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Abstract. The global economic structure, with its decentralized production and the consequent increase in freight traf-
fic all over the world, creates considerable problems and challenges for the freight transport sector. This situation has 
led shipping to become the most suitable and cheapest way to transport goods. Thus, ports are configured as nodes 
with critical importance in the logistics supply chain as a link between two transport systems, sea and land. Increase 
in activity at seaports is producing three undesirable effects: increasing road congestion, lack of open space in port in-
stallations and a significant environmental impact on seaports. These adverse effects can be mitigated by moving part 
of the activity inland. Implementation of dry ports is a possible solution and would also provide an opportunity to 
strengthen intermodal solutions as part of an integrated and more sustainable transport chain, acting as a link between 
road and railway networks. In this sense, implementation of dry ports allows the separation of the links of the trans-
port chain, thus facilitating the shortest possible routes for the lowest capacity and most polluting means of transport. 
Thus, the decision of where to locate a dry port demands a thorough analysis of the whole logistics supply chain, with 
the objective of transferring the largest volume of goods possible from road to more energy efficient means of trans-
port, like rail or short-sea shipping, that are less harmful to the environment. However, the decision of where to locate 
a dry port must also ensure the sustainability of the site. Thus, the main goal of this article is to research the variables 
influencing the sustainability of dry port location and how this sustainability can be evaluated. With this objective, in 
this paper we present a methodology for assessing the sustainability of locations by the use of Multi-Criteria Deci-
sion Analysis (MCDA) and Bayesian Networks (BNs). MCDA is used as a way to establish a scoring, whilst BNs were 
chosen to eliminate arbitrariness in setting the weightings using a technique that allows us to prioritize each variable 
according to the relationships established in the set of variables. In order to determine the relationships between all the 
variables involved in the decision, giving us the importance of each factor and variable, we built a K2 BN algorithm. 
To obtain the scores of each variable, we used a complete cartography analysed by ArcGIS. Recognising that setting the 
most appropriate location to place a dry port is a geographical multidisciplinary problem, with significant economic, 
social and environmental implications, we consider 41 variables (grouped into 17 factors) which respond to this need. 
As a case of study, the sustainability of all of the 10 existing dry ports in Spain has been evaluated. In this set of logistics 
platforms, we found that the most important variables for achieving sustainability are those related to environmental 
protection, so the sustainability of the locations requires a great respect for the natural environment and the urban 
environment in which they are framed.
Keywords: dry ports; industrial location; sustainability; Delphi; Bayesian networks; multi-criteria decision analysis; 
geographic information systems.

Introduction

The dry port concept is based on moving intermodal 
terminals inland from port areas. This logistics platform 
is presented as a solution to the most important prob-
lems arising from the accumulation of activities in port 

areas: increasing road congestion, lack of open space in 
port installations and the significant environmental im-
pact of seaports (Rodrigue 2006). 

Connecting cargo handling from the port to a logis-
tics centre helps achieve a better port operation, which 



leads to a greater efficiency in ship operations (reduction 
in ship time in port) and to gains in energy efficiency in 
shipping and, particularly, to operational improvements 
such as the minimisation of fuel consumption and re-
sulting greenhouse gas emissions (Moon, Woo 2014). It 
helps also to prevent traffic bottlenecks, thus decreasing 
road and railway emissions. 

In addition, dry ports allow the separation of the 
various links of the transport chain. Thus, they are also 
presented as an opportunity to strengthen intermodal 
solutions as part of an integrated and more sustainable 
transport chain, allowing for the shortest possible routes 
for the lowest capacity and most polluting means of 
transport (Roso 2007; Regmi, Hanaoka 2013).

All these considerations suggest dry ports as a so-
lution that provides a more sustainable logistics supply 
chain. However, while taking into account the sustain-
ability of the logistics supply chain it is also necessary 
to ensure the sustainability of the site. The main goal of 
this article is to investigate the variables influencing the 
sustainability of dry port location and how this sustain-
ability can be evaluated.

1. State of the Art of Factors Influencing  
the Location of Dry Ports

The diversity of factors involved in the location of in-
dustry has prompted economists over the last century 
to build models that try to explain the complexity of the 
real world. For Weber (1929), the main objective when 
deciding on the location for any industry is to reduce the 
transport and labour costs. Hotelling (1929) and Reilly 
(1931) consider the presence of competitors. Christaller 
(1933) adds the ‘minimum demand threshold’ in order 
for the location to be profitable. Taking this threshold 
into account, the best locations are close to large popula-
tion centres. However, for Lösch (1954), the relationship 
between population size and type of industry is very im-
portant because the impacts on a big population density 
could lead to social problems. Smith (1979) introduces 
the concept of ‘subtracted value’, which consists of the 
negative externalities that must be weighed against the 
positive. According to Brown (2005), accessibility to and 
from the centres of origin and destination of the various 
flows should be maximised, which is achieved through 
the connection with the transportation and communica-
tion systems, generally located alongside transportation 
facilities forming hubs.

As can be seen, location problems are multi-objec-
tive problems and the implications on levels of economic 
growth, social welfare, environmental acceptability, ac-
cessibility and territorial conditions must all be taken 
into account. From the research of Pons Sánchez (2008), 
and incorporating the elements described above, the set 
of variables of this study is presented in Table 1. These 
41 variables are grouped into 17 factors, which in turn 
correspond to 4 categories: environmental factors, eco-
nomic and social factors, accessibility factors, and loca-
tion factors. The variables can be considered as either 
a benefit, when a higher value is better in geographical 
analysis, or a cost, when a lower value is better.

2. Bayesian Networks and Multi-Criteria Decision 
Analysis: a Proposed Mixed Methodology

By triangulating different techniques, we have estab-
lished a methodology for assessing the sustainability of 
the location of dry ports that can also be used to evalu-
ate their overall quality. 

MCDA has been extensively used to analyse situ-
ations that involve many variables, including situations 
involving location problems (Ho et al. 2010).

To reduce the arbitrariness of the weightings of the 
MCDA algorithm, we decided to use an Artificial Intel-
ligence model based on BNs that establishes the relation-
ship between the variables for a given sample gathered 
in Table 1.

The proposed methodology has been developed 
with the following tasks.

Task 1: work setting
Task 1.1. Diagnosis and State of the Art: the first 

step is reviewing the state of the art to identify the set of 
variables influencing the quality of the location of dry 
ports and variables on which they depend. 

Task 1.2. Collection of geographic information: 
In this stage, geographic information of each variable 
is gathered and entered in the Geographic Information 
System ArcGIS software, used as a tool to quickly and 
easily access the required data from an extensive geo-
graphic database of several maps. 

Task 2: building the model of artificial intelligence
In this paper, we have chosen to use BNs for their 

ability to represent a causal model using a graphical rep-
resentation of dependencies between variables that are 
part of the application domain. They are based on prob-
ability theory and combine the power of Bayes’ theorem 
with the semantic expressiveness of directed graphs. 
According to the type of structure of the data, different 
structure-learning methods can be applied. To build the 
BN we chose a K2 structure-learning algorithm, because 
it allows the variables to be ordered. This way, the net-
work can be stratified.

Since we cannot enumerate all the possible Di-
rected Acyclic Graphs (DAGs), for the BN structure 
learning, we have to try heuristic methods. Since DAGs 
are acyclic and the parents of the variables are before 
children in causal ordering, knowing the ordering of the 
variables can reduce the structure space. If we know a 
complete ordering of the nodes, finding the best struc-
ture amounts to picking the best set of parents for each 
node independently. This is what the K2 algorithm does. 

The K2 algorithm is based on the optimization of 
a measure. This measure is used to explore, using the 
algorithm, the search space consisting of all networks 
that contain the variables of the dataset. It starts with an 
initial network and it is modified (adding or removing 
paths, or changing their direction) obtaining a new net-
work with the best measure (Cooper, Herskovits 1992). 
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Table 1. Factors influencing the location of dry ports

Category Factor Factor 
weighting

Variable 
code Variable Kind Variable 

weighting

En
vi

ro
nm

en
ta

l f
ac

to
rs Impact on natural 

environment 5.00

DNS Distance to natural spaces Profit 10.00

CNE Connectivity on natural environment Profit 0.00

NIS Number of isolated spaces Cost 9.10

DFA Density of the facility area Profit 0.00

Impact on urban 
environment 7.25

DUS Distance to urban spaces Profit 8.20

CUE Connectivity on urban environment Cost 8.20

Hydrology 6.00

DSW Distance to surface water Profit 7.30

FL Flooding level Profit 7.30

GP Groundwater presence Profit 6.40

Ec
on

om
ic

 a
nd

 so
ci

al
 

fa
ct

or
s

Land Price 7.00 LP Land price Cost 7.30

Potential demand growth 6.40

IPI Industrial production index Profit 6.40

GDP Gross Domestic Product Profit 5.50

EL Employment rate Cost 6.40

Hosting municipality 
range 5.00

PL Population level Profit 4.60

PD Population density Cost 5.50

A
cc

es
sib

ili
ty

 fa
ct

or
s

Accessibility to the rail 
network 10.00

NRA Number of railway accesses Profit 5.50

IRE Importance of the railway environment Profit 8.20

CD Centrality of demand Profit 5.50

QR Quality of the railway Profit 0.00

Accessibility to high 
capacity roads network 10.00

DAHCN Direct access to the high capacity network Profit 4.60

DHCR Distance to a high capacity road Cost 3.70

NL Number of lanes Profit 3.70

Accessibility to airports 5.00 DA Distance to an airport Cost 5.50

Accessibility to ports 10.00 DP Ports nearer than 400 km Profit 2.80

Accessibility to supplies 
and services 8.00 CSS Currency of supplies and services Profit 0.00

Lo
ca

tio
n 

fa
ct

or
s

Weather 3.00

CV Climatic variety Profit 5.50

RL Rainfall level Cost 2.80

WF Winter frosts Profit 2.80

Orography 5.00
TC Terrain curl Profit 5.50

SL Slope Cost 2.80

Geology 5.00
EX Excavability Cost 8.20

CS Compressive strength Profit 8.20

Relation with other 
logistics platforms 8.00

NNLP Number of nearby logistic platforms Cost 1.90

NMDLP Number of middle-distance logistic platforms Profit 3.70

BICA Belonging to an industrial consolidated area Profit 1.00

Integration into the 
main supply chain 
infrastructures

5.50 DPFC Distance to a principal freight corridor Cost 5.50

Potential optimization of 
the modal shift 5.05

DPPC Distance to a principal passenger corridor Profit 6.40

NPT Number of passenger trips Cost 6.40

NRADT Nearest roads’ ADT Cost 1.00

DTENT Distance to the TEN-T core network 
corridors Profit 3.70



Specifically, the K2 algorithm for a network BS and 
for data set D, can be written as in Eq. (1):
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where: Nijk is the number of cases in D for which Xi(i=1, 
…, n) takes its k-th value when Pai (Xi parents in BS) is 
taken in their j-th instance; qi is the number of possible 
instances of all parents; ri is the number of values that 
can be taken by Xi.

K2 begins by assuming that a node has no parents, 
so all structures are equally likely initially. The algorithm 
then incrementally adds the parent whose addition most 
increases the score of the resulting structure. For each 
node, the algorithm searches for the K2 parents that 
maximize Eq. (2):
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At each step, K2 incrementally adds any parent 
node whose inclusion increases ( ), ig i Pa , when no ad-
dition of a single parent can increase the score, it stops 
adding parents to the node.

As can be seen, K2 is a search algorithm that opti-
mizes the probability of the given network dataset. Actu-
ally, this algorithm finds the most likely set of parents, 
using a Bayesian metric, by measuring the likelihood of 
the structure given the input data. Its main advantage is 
that ordering the nodes significantly reduces the search 
space in comparison with other algorithms because any 
node, which is below another cannot be its parent. This 
allows the network structure to be ascertained with 
reasonable computational resource. Specifically, in this 
paper we used the K2 algorithm implementation devel-
oped in the program Elvira (Elvira Consortium 2002).

Task 3: establishment of weightings
Task 3.1. Weightings of the variables: to obtain 

the weighting of each variable, the factors were classi-
fied according to their strata relative to the root node of 

the network, and thresholds were defined based on the 
‘depth’ of the factor within the network. Each factor is 
weighted according to both its importance and its depth. 

Task 3.2. Weighting of the factors: these are estab-
lished by applying the Delphi methodology. This tech-
nique was chosen for its ability to reach consensus in 
a group of experts from many different specialties (the 
panel included more than 60 experts from the different 
disciplines that come together in this research: logistics, 
sustainability, environmental impact, transport planning 
and geography), something very important in a multi-
disciplinary problem such as that presented in this work. 

Task 4: establishment of scores based on geographic 
information analysis

Task 4.1. Standardised Score of geographic infor-
mation: the variables are sourced from geographic infor-
mation, and as such, each variable has a different range 
of possible values. To normalize the measures and to 
make all correspond to a scale from 0 to 10, we used a 
spline interpolation. The obtained Criteria Assessment 
Score, ( ) ( )= =1 2, , ,i i i i

k j jf f x x x f xn  was normalized by 
using a spline:

( ) ( )   = λ … +   1 1 2 ,  ,  , 
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i i i i
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Spline interpolation is often preferred over polyno-
mial interpolation because the interpolation error can be 
made small even when using low degree polynomials for 
the spline. We used three different kinds of boundary 
conditions in order to obtain the different degrees of the 
spline (Table 2). 

The kind of interpolation is selected by minimizing 
the distance between the Measured Criteria Assessment 
Score (MCAS) and the Standardised Criteria Assess-
ment Score (SCAS), thereby reducing the interpolation 
error. When linear interpolation had a big error, we used 
quadratic interpolation (with a maximum in the high-
est MCAS). When this second approximation failed to 
reduce the error sufficiently, we used cubic interpolation, 
with at least two inflection points in the extremes.

Table 2. Spline interpolation boundary conditions

Interpolation Boundary conditions

Linear ( ){ }  =  
max 10i

k jP f x ; ( ){ }  =  
min 0i

k jP f x

Quadratic ( ){ }  =  
max 10i

k jP f x ; ( ){ }  =  
min 0i

k jP f x ; ( ){ } ′ =  
max 0i

k jP f x

Cubic
( ){ }  =  

max 10i
k jP f x ; ( ){ }  =  

min 0i
k jP f x ;

( ){ } ′′ =  
max 0i

k jP f x ; ( ){ } ′′ =  
min 0i

k jP f x
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Task 5: application of the linear weighted multi-criteria 
decision analysis algorithm

Using the weightings obtained in Task 3 and the 
SCAS of Task 4, and then from Eq. (4), the quality of the 
location of dry ports is obtained:

( )= ∑ ·  · · i ik k kLQR EP SCAS w W ;

( )∈ 0,1EP N ;

( )∈ …1, ,10i N ; ( )∈ …1, ,17k N ; ( )∈ …1, ,40k N ,  (4)

where: LQRi (Location Quality Rate) is the ratio of the 
quality of each location; EP (Environmental Protection) 
is the dichotomous function ‘Environmental Protection’, 
which serves to exclude protected areas (worth 0 for 
protected locations and 1 for locations without environ-
mental protection); SCASik (Standardised Criteria As-
sessment Score) is the score of the evaluation criteria for 
each variable and location. Finally, wk are the weightings 
of each variable obtained by depth compared with the 
root of the BN and the kW  are the weightings obtained 
in the DELPHI questionnaire to fix the importance of 
each factor. The locations with a higher LQR value will 
be most appropriate for solving the problem.

3. Case of Study: Sustainability of the Existing Dry 
Ports in Spain

Spain is a country located in South-Western Europe. 
Its infrastructure network is established as a mesh with 
a substantially radial layout centred on Madrid. The 
country has invested heavily in a network of high speed 
rail for travellers, which has freed up capacity on the 
well-maintained conventional rail network, to transport 
goods from the ports to the hinterland. However, this 
infrastructure is underutilized (the railroad moves less 
than 5% of all goods in the country), partly because of 
poor planning.

There is also a widely held view that railway trans-
port is the most sustainable land transport and its use 
should be increased (Roso et al. 2009). Linking these 
two aspects, and considering that dry ports are present-
ed as an opportunity to strengthen intermodal solutions 
as part of an integrated transport chain (McCalla 2007), 
we decided to assess the quality of the locations of dry 
ports to lay the foundation to develop public policies 
into an overall national logistics plan focused on the 
railway transport and sustainability aspects. 

Results and Discussion

Eq. (4) requires the following inputs: (1) the weightings 
of each variable and factor and (2) the SCAS of each 
variable and location.

Using the geographic information of the 10 existing 
dry ports in Spain, a K2 BN algorithm was built. The 
result determines the relationship between all the vari-
ables involved in the decision. The network obtained is 
represented in Fig. 1. 

As can be seen, DNS is the root node of the whole 
network because no path enters it. By assessing the im-
portance of each variable by depth compared with the 
root of the network, a certain weighting is set for each 
variable. Depth is related to the number of steps to reach 
DNS and the number of relationships between the eval-
uated variable and the other variables. Table 3 shows the 
results of this procedure.

The four conditionally independent variables are 
unrelated to the rest of the network variables. These 
variables have been given a weighting wk = 0. This is be-
cause, in our case study, these four variables have similar 
values for all locations, which precludes any analysis of 
the quality or suitability of these variables. Therefore, 
they do not serve our purpose of classifying the quality 
of the locations.

Fig. 1. K2 algorithm Bayesian Network
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In order to obtain the weightings of the factors we 
used a Delphi questionnaire. In Table 1, the weightings 
of each factor are compiled. Awad-Núñez et al. (2014) 
shows the survey results of the Delphi methodology. As 
shown in that paper, only 14 factors were employed, 
compared with 17 considered in this research. The 
weightings of the 3 additional factors were obtained 
through missing data analysis techniques, maintaining 
the weightings of the factors that are known and their 
importance as given by the questionnaire. It has been 
inferred by propagation probability, for which there are 
various algorithms that take advantage of independence 
encoded by the network to perform calculations effi-
ciently (Nilsson 1998). The propagation of probability 
is used to obtain the posterior probabilities of certain 
network variables when the value taken by some other 
observed variables is known:

 – What is the probability of a given value assign-
ment for a subset of variables Y?

 – What is the probability of different value assign-
ments for query variables Y given evidence about 
variables Z?

Each network node corresponds to a discrete 
variable, { }= …1 2, , , nA A A A , with its respective con-
ditional probability matrix, ( ) ( )=| |j iP B A P B A . 
Given some evidence E (represented by a fixed value 
from the questionnaire), the posterior probability of 
any other variable B is, according to Bayes’ theorem, 

( ) ( ) ( )
( )
⋅

=
|

| .i i
i

P B P E B
P B E

P E
In classification, given the training data and a new 

example, we want to determine the most probable class 
label of the new example. Given a BN and a random var-
iable B, deciding whether ( )= >|  0P B b E  is NP-hard. 
This implies that there is no general inference procedure 
that will work efficiently for all network configurations. 
However, for particular families of networks, inference 
can be done efficiently. In other cases, instead of exact 
inference (computing the probabilities exactly) we will 
use approximate inference (computing the probabilities 
with reasonable precision).

Applying Eq. (4), with the weighting from Table 1 
and the SCAS from the geographic information analysis 
using ArcGIS (Table 4); we obtained the results com-
piled in Table 5. 

Table 3. Layer distribution of each variable according to depth on Bayesian Network

Layer 1 2 3 4 5 6 7 8 9 10 11 Out

Variables

DNS NIS DUS DSW GP GDP PL DTENT RL NNLP BICA CNE
    CUE FL EL PD DAHCN NMDLP SL   NRADT DFA
    CS LP IPI DPFC LQR DHCR WF     QR
    EX   DPPC CV   NL DP     CSS
    IRE   NPT TC            
          NRA            
          DA            
          CD            

Weighting 10 9.1 8.2 7.3 6.4 5.5 4.6 3.7 2.8 1.9 1 0
Key Environmental Economic and social Location Accessibility LQR

Table 4. Compilation of Standardised Criteria  
Assessment Score

Variable
SCAS

I II III IV V VI VII VIII IX X

DNS 1.5 0.9 2.3 10.0 5.8 2.1 2.3 0.8 4.0 6.4

CNE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NIS 0.0 7.5 5.0 2.5 2.5 7.5 5.0 5.0 0.0 0.0

DFA 10.0 10.0 0.0 0.0 10.0 10.0 10.0 10.0 10.0 10.0

DUS 2.5 0.0 0.0 2.0 2.0 0.0 3.5 6.1 2.0 0.0

CUE 6.7 0.0 3.3 6.7 8.3 0.0 3.3 6.7 0.0 0.0

DSW 0.8 2.0 1.6 0.0 0.0 4.6 4.7 1.8 9.1 0.0

FL 10.0 0.0 5.0 0.0 10.0 10.0 0.0 10.0 0.0 5.0

GP 0.0 0.0 0.0 0.0 10.0 0.0 0.0 10.0 0.0 0.0

LP 4.7 5.5 6.5 9.2 9.2 9.0 8.8 8.4 1.5 1.5

IPI 5.3 10.0 3.5 8.0 8.0 8.0 8.0 4.5 3.1 3.1

GDP 5.8 8.6 6.1 7.6 7.6 7.6 7.6 7.1 10.0 10.0

EL 0.0 4.5 4.7 3.5 3.5 6.5 4.6 5.1 5.6 5.6

PL 10.0 0.3 10.0 1.3 0.6 10.0 1.8 5.6 10.0 10.0

PD 9.4 9.6 0.0 9.5 9.1 0.0 5.5 9.0 0.0 0.0

NRA 10.0 3.0 8.0 10.0 8.0 10.0 5.0 5.0 10.0 10.0

IRE 6.0 2.0 4.0 6.0 6.0 2.0 8.0 4.0 10.0 10.0

CD 4.0 3.0 10.0 4.0 3.0 7.0 4.0 7.0 7.0 10.0

QR 10.0 10.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 10.0

DAHCN 0.0 5.0 10.0 5.0 5.0 10.0 5.0 0.0 10.0 10.0

DHCR 4.0 0.0 10.0 0.0 6.7 10.0 7.3 0.0 10.0 10.0

NL 10.0 10.0 10.0 10.0 10.0 10.0 10.0 0.0 10.0 10.0

DA 0.0 2.7 3.3 2.7 0.0 9.7 0.0 0.0 8.5 6.8

DP 8.8 8.8 2.5 8.8 10.0 6.3 6.3 8.8 2.5 2.5

CSS 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

CV 5.0 0.0 0.0 0.0 5.0 0.0 0.0 10.0 0.0 0.0

RL 4.5 6.9 5.5 2.3 3.3 4.5 5.5 0.0 5.6 5.6

WF 10.0 10.0 10.0 0.0 10.0 0.0 0.0 10.0 10.0 10.0

TC 10.0 10.0 10.0 2.0 2.0 10.0 10.0 2.0 10.0 10.0

SL 10.0 10.0 5.0 2.5 2.5 7.5 10.0 5.0 10.0 10.0

EX 6.4 0.4 0.0 8.3 0.9 0.4 0.0 0.4 10.0 8.3

CS 6.5 2.7 2.3 8.7 3.0 2.7 2.3 2.7 10.0 8.7
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Variable
SCAS

I II III IV V VI VII VIII IX X

NNLP 8.0 5.0 0.0 6.0 0.0 3.0 2.0 8.0 0.0 3.0

NMDLP 2.8 5.9 10.0 7.0 7.0 10.0 6.0 5.0 10.0 10.0

BICA 5.0 10.0 10.0 5.0 5.0 10.0 5.0 5.0 10.0 10.0

DPFC 1.0 7.0 8.0 2.0 0.0 6.0 5.0 3.0 9.0 10.0

DPPC 8.6 2.9 6.4 4.7 7.3 3.7 0.0 6.7 4.6 1.7

NPT 8.9 4.0 6.6 7.8 9.1 7.9 5.5 8.7 7.2 0.0

NRADT 9.6 8.0 8.4 9.4 8.8 7.8 8.9 9.9 7.6 4.3

DTENT 10.0 5.0 10.0 10.0 5.0 0.0 10.0 10.0 10.0 10.0

Notes: I  – Antequera; II  – Santander-Ebro (Luceni); III  – 
Azuqueca de Henares; IV  – La Robla; V  – Toral de los Va-
dos; VI – Villafría (Burgos); VII – Venta de Baños (Ventasur); 
VIII – Monforte de Lemos; IX – Coslada; X – Abroñigal.

Each dry port presents a weighted score for each 
category: environmental, economic and social accessibil-
ity and location. Merging the results of the environmen-
tal and economic and social variables, we obtained the 
sustainability of each dry port. Taking into account all 
the full set of variables quality can be observed.

The best dry port in each category in Table 5 is 
highlighted in green and the worst one is highlighted in 
red. For easier understanding of the explanation of the 
results, these are gathered in Fig. 2.

The most sustainable dry port is Monforte de Le-
mos, which scored well in terms of social and environ-
mental factors and was balanced in the economic section 
with 60.3% of the maximum possible score. Meanwhile, 
the least sustainable locations are Coslada, Abroñigal 
and Santander-Ebro – all of them with low social and 
environmental scores that are not compensated by the 
economic section.

For its part Coslada has the best quality location 
if all the variables are taken into account, with 57.2%. 

These modest results show that both sustainability 
and quality of dry port locations in Spain is moderate. 
This can also be seen in the median values, of 41.3% and 
48.8% respectively.

Analysing sustainability, scores in economic and 
social variables are much better than in environmental 
variables. As environmental variables, appear to be the 
ones with the biggest weightings. this produces moder-
ate sustainability ratings. In addition, the set of sustain-
ability assessments of the locations has a standard devia-
tion of 11.1%, so it can be considered that the quality of 
the locations is grouped around the central values.

By looking at the overall quality of the locations 
(taking into account LQR value), we saw that dry ports 
have higher grades than 60% in accessibility and high-
er than 50% in location. However, as was the case for 
sustainability, these ratings are not able to pull up the 
overall rating because the environmental variables are 
the most weighted of the model. Again, we can say that 
there is little dispersion in the sample, in this case with 
a standard deviation of 6%.

End of Table 4

Table 5. MCDA algorithm results

Environmental Economic and 
social Accessibility Location Sustainability Quality (LQR)

I 1091.2 32.1% 1152.8 52.7% 2025.0 55.1% 2224.2 67.8% 2244.1 40.1% 6022.0 48.0%
II 474.3 13.9% 1444.5 66.0% 1412.2 38.4% 1583.6 48.2% 1918.8 34.3% 4827.0 38.5%
III 827.5 24.3% 1116.3 51.0% 2679.9 72.9% 1839.0 56.0% 1943.8 34.8% 6174.5 49.2%
IV 1129.0 33.2% 1495.5 68.4% 2180.2 59.3% 1841.8 56.1% 2624.5 46.9% 6646.5 53.0%
V 1841.0 54.1% 1469.8 67.2% 2223.7 60.5% 1359.4 41.4% 3310.8 59.2% 6071.8 48.4%
VI 1085.3 31.9% 1548.9 70.8% 2741.3 74.6% 1561.6 47.6% 2634.1 47.1% 6297.6 50.2%
VII 953.2 28.0% 1423.9 65.1% 2197.3 59.8% 1363.8 41.6% 2377.2 42.5% 5732.5 45.7%
VIII 1928.2 56.6% 1445.4 66.1% 1233.0 33.6% 1635.4 49.8% 3373.6 60.3% 5341.2 42.6%
IX 719.2 21.1% 1017.7 46.5% 3257.7 88.6% 2622.8 79.9% 1737.0 31.1% 7217.0 57.5%
X 537.2 15.8% 1017.7 46.5% 3377.0 91.9% 2228.2 67.9% 1554.9 27.8% 6941.1 55.3%
Average 1058.6 31.1% 1313.3 60.0% 2332.7 63.5% 1826.0 55.6% 2371.9 42.4% 6127.1 48.8%
Median 1019.3 29.9% 1434.2 65.6% 2210.5 60.1% 1737.2 52.9% 2310.6 41.3% 6123.2 48.8%
Std Dev 373.2 11.0% 338.3 15.5% 662.2 18.0% 561.5 17.1% 623.0 11.1% 754.4 6.0%
Max 3404.0 2187.2 3675.0 3282.3 5591.2 12548.5

Notes: I – Antequera; II – Santander-Ebro (Luceni); III – Azuqueca de Henares; IV – La Robla; V – Toral de los Vados; VI – Vil-
lafría (Burgos); VII – Venta de Baños (Ventasur); VIII – Monforte de Lemos; IX – Coslada; X – Abroñigal.

Fig. 2. Bar chart gathering the main results
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Conclusions and Future Research

In this paper, we have tried to convey the idea that the 
determination of the most appropriate location to place 
dry ports is a geographic and multidisciplinary problem 
with environmental, economic, social, accessibility and 
location repercussions. 

Although the results of the Delphi questionnaire 
show a greater importance in the search for the loca-
tion of a dry port for the aspects considered in the clas-
sical theories of industrial location (accessibility to the 
rail network, accessibility to high-capacity main roads 
and accessibility to seaports), the Delphi weightings 
are corrected according to the relationships established 
between variables by taking into account the Bayesian 
weightings. Ultimately, environmental variables prove to 
be the most important in deciding the location. Also, 
although the four conditionally independent variables 
(Connectivity with the natural environment, Density of 
facility area, Quality of the railway, Currency of supplies 
and services) are unrelated to the rest of the network. 
We must not lose sight of these variables in future evalu-
ations since new input values would vary the relation-
ship between them and the rest of the BN. 

A very important conclusion is that the satisfactory 
results allow us to confirm the great power of applying 
BNs and MCDA to the assessment of dry port location. 
In addition, the triangulation of different independent 
techniques provides greater confidence in the results, be-
cause the use of BNs and Delphi methodology reduces 
the arbitrariness of the weightings of the MCDA algo-
rithm.

By implementing the MCDA algorithm into a 
McHarg Geographic Information System, we will be able 
to develop a powerful decision-making tool. Further-
more, the versatility of the model will allow with small 
changes in the variables, the location of other logistics 
platforms or NIMBY facilities other than dry ports.
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