11 6 3 3,  ,  s s s 2 4 8,  ,s s s 6 5 3,  ,  s s s 8 4 8,  ,  s s s 3 2 3,  ,  s s s 7 2 4,  ,  s s s 2 5 3,  ,  s s s

C12 4 3 2,  ,  s s s 5 2 6,  ,  s s s 1 1 4,  ,  s s s 4 3 7,  ,  s s s 3 5 1,  ,  s s s 1 1 6,  ,  s s s 1 1 8,  ,  s s s

C13 5 3 5, ,  s s s 1 3 1,  ,  s s s 5 1 4,  ,  s s s 5 8 3,  ,  s s s 4 1 7,  ,  s s s 4 1 2,  ,  s s s 6 8 2,  ,  s s s

C14 4 1 3,  ,  s s s 4 1 5,  ,  s s s 3 4 8,  ,  s s s 8 3 7,  ,  s s s 2 3 6,  ,  s s s 2 3 5,  ,  s s s 2 3 8,  ,  s s s

C15 6 3 5,  ,  s s s 1 3 2,  ,  s s s 6 1 6,  ,  s s s 6 7 5,  ,  s s s 3 1 5,  ,  s s s 6 1 5,  ,  s s s 1 6 2,  ,  s s s

C21 5 6 1,  ,  s s s 2 5 6,  ,  s s s 8 2 2,  ,  s s s 4 5 6,  ,  s s s 4 6 7,  ,  s s s 3 3 5,  ,  s s s 7 0 3,  ,  s s s

C22 1 2 5,  ,  s s s 7 4 6,  ,  s s s 2 1 4,  ,s s s 2 6 7,  ,  s s s 6 6 3,  ,  s s s 5 8 4,  ,  s s s 5 1 6,  ,  s s s

C23 5 5 6,  ,  s s s 6 8 5,  ,  s s s 3 1 4,  ,  s s s 1 7 6,  ,  s s s 2 3 5,  ,  s s s 5 2 7,  ,  s s s 1 1 2,  ,  s s s

C24 3 6 2,  ,  s s s 5 8 4,  ,  s s s 3 2 7,  ,  s s s 4 4 3,  ,  s s s 1 2 2,  ,  s s s 3 7 4,  ,  s s s 5 1 3,  ,  s s s

C31 5 4 1,  ,  s s s 2 2 5,  ,  s s s 6 3 3,  ,  s s s 4 7 5,  ,  s s s 8 4 2,  ,  s s s 3 7 3,  ,  s s s 5 8 1,  ,  s s s

C32 2 2 7,  ,  s s s 4 5 5,  ,  s s s 5 5 5,  ,  s s s 7 1 5,  ,  s s s 1 8 2,  ,  s s s 4 4 6,  ,  s s s 1 4 6, ,  s s s

C33 2 3 6,  ,  s s s 3 2 4,  ,  s s s 2 6 3,  ,  s s s 4 1 2,  ,  s s s 1 6 1,  ,  s s s 4 3 1,  ,  s s s 1 3 5,  ,  s s s

C41 1 4 5,  ,  s s s 2 4 8,  ,  s s s 2 2 2,  ,  s s s 3 3 4,  ,  s s s 4 2 1,  ,s s s 6 2 6,  ,  s s s 1 1 6,  ,  s s s

C42 6 7 3,  ,  s s s 4 5 1,  ,  s s s 2 5 6,  ,  s s s 2 2 6,  ,  s s s 5 4 2,  ,  s s s 6 6 1,  ,  s s s 4 2 5,  ,  s s s

C43 1 5 4,  ,  s s s 2 3 7,  ,  s s s 8 1 2,  ,  s s s 1 1 4,  ,  s s s 8 2 7,  ,  s s s 3 5 7,  ,  s s s 4 3 2,  ,  s s s

C44 3 1 5,  ,  s s s 1 3 1,  ,  s s s 6 7 2, ,s s s 1 2 2,  ,  s s s 1 2 7,  ,  s s s 8 6 8,  ,  s s s 3 6 2,  ,  s s s

C51 2 4 2,  ,  s s s 2 2 2,  ,  s s s 6 4 6,  ,  s s s 2 4 2,  ,  s s s 4 7 2,  ,  s s s 2 1 7,  ,  s s s 4 3 6,  ,  s s s

C52 6 3 3,  ,  s s s 2 1 6,  ,  s s s 7 0 2,  ,  s s s 5 8 3,  ,  s s s 1 1 7,  ,s s s 6 5 5,  ,  s s s 7 4 3,  ,  s s s
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