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Abstract. An agent-based transport simulation model is used to examine the impacts of Autonomous Vehicles (AVs) on 
the mobility of certain groups of people. In the state of the art, it has been found that the researchers primarily have simula-
tion studies focusing on the impacts of AVs on people regardless of certain groups. However, this study focuses on assess-
ing the impacts of AVs on different groups of users, where each group is affected variously by the introduction of different 
penetration levels of AVs into the market. The Multi-Agent Transport Simulation (MATSim) software, which applies the 
co-evolutionary algorithm and provides a framework to carry out large-scale agent-based transport simulations, is used as 
a tool for conducting the simulations. In addition to the simulation of all travellers, 3 groups of users are selected as po-
tential users of AVs, as follow: (1) long commuters with high-income, (2) elderly people who are retired, and (3) part-time 
workers. Budapest (Hungary) is examined in a case study, where the daily activity plans of the households are provided. 
Initially, the existing daily activity plans (i.e., the existing condition) of each group are simulated and assessed before the 
introduction of AVs into the market. After that, the AVs are inserted into the road network, where different fleet sizes of 
AVs are applied based on the demand of each group. The marginal utility of the travel time spent in case of a transport 
mode, the AV fleet size, and the cost of the travel are the key variables that determine the use of a transport mode. The 
key variables are set based on the characteristics of the case study (i.e., demand) and the AVs. The results of the simula-
tions suggest that the AVs have different degrees of influences on certain groups as demonstrated in the occurred changes 
on the modal share. The value of changes depends on the Value of Travel Time (VOT) of people and the used fleet size 
of AVs. Moreover, the influence of the traveller’s characteristics on the AVs is manifested, such as different values of fleet 
utilization. Furthermore, the study demonstrates that an increase in the fleet size of AVs beyond 10% of the demand does 
not significantly raise the modal share of AVs. The outcome of this paper might be used by decision-makers to define the 
shape of the AVs’ use and those groups who are interested in using AVs.
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Notations

AV – autonomous vehicle;
BKK – Budapest Transportation Centre (in Hungar-

ian: Budapesti Közlekedési Központ);
DVRP – dynamic vehicle routing problem;

GA – genetic algorithm;
GTFS – general transit feed specification;
HCB – Hungarian Census Bureau;

MATSim – multi-agent transport simulation;
ML – multinomial logit;

MobSim – mobility simulator;
POI – points of interest;

QSim – queue simulator;

RUM – random utility maximization;
SAV – shared autonomous vehicle;

SP – stated preference;
VMT – vehicle miles travelled;
VOT – value of travel time.

Introduction 

The traditional daily mobility patterns of travellers might 
change when AVs become available on the market. The 
benefits of AVs, such as minimizing the travel time 
(Hamadneh, Esztergár-Kiss 2019), removing the parking 
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process time (Bischoff et al. 2019a), conducting on-board 
activities (Pudāne et al. 2018), and utilizing the parking 
spaces generated from the decrease in parking demand 
(Greenblatt 2016; Nourinejad et  al. 2018), have already 
been introduced in several papers.

In the AVs era, as a result of the distinct characteristics 
of the technology, the travellers do not need to consider 
what happens to the cars after the arrival to the destina-
tions because drivers are converted to passengers as the 
machine takes the role of driving and goes to the nearest 
parking space or to pick up a new traveller (Levin, Boyles 
2015; Pudāne et al. 2018). Litman (2021) explains that the 
AV is a door-to-door service, which influences the arrival 
and the departure times of the travellers. For example, a 
traveller can depart home at 7:30 AM rather than 7:20 AM  
because there is not a walking time to the bus stop as well 
as no parking time is needed. In fact, the shift to AVs de-
pends on people’s acceptability. Zhong et al. (2020) state 
that the acceptability of AV as a replacement transport 
mode depends on the VOT of the travellers. Small (2012) 
concludes that the VOT is not equally valued by every 
traveller because the travel time valuation is based on vari-
ous factors and people might pay additional money to re-
duce the perceived travel time. As a result of introducing 
AVs into the market, a new modal share (i.e., in the AVs 
era), which changes the travel behaviour of people, the ca-
pacity of the road network, the VMT, and the traffic flow 
volume, is developed since the people without driving li-
censes can have an access to AVs, too (Pinjari et al. 2013; 
Zhang et al. 2018). An indirect impact of AVs is found in 
the real estate sector; due to the shift from conventional 
car to AVs, the number of the required spaces for parking 
per development (e.g., residential building) is decreased 
compared to the case where solely conventional transport 
modes are available (Al-Sahili, Hamadneh 2016; Menon 
et  al. 2019). Further research concerning the impact of 
AVs on the existing transportation system, such as modal 
share, is needed to understand the travel behaviour of 
travellers in the era of AVs. Koryagin (2018) says that the 
AVs will probably facilitate the problems of travel demand 
management as a benefit of the technology advancement. 
AVs have already been modelled with a macroscopic tool, 
and it is found that the easiest way to include AVs in the 
traffic simulation is by making modifications in the pa-
rameters of the passenger car as stated by Török et  al. 
(2020). 

In fact, the optimization of the daily activity plans of 
the travellers, in which the utility of the travellers is maxi-
mized, is conducted. The simulations of the daily activity 
plans of the travellers aim to assess the impact of AVs on 
different groups of users based on the change in the exist-
ing modal share, the travel time, and the travel distance. 
As stated by Horni et al. (2016), the concept of the simula-
tion includes the maximization of the utility of the travel-
lers based on various parameters, such as the travel time, 
the travel cost, the fleet size of AVs, the available transport 
modes (i.e., bike, car, taxi, AV, and public transport), and 
the network capacity. 

The contribution of this research is to assess the im-
pacts of AVs on the travel behaviour of certain groups of 
users through an agent-based transport simulation model 
by examining Budapest (Hungary). The potential changes 
on the travel behaviour are assessed based on the changes 
on several variables, such as the modal share, the travel 
time, the fleet utilization, and the travel distance. The 
study reveals the differences between the impact of AVs 
on certain groups of people, for instance, the percentage 
of those travellers who shift to AVs, the travel time re-
duction, and the additional driven VMT. Moreover, the 
changes in the modal share of each group are presented 
and discussed concerning two penetrations of AVs. Previ-
ous studies mentioned some potential users of AVs based 
mainly on SPs surveys’ results (Choi, Ji 2015; Das et al. 
2017; Etzioni et al. 2020; Hao, Yamamoto 2017; Krueger 
et al. 2016); however, scarcely can be found studies that 
simulate certain groups of people based on the results of 
the SPs. Three groups of users are selected based on the lit-
erature, and later, they are called scenarios. The scenarios 
consist of Scenario 1, which includes the simulation of all 
travellers, Scenario 2, which includes the group of long 
commuters with high-income, Scenario 3, which includes 
elderly people who are retired, and Scenario 4, which in-
cludes part-time workers. Thus, the research includes four 
scenarios, where the existing condition (i.e., no changes 
on the daily activity plans of the travellers) in each sce-
nario is simulated and compared with the two proposed 
penetration levels in the AVs era. 

1. Literature review

The advancement of the automotive industry created a 
new technology known as autonomous vehicle, driverless 
car, vehicle without a driver, or automated vehicle. The 
availability of this technology on the market might im-
pact the travel behaviour of people. Understanding these 
impacts of AVs are realized through simulations, pilot 
tests, and SPs. Hao and Yamamoto (2017) said that the 
attractiveness of AVs depends on the riders’ trust and the 
sustainability of AVs, which have not been proven yet due 
to the lack of sufficient empirical experience. The authors 
studied the intention of people to use AVs and presented 
some factors that affect the use of AVs, such as the cost 
and the travel time. The results of the SP survey demon-
strated that around 20…30% of the trips by conventional 
transport modes can be switched to AVs; furthermore, it 
was demonstrated that those people who work part-time 
were more likely to use AVs. A study conducted by Krue-
ger et al. (2016) concluded that the potential user groups 
of AVs could be elderly people, people without driving 
licenses, and pensioners. The authors mentioned that el-
derly people tend to use AVs to simplify their travel and 
eliminate the negative impacts of using other transport 
modes, such as congestion, the possible unavailability of 
seats, stairs, driving, weather, and waiting outside. Anoth-
er study conducted by Das et al. (2017) showed that the 
long commute drivers, the long transit commuters, and 
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the elderly are potential group of people who might benefit 
most from using AVs. Furthermore, Yap et al. (2016) said 
that the first-class riders of train would prefer to use AVs 
when they need to egress from the train to reach their last 
destination (i.e., last destination is any activity except for 
home). The authors concluded that AVs will add a positive 
value to encouraging multimodal trips that combine train 
plus AVs because based on the study, travellers who will 
use an AV plus a train get more benefit than those who 
parked their vehicle close to or at a train station. Laidlaw 
(2017) finds that travellers with flexible work schedules are 
more likely to use AVs, such as part-time workers.

The VOT is another factor, which is presented in the 
literature and helps to understand why people choose a 
particular mode over others. The VOT depends on vari-
ables pertaining to sociodemographic and travel charac-
teristics, such as income, age, job, and trip purpose. The 
value of VOT differs from one traveller to another (Zhong 
et al. 2020). Steck et al. (2018) concluded that AVs wheth-
er it is shared or unshared will reduce the value of travel 
time saving for people who make commuting trips. The 
reduction comes from the potential for conducting more 
activities on the board of AVs than conventional cars’. 
Furthermore, the study showed that the VOT for high-in-
come people is higher than for low-income people in case 
of all transportation modes including future technologies, 
such as AVs. Sadat Lavasani Bozorg (2016) mentioned in 
their review study that the VOT of high-income people 
will decrease by 35% when AVs are used. It was concluded 
that high-income people are more willing to pay for sav-
ing commuting time. Steck et al. (2018) realized that the 
VOT of the unshared AV is less than that of the SAV, and 
the VOT of SAV is less than a conventional car’s. Litman 
(2009) said that the VOT increases with the rise of income 
since time-saving is more precious for employed people 
than for others. 

Based on their study in Berlin, Bischoff and Maciejew-
ski (2016) showed that one SAV might replace ten con-
ventional cars, and one AV could replace six conventional 
cars. A simulation study conducted in Budapest showed 
that one SAV can replace up to eight conventional cars 
with an acceptable waiting time, i.e., 10…15 min (Hama-
dneh, Esztergár-Kiss 2019). A simulation of workers and 
shoppers concerning the park-and-ride system and the 
AVs in Budapest showed that one AV can replace four 
conventional cars (Ortega et al. 2020). One SAV replaced 
9.3 conventional cars in a study conducted in Austin city 
by Fagnant et  al. (2016). They used solely the SAV as a 
transport mode, and they divided the city into blocks with 
a certain number of SAVs. The SAVs assigned to a block 
give priority to pick up the demand in that particular 
block, and in the case of no demand in that block, they 
can serve the supply in the adjacent blocks. The methodol-
ogy of Fagnant et al. (2016) participated in reducing the 
VMT and the waiting time per traveller. In the simulation 
of AVs and SAVs, the travellers can accept waiting time 
between 5…15 min based on a study conducted by Hörl 
et al. (2016). The scholars said that the acceptable wait-

ing time is affected by the time of the day, for example at 
peak periods, travellers can wait 10…15 min. It is worth 
mentioning that the acceptable waiting time in case of an 
AV can be compared with the waiting time at a public 
transport stop and with the walking time to reach the stop 
location, as illustrated in a study by Hörl et  al. (2016). 
The acceptable waiting time has a crucial impact on the 
determination of the fleet size of AVs, for example, a wait-
ing time of 10 min can cause a reduction in the fleet size 
by up to 90% (Boesch et al. 2016). Regarding the travel 
time, 20…40 min of traveling tend to be acceptable, but 
over 90 min, it often causes frustration for the travellers. 
The reduction in congestion and the increase in the speed 
might generate more trips rather than saving time, which 
leads to more VMT and travel time, as mentioned by Lit-
man (2009). 

Connected to the behaviour analysis, AVs can attract 
travellers based on the preferences in travel time, travel 
cost, waiting time, and ride-sharing that form the main 
determinants of using AVs (Acheampong, Cugurullo 
2019; Krueger et al. 2016; Zmud et al. 2016). Godoy et al. 
(2015) showed that AVs may improve safety and alleviate 
congestion since the machine drives with higher precision 
than human drivers. A study by Fagnant and Kockelman 
(2015) presented some benefits of AVs, such as travel time 
reduction, increased safety, and reduction in the necessary 
parking spaces. They addressed some obstacles of AVs im-
plementation, such as the cost, the liability, the certifica-
tion, the security, the privacy, and the insurance. Based on 
previous studies and the potential benefits of AVs on the 
travellers’ mobility, this study adds a new contribution to 
show the impact of AVs on the travel behaviour of certain 
groups of people concerning the VOT of the travellers, the 
travel cost, and the travel time. 

2. Methodology

In this section, the implemented methodology including 
demand preparation, mobility simulation, scoring, and 
re-planning (i.e., innovation is made on the initial de-
mand by using a GA) are explained (Horni et al. 2016). 
The implementation of the methodology was conducted 
by MATSim, which is an open-source, activity-based mi-
crosimulation software that applies the concept of a co-
evolutionary algorithm (i.e., the aggregation of findings 
is obtained from the interactions of all agents/travellers 
to make selection decisions) based on flexible functions 
(Popovici et al. 2012; Maciejewski, Nagel 2013). The mo-
bility simulation, the scoring, and the re-planning form 
an iterative loop called MATSim loop (Horni et al. 2016). 
The MATSim loop is used to solve the traffic assignment 
problem and to maximize the utility of the travellers. 

Figure 1 shows the four scenarios. The scenarios are fil-
tered based on the characteristics of every scenario, where 
the dataset that are used includes information about the 
trip time of each traveller, the age of each traveller, and the 
type of work of each traveller. The scenarios are selected 
based on the literature (Choi, Ji 2015; Etzioni et al. 2020; 
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Hao, Yamamoto 2017; Krueger et al. 2016; Litman 2021), 
and the availability of data (i.e., daily activity plans of trav-
ellers) as mentioned in the introduction section. The char-
acteristics of each scenario are described in the data de-
scription subsection, while the implementation of the sim-
ulation is presented in the simulation setting subsection. 
The Scenario 1 represents all travellers. The (Scenario 2  
includes the long commuters with high-income, where 
those travellers who belong to the high-income class and 
travel more than 40 min in any daily trip are selected. Sce-
nario 3 consists of the elderly people who are retired. For 
this scenario, those travellers who are more than 65 years 
old and retired are selected. Finally, Scenario 4 includes 
part-time workers, where the selected travellers work on 
a part-time basis. In this paper, first, the simulations were 
carried out without any changes on the daily activity plans 
of the travellers (i.e., existing condition) for the four sce-
narios to be compared with the changes in the travel be-
haviour when AVs are on the market.

The following subsection describes how the simula-
tion was implemented starting from the initial demand 
through the travellers’ utility maximization to the simula-
tion results, as shown in Figures 2 and 3.

2.1. Initial demand

To prepare the initial demand for the simulation, the 
necessary data are depicted in Figure 2. Firstly, the daily 
activity plans contain information about the locations of 

the activities, the departure time and the arrival time, the 
duration of the travel, and the used transport modes in 
each trip, such as conventional car, public transport (i.e., 
transit), walking, and cycling. Secondly, the facilities (i.e., 
the POIs) for the travellers, which were taken from Open-
StreetMap contain the locations (i.e., coordinates), the 
type, and the active time (i.e., the opening hours) of each 
facility to be used as alternative facilities for the travel-
lers in the re-planning process (OSM 2021). Thirdly, the 
road network components of Budapest were extracted 
from OpenStreetMap with the support of JOSP MATSim 
plugin (JOSM 2021), while public transport (i.e., transit) 
data were received as GTFS files from the Budapest Trans-
portation Centre, called BKK (Transitfeeds.com 2018). 
Consequently, a specific contribution in MATSim (i.e., 
Java code) was used to convert GTFS to transit schedule 
file format (XML) based on a pre-developed code in Java 
programming language (Poletti et al. 2017). Technically, 
the daily activity plans of each user were reformulated to 
match the requirements of MATSim inputs, for example, 
the coordinate, the departure and the arrival time of each 
activity as well as the trip mode and the trip time. Finally, 
the configuration file is used as a control file of the simula-
tion, in which all simulation parameters are set. Figure 2  
depicts how the data were formulated, structured, and or-
ganized to create the initial demand of the simulation. In 
the end, the population for MATSim is created, but it is 
not distributed over the network (i.e., the initial demand). 
The initial demand is loaded on the road network by using 
MobSim, as explained in the following subsection.

2.2. MobSim

The MobSim is the transport simulation module, which is 
incorporated into MATSim and used to load the activity 
plans into the network by implementing a queue-based 
model (Bösch, Ciari 2017). MobSim uses the QSim en-
gine to load the plans into the road network. At the initial 

Figure 1. The proposed travellers’ behaviour  
simulation scenarios

Figure 2. Initial demand preparation mobility simulation
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point, the travelers were located in the network by using 
the coordinates of activities. A specific algorithm was used 
to assign the best route to a trip based on the selected 
transport mode and the departure time (stochastic user 
equilibrium). The Dijkstra routing algorithm is used to 
find the shortest path algorithm. It is worth mentioning 
that the MATSim’s default transport mode is car mode, 
while other modes (i.e., walking, bike, AVs, and public 
transport) were defined based on the modifications of the 
car mode parameters in a process called as “teleportation 
process” (Horni et al. 2016). A “teleportation process” ena-
bles the QSim to simulate all transport modes based on 
the travel time, the distance, and the speed factors (Horni 
et  al. 2016). For example, the speed of the car is faster 
than that of the public transport, the bicycle, or walking 
(Hamadneh, Esztergár-Kiss 2021).

2.3. Scoring (utility function)

Scoring is the process during which the daily activity plans 
are evaluated based on the utility function in each itera-
tion, where the first iteration is taken by simulating the 
initial demand. The scoring step is followed by the re-
planning, which makes changes in the daily activity plans, 
and afterward, calls for MobSim to simulate the generated 

new daily activity plans to be followed by the scoring step 
again. A utility function that combines both activity and 
travel parameters is applied. The activity parameters in-
clude the characteristics of each activity, such as the open-
ing time, the typical duration, the minimum duration, and 
the closing time. The travellers are assigned to different 
utility units based on their arrival, departure, and staying 
at the activity’s location. Staying more at an activity’s lo-
cation generates high utility, while leaving early generates 
less utility. The traveling parameters include the cost of 
using a transport mode per time or per distance. Staying 
long time in traveling means the travellers lose utility as 
more money is spent on traveling. The utility of traveling is 
negative, and it is called (dis)utility. The marginal disutility 
of the travel for a selected transport mode depends on the 
time, the distance, and the travel cost, where the travellers 
pay money for using a transport mode based on their pref-
erences and activity parameters (Horni et al. 2016). The 
utility function of Charypar–Nagel, which combines the 
activity utility and travel (dis)utility, was used in this part 
of the research. The score of the activity and the travel is 
determined by using Equation (1) (Charypar, Nagel 2005). 
Equation (1) presents the function that can be used to 
reach the maximum benefit obtainable from conducting 

Figure 3. Data analysis flow chart
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activities and minimizing both the time spent on traveling 
and the incurred cost from the selected transport mode:

( )
=

= +∑ , , ,
0

n

plan activity i traveling i j
i

V V V ,
 

 (1)

where: Vplan is the utility of performing a selected plan; 
,activity iV means the utility of performing the activity i, it is 

always positive; , ,traveli jng iV  is the (dis)utility derived from 
the traveling to and from the location of activity i by using 
the transport mode j, it is always negative because travel-
lers pay money rather than get money in case of traveling. 

In the activity utility, Equation (2) is applied: 

= + +, ,q duration q waiting qV V V
+ +, , ,late q early q short qV V V ,  (2)

where: Vq is the utility of the activity q; , duration qV  is the 
utility of performing the activity q; , waiting qV  is the utility 
of waiting for the activity q to open; , late qV  is the utility 
of arriving late at the location of the activity q; , early qV  is 
the utility of leaving the location of the activity q early 
(not staying enough time at the location of the activity); 

, short qV  is the utility of staying a shorter time than re-
quired by the activity q (Horni et al. 2016).

It is worth mentioning that a logarithmic form of the 
equation is used to calculate the positive utility, which is 
shown in Equation (3) (Charypar, Nagel 2005): 
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where: ( ), ,activity i activity iV t  is the utility of performing an 
activity i; ,activity it  is the actual performed duration of the 
activity i; βactivity  is the marginal utility of performing an 
activity with its typical duration ( )* , it ; 0, it  is a scale pa-
rameter related to the minimum duration of the activity i 
and its importance. 

In the traveling part, Equation (4) is used for esti-
mating the score of the traveling, where V(travel,i) is the 
traveling (dis)utility (Horni et al. 2016):

( ) ( ) ( )= + ⋅ + , , , , , itravel M i M i travel M iV C B TT

⋅∆ +, money money iB

( ) ( )
 + ⋅ g ⋅ + 
  ,, , , ,     money travel id M i d M iB B D

⋅ , transfer transfer iB x ,                                                  (4)

where: M refers to the transport mode; i means the activ-
ity; d is the travelled distance; ( ),M iC  is a mode-specific 
constant; ( ), ,travel M iB  is the marginal utility of the trave-
ling by the transport mode M to reach the activity i; TTi is 
the travel time from the location of activity i to the loca-
tion of activity i + 1; Bmoney is the marginal utility of the 
money; ∆ ,money i  is the change rate in the monetary budg-
et caused by the transport fares; ( ), ,d M iB  is the marginal 
utility of the distance when using the transport mode M 
while traveling to the activity i; ( )g , ,  d M i  is the constant 

monetary distance rate when using the transport mode M 
while heading to the activity i; ,travel iD  is the travelled dis-
tance between two successive activities, such as i and i + 1; 
Btransfer is the public transport transfer penalty; ,transfer ix  
indicates if a transfer occurred in the previous or the cur-
rent plan (0 is no, and 1 is yes); the values of all the previ-
ous parameters were derived based on the characteristics 
of the collected data.

When applying the previous equations, the typical util-
ity values of the Vickrey bottleneck congestion model are 
used (Horni et al. 2016). The applied values in the utility 
unit [u] are as follow, the marginal utility of the money 
Bmoney, which is +1 u/monetary unit; the marginal utility 
of performing Bduration, which is +6 u/h; the marginal util-
ity of traveling Btravel, which is –6 u/h; the marginal utility 
of waiting Bwaiting, which is 0 u/h; the marginal utility of 
the short activity Bshort, which is 0 u/h; the marginal utility 
of arriving late Blate, which is –18 u/h, and the marginal 
utility of early leave Bearly, which is 0 u/h. These values 
were used as a default and those values where no informa-
tion about the exact parameters of a case study is given. 
In this study, some of marginal values are changed based 
on the simulated data. 

2.4. Re-planning

The travellers try to maximize their benefits by selecting 
the daily activity plans that have the highest score. For 
example, the traveller can aim to minimize the time and 
the cost of the travel by selecting the bike instead of the 
bus with a long headway, which does not affect the ar-
rival time. In the re-planning process, modifications in 
the daily activity plans are conducted. The re-planning is 
a learning mechanism in MATSim, where the travellers 
(i.e., agents) can improve their plans in each iteration un-
til a steady-state condition is reached. The improvements 
are obtained by making modifications in the daily activ-
ity plans of the travellers. The GA is used by MATSim  
to generate various activity plans with different score val-
ues thus enabling travellers to select the best activity plan 
with competitive time. During this process, a finite num-
ber of options are generated (Charypar, Nagel 2005). An 
evaluation of the new selected plan is generated based on 
the mutation and the selection strategies to adopt the next 
iteration. 3 types of mutation operators were activated: 
(1)  transport mode change, (2) rerouting, and (3)  time 
allocation based on certain probabilities (i.e., not all ac-
tivity plans are changed). For example, the probability 
of changing the leg mode was set to 0.1; it means that 
the 10% of the traveller plans will change the leg mode, 
and the remaining 90% will use their current transport 
modes. After generating new daily activity plans, a ML 
model was used for the selection, and for calculating the 
probability of using a specific transport mode based on 
the distribution of the utility function (Simoni et al. 2019). 

At the end of the process, the selected new daily ac-
tivity plans are sent to MobSim for simulation and then 
to the scoring step to find the new score. The MATSim 
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loop continues iteratively until a steady-state condition, 
where no extra benefit is got from the modification of 
the daily activity plans of the travellers is reached (Horni 
et  al. 2016; Luo et  al. 2019). Figure 3 demonstrates the 
flow chart of the analysis to illustrate the implementa-
tion of the simulations. In MATSim, the setting of the 
parameters of MobSim, the scoring, and the re-planning 
steps are presented as follows. The re-planning step in-
cludes a strategy module, which is used to identify the 
innovation types (i.e., route change, time allocation, and 
best score) and the percentage of the travellers to be re-
planned (Horni et al. 2016). The Charypar–Nagel utility 
function (i.e., the random utility function) combines the 
monetary and the time factors for conducting the daily 
activities of the travellers thus generating a score in every 
iteration until reaching the maximum score that the trav-
ellers can have (GA was applied), as discussed in Equation 
(1) (Horni et al. 2016). Finally, the analysis part compro-
mising the outputs of the simulations is used to evaluate 
the simulated activity plans, such outputs are the average 
trip distance, the scoring diagram, the waiting time, the 
modal share, and the simulation time. In case of the AVs 
simulation, an additional algorithm called DVRP is used 
to match those travellers who have the same schedule 
and to determine the suitable fleet size of AVs, where the 
daily activity plans and the fleet size of AVs are optimized 
(Maciejewski, Nagel 2011). The DVRP receives updates on 
the occurred changes in the fleet of AVs, the daily activity 
plans, or the traffic situation.

2.5. Data description 

Budapest city has around 1.7 million inhabitants, which 
forms around 18% of the country’s population. The study 
area consists of 23 districts and 1178 zones, where each 
district is divided into smaller sections called zones. The 
collected data include the travellers’ daily activity chains 
and their socio-demographic variables. The data include 
such sociodemographic and travel characteristics variables 
as activity type, activity location, transport mode, depar-
ture time, arrival time, age, gender, family size, vehicle 
ownership, driving license ownership, public transport 
type, parking search time, parking fees, and the travellers’ 
job type. The data were collected and aggregated in 2014 
by the HCB, which conducts a periodic survey every 10 
years (HCSO 2021). The simulated data represents house-

holds; thus, each daily activity plan represents a household 
rather than an individual traveller. 8500 daily activity plans 
are taken from the HCB, where each activity plan repre-
sents a traveller’s daily activities for 24 h. The sample size 
of Scenario 1 includes the entire sample of the 8500 travel-
lers. While the sample sizes of Scenario 2, Scenario 3, and 
Scenario 4 were taken from Scenario 1 based on the char-
acteristics of each scenario. For example, those travellers 
who recorded high-income and one of their trip time was 
higher than 40 min were included in Scenario 2. Table 1  
shows the sample size and the activity type’s percentages of 
each scenario. Scenario 2 contains 440 daily activity plans, 
Scenario 3 contains 1020 daily activity plans, and Scenario 4  
contains 505 daily activity plans. 

2.6. Parameter definition 

In the AVs simulation, the identification of certain pa-
rameters are required, such as the AV capacity (in this 
case, four seats capacity is used), the pick-up duration (in 
this case 120 s), and the drop-off duration (in this case 60 
s) (Bischoff et al. 2019b). Those travellers who travelled 
longer than 40 min and were classified as members of the 
high-income group and the travellers who were classified 
as part-time workers should have an average waiting time 
less than or equal to the average time needed for parking 
or un-parking a car (Bischoff, Maciejewski 2016). Thus, 
the travellers selected AVs if the waiting time was less than 
or equal to 10 min. A 1.5 traffic flow capacity factor was 
used to reflect the impact of AVs on the road capacity 
since a conventional car increases the congestion by 1.5 
more than an AV (Huang et al. 2000; Meyer et al. 2017; 
Simoni et al. 2019). Maciejewski and Bischoff (2018) dem-
onstrated that the capacity of roads increases when AVs 
fleet is operated on the market. In this study, the penetra-
tions of the AVs were 10 and 20% of the sample size in 
each scenario. These penetration rates represent two sce-
narios of the AVs’ acceptability by people. 

The initial simulation of the daily activity plans was 
conducted to find the parameters that simulates the cur-
rent travel behaviour of the travellers. The marginal util-
ity of traveling by each transport mode was calibrated 
by using the collected data and by running the software 
many times to reach a point where the initial result of 
the software is very close to the statistics of the simulat-
ed data. The calibration results are presented in Table 2.  

Table 1. The sample size and the characteristics of the four scenarios* 

Scenario Description Sample size
Activity type [%]

work education shopping leisure other
1 All travellers 8500 51.5 16.4 15.4 3.2 13.5
2 Long commuters with high-income 440 74.2 11.2 3.9 1.8 8.9
3 Elderly people who are retired 1020 6.1 0.6 48.5 8.7 36.1
4 Part-time workers 505 51.5 6.5 19.0 3.2 19.8

Note: * home-based activity.
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The marginal utility of performing an activity is 6, and 
the marginal utility of money is 0.0018, which are positive 
utility. The cost of using each transport mode per km is 40 
Hungarian Forint (HUF) for a car, 0.038 HUF for public 
transport, 0.004 HUF for a bike, and 0 HUF for walk-
ing. The marginal utility of time and the constants by car, 
public transport (indicated as PT), bike, and walking are 
presented in Table 2 (BetterTec Gmbh 2021). Other pa-
rameters were set based on the default values of MATSim  
(Hörl et al. 2016). 

The AV parameters are measured based on the param-
eters of a conventional car; the marginal utility of time is 
35% less than the marginal utility of traveling by conven-
tional car, and the travel cost is assumed to be 60% of the 
travel cost of the conventional car (Bösch et al. 2018; Fag-
nant et al. 2016). The parameters of the utility function, 
such as the routing algorithm, the transport mode cost, 
the pick-up/drop-off duration time, and the marginal util-
ity of late arrival definitely influence the travel distance, 
the travel time, and the utility value of a particular travel-
ler. During the simulation, events were created to evaluate 
the output of each step and the results of the newly added 
modifications.

3. Results 

In this section, the results are presented in the follow-
ing order: the simulation of the existing conditions of all 
scenarios, the simulation of the conventional transport 
modes with a 10% fleet size of AV, and the simulation of 
the conventional transport modes with a 20% fleet size of 
AV, and in the end, an additional simulation of a solely 
fleet of AVs is conducted for each scenario. 

The simulation setting of each scenario was built based 
on the previously described parameters (Table 2), and the 
fleet sizes of AVs were 10 and 20% of the sample size in 
each scenario. 3 simulations of each scenario were con-
ducted concerning the existing condition and the avail-
ability of the two different fleet sizes of AVs. The concept 
behind the selection of 10 and 20% is to simulate different 
penetrations of AVs, where the 1st simulation represents 
the case where AVs are getting accepted slowly, and the 
2nd simulation shows the booming of the market where 
the AVs become more widespread. The selected percent-

ages were used to simulate the initial demand, and they 
did not consider the extra demand that can be generated 
from the advancement of the AVs, as shown by Harper 
et al. (2016). The simulations were stopped when the sys-
tem became stable, no further enhancement in the scor-
ing, and no changes in the mode-share were noticed.

The simulation of the existing condition of Scenario 1  
shows that the average trip time per traveller is 33 min 
after 70 iterations. For certain travellers who spend more 
than 40 min for one trip and belong to the high-income 
class the simulation of the existing condition of Scenario 2  
shows that the average trip time per traveller is 46 min 
after 100 iterations. Moreover, for Scenario 3, which con-
sists of those elderly people who are more than 65 years 
old and retired, the simulation of the existing condition of 
these travellers shows that the average trip time per trav-
eller is 33 min after 100 iterations. Finally, in Scenario 4,  
which includes those people who work on a part-time 
basis, the result of the simulation of the existing condi-
tion shows that the average trip time is 38 min after 100 
iterations. 

3.1. Current modal share 

The modal share of each scenario, which contains the 
percentages of those travellers who use a particular trans-
port mode is shown in Figure 4. Figure 4 presents four 
transport modes that are mainly used by travellers such 
as car, public transport, bike, and walking. From Figure 4,  
it can be concluded that the highest percentage of the 
travellers used public transport (37.4%), while the lowest 
used bike (2.3%), in case of Scenario 1. In Scenario 2, the 
car was more often used than any other transport mode. 
This can be explained as the travellers of long travel dis-
tances prefer to use car where other transport options are 
not suitable, such as walking is not that much popular for 
longer trips. Among the old travellers who are retired, the 
car was not so popular anymore since older people do not 
usually drive cars that much due to health and safety is-
sues. Part-time workers travellers use public transport and 
walking more often because of the price benefits and their 
flexible work schedule. In all scenarios, the percentage of 
those travellers who used the bike mode was relatively low 
(1…2.3%) compared to other transport modes.

3.2. Travellers’ trip time components  
in the presence of AVs

The inclusion of the AVs on the market was conducted 
through simulating the travellers in each scenario with the 
presence of certain fleet sizes of AVs. This was done to 
evaluate the impact of AVs on traveller behaviour, such 
impacts are evaluated based on the occurred changes on 
modal share, travel distance, travel time as well as show 
the differences among groups. 

Table 3 shows the results of the simulations when the 
fleet size of AVs was the 10% of the sample size of each 
group. The average waiting time and the usage parameters 
of the AV fleet size were recorded, such as the empty time, 

Table 2. Transport mode choice coefficients 

Parameters Calibrated values
Marginal utility of performing 
activity Bduration 

+6

Marginal utility of money Bmoney 0.0018
Monetary distance rate gd,(M,i) –0.40 car, –0.038 PT,  

–0.004 bike, –0 walking
Marginal utility of traveling  
for all modes Btravel

–2.5 car, –0.5 PT,  
–0.3 bike, –0.1 walking

Alternative mode-specific 
constant C(M,i)

–0.2 car, 3.92 PT, 
2.64 walking, –17.81 bike

Note: PT – public transport.
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the driven time, the occupied time, and the drop-off time. 
Scenario 1 reported 13.3 min of average waiting time when 
the fleet size of AVs was 850 AVs, and the average trip 
time was 18.75 min. The drop-off and the pick-up times 
represent the spent time for picking up the travellers and 
dropping them off in case of the AVs. The shown numbers 
stand for the fleet size per day, for example 344.27 h were 
needed to pick up the travellers in Scenario 1 and 172.13 h  
for dropping them off once using 850 AVs. It is shown that 
the ratio of the occupied time (i.e., the occupied, the pick-
up, and the drop-off time) to the total operating time (i.e., 
the occupied, the pick-up, the drop-off, and the empty 
travel time) of the AVs fleet for Scenario 1 is 68% (fleet size 
utilization). Similarly, the fleet utilization of Scenarios 2,  
3 and 4 was 69%, 64%, and 61%, respectively. The average 
waiting time was higher than the acceptable waiting time, 
which requires the increasing of the fleet size of AVs. In 
Scenario 2, 40 AVs were distributed randomly in the road 
network with other transport modes, and the people who 
used AVs were exposed to a 12.3 min of average waiting 
time, and the average trip time was 18.2 min per traveller. 
Moreover, the fleet size of AVs had 111.0 h empty driving 
to the locations of the travellers and had only 199.8 h oc-
cupied driven time. In conclusion, the travel distance (i.e., 
VMT) increased, which can be calculated by the ratio of 
the empty driven time to the occupied driven time, which 
is in this case 56%. In the case of Scenario 2, the additional 
VMT is high, and it can affect the cost of the travel nega-
tively. The travellers of Scenarios 3 and 4 experienced a  
4.7 min and 6.1 min of average waiting time, while the ad-
ditional travelled distances by the fleets of AVs were 88.4% 
and 91.1%, respectively, based on the ratio of the empty to 
the occupied travel time. Moreover, the average trip time 
for Scenario 3 and Scenario 4 was 10.6 min and 11.5 min 
per travellers, respectively.

Table 4 shows the results of each scenario when AVs 
were included in the simulations with a 20% fleet size. The 
average waiting time and the usage parameters of the AV 
fleet size are recorded. In Scenario 1, the average wait-
ing time per traveller was 10.5 min, where the fleet size 
was 1700 AVs, the fleet utilization was 68%, and the aver-

age trip time was 17.1 min per traveller. The drop-off and 
pick-up times were calculated based on the number of the 
trips. The result demonstrated that the AVs increased the 
travel distance of the travellers who switched to AVs by 
55% compared to the conventional transport modes. In 
Scenario 2, the average waiting time was 8.0 min, the fleet 
utilization was 67%, the average trip time was 16.4 min 
per traveller, and the increase in the travelled distance was 
62%. The high VMT of the fleet was generated because of 
the type of the travellers in this scenario, who typically 
travel for a long distance, thus the relocation of AVs re-
quires more time on average. In the scenario of elderly and 
retired people (i.e., Scenario 3), the average travel time 
was 3.3 min, the fleet utilization was 72%, the average trip 
time was 9.85 min per traveller, and the additional travel 
distance was 62%, which means the utilization of the fleet 
size is not high. Finally, the part-time workers experienced 
4.5 min, the average trip time was 10.2 min per traveller, 
and the extra travelled distance by the fleet size was 71%, 
which leads to a lower utilization ratio of the fleet size (i.e., 
the empty driven time is high). 

As the ratio of the empty driven time to the occupied 
driven time decreases, the utilization of the fleet size of 
AVs increases. The average served request per one AV 
per day represents the number of the picked-up travellers 
per AV, which is the number of the travellers that each 
AV serves on average. As this number gets high, it brings 
more efficiency and profit to the operators. Figure 5 shows 
the fleet utilization ratio while Figure 6 shows the differ-
ence in the average requests served by an individual AV 
the fleet average when the fleet size of AVs is increased 
from 10 to 20% of the sample size. Figure 7 shows the ad-
ditional VMT when the fleet size of AVs is increased from 
10 to 20% of the sample size. 

3.3. Modal shift in the presence of AVs

The inclusion of the new transport mode (i.e., AV) makes 
the travellers recalculate their utility based on the travel 
cost and the travel time between two consecutive activi-
ties. The results of the simulations produce new modal 
shares including AVs, as shown in Table 5 and Figure 8. 

Figure 4. The current modal share of the simulations
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Some travellers switched to AVs to increase the utility of 
their traveling (i.e., decrease the disutility). The 23.6% of 
the people switched to AVs in Scenario 1 when the fleet 
size of AVs was 850, and 25.4% when the fleet size of AVs 
was 1700. The small increment in the AVs modal share 
was not the only result, since the quality of the service 
was enhanced by reducing the average waiting time when 
the fleet size of AVs is changed from 10 to 20%. Around 
the 47.5% of the long-trip travellers with high-income 
switched to AVs when the fleet size of AVs was 40 and 
51.3% when the fleet size of AVs was 80. Additionally, the 
19.5% of the elderly people who are retired switched to 
AVs when the fleet size of AVs was 100 and 21.9% when 
the fleet size was 200. Finally, the percentage of part-time 
workers who switched to AVs was 30.4% when the fleet 
size was 50 and 30.6% when the fleet size of AVs was 100. 

Figure 5. Fleet utilization differences across  
the two AVs penetrations

Figure 6. The average served request  
by an individual AV

Figure 7. VMT differences across the two AVs penetrations 

Table 3. The travellers’ trip time components when the fleet size of AVs is 10% of the sample size 
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1 850 13.3 1696.25 344.27 3014.41 172.13 68 56 4.66
2 40 12.3 111.02 32.87 199.82 16.43 69 56 9.70
3 100 4.7 108.25 46.07 122.35 23.03 64 88 5.73
4 50 6.1 96.70 31.77 106.13 15.88 61 91 7.60

Table 4. The travellers’ trip time components when the fleet size of AVs is 20% of the sample size
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The results showed that the rise the fleet size of AVs did 
not attract more travellers, but it impacted the average 
waiting time positively. The inclusion of additional AVs 
on the market impacted other transport modes negatively, 
especially the car and the walking modes. The decrease in 
the car and walking modal splits when the additional AVs 
were introduced into the market produced an increase in 
the public transport and AVs modal splits. For example, 
in Scenario 1, the car modal share decreased from 12.8 to 
7.5%, while the public transport increased from 21.5 to 
25.2%, and the AVs share increased from 23.6 to 25.4%. 
The results lead to the conclusion that increasing the fleet 
size of AVs will mainly increase the quality of the service 
based on the assumption that decreasing the waiting time 
enhances the quality of the service. The interpretation of 
the additional shift from the non-motorized transport 
modes when the additional AVs are on the market can be 
obtained from the time allocation strategy and the reason-
able walking time. The time allocation is affected by the 
average waiting time, which impacts the usage of AVs. The 
characteristics of a traveller determines whether to use AV 
or not since the arrival and the departure as well as the 
availability of AV within the schedule should coincide. 

Therefore, more AVs on the market can lead to less wait-
ing time and more usage of AVs concerning other factors, 
such as the VOT of the travellers. 

The marginal utility of the travel time of a particu-
lar transport mode impacts the possibility of changing a 
transport mode considering the cost, the departure and 
the arrival times. From the above tables, it can be conclud-
ed that the waiting time is decreased as the fleet size of 
AVs is increased, and as the fleet size of AVs is increased 
the additional empty driven time/distance is decreased. 
As the travel distance increases, the empty driven time 
increases, as well, as demonstrated in Scenario 1. Increas-
ing the fleet utilization is a target because it indicates a 
high efficiency of the fleet. As the number of requests per 
AV increases the efficiency of the fleet increases, and the 
number of idle AV hours decreases. The bike and walking 
modes are less affected by the inclusion of AVs because the 
users of those modes have different characteristics from 
other travellers’. For example, people using bike or walking 
enjoy non-motorized modes in addition to the low cost. 
The occurred shift to the AVs from the non-motorized 
modes appeared because of those travellers who travelled 
long distances, for example 2 h walking in one trip. The 

Table 5. The mode-share shift results of the simulations

Transport mode
The fleet size of AVs is the 10% of the sample size The fleet size of AVs is the 20% of the sample size

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 1 Scenario 2 Scenario 3 Scenario 4
AV 23.6 47.5 19.5 30.4 25.4 49.5 21.9 30.6
Car 12.8 6.3 2.6 2.9 7.5 2.3 2.2 1.8
Public transport 21.5 31.2 29.0 36.1 25.2 33.0 29.2 39.4
Bike 3.0 2.7 3.0 2.6 2.8 2.4 3.1 2.8
Walking 39.1 12.3 46.3 27.9 39.1 11.8 43.2 25.4

Figure 8. The mode-share shift results when the AVs penetration increases from 10 to 20%
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previous simulations that are mentioned in Table 5 were 
conducted by using Intel CoreTM I7-7500U CPU @ 2.70 
GHz-2.9 GHz and 8 GB RAM laptop, and the simulations’ 
average running times lasted for 18.5, 5.6, 7.4, and 6.5 h 
for Scenario 1, Scenario 2, Scenario 3, and Scenario 4, re-
spectively. The number of the conducted iterations was 80 
for Scenario 1 and 200 iterations for the others.

Another paradigm of using AVs is presented in this 
research, as well. The simulation of the activity chain plans 
was conducted with AVs to determine the required fleet 
size thus serving all the demand. In this new calculation, 
the transport modes in all daily activity plans were re-
placed by AVs. The results were defined as the required 
fleet size of AVs to serve all the demand, in which 3000 
AVs were required for Scenario 1, 90 AVs for Scenario 2,  
70 for Scenario 3, and 65 for Scenario 4. These fleet sizes 
were determined after several trials, and the acceptable 
waiting time (i.e., less than 10 min) controlled the fleet 
size. This concludes that a relatively small number of 
AVs can serve a large demand compared to conventional 
transport modes. The increase in the usage of AVs can 
be occurred due to the ease of traveling by AVs without 
needing a driving license, as an example. Additionally, the 
results demonstrated that an extra VMT was accompanied 
by the use of AVs, which leads to an increase in the fuel 
consumption and the depreciation of the infrastructure 
(i.e., the maintenance of the roads related to the usage 
of the roads). The simulations were conducted by using 
Intel CoreTM I7-7500U CPU @ 2.70 GHz-2.9 GHz and 
8 GB RAM laptop, and the simulations’ average running 
times were 31.5, 5.5, 5, and 4 h for Scenario 1, Scenario 
2, Scenario 3, Scenario 4, respectively. The number of the 
conducted iterations in this paradigm ranges from 100 to 
350 iterations.

4. Discussion 

The travel behaviour of people toward the presence of AVs 
is evaluated in this study. The evaluation consists of, first 
of all, the evaluation of the current travel behaviour by 
simulating the daily activity plans of the travellers, and 
second, the examination of the impacts of AVs among 
certain groups of users when AVs are introduced into the 
market. 4 scenarios were presented, where Scenario 1 in-
cludes the behaviour of all travellers while Scenario 2, Sce-
nario 3, and Scenario 4 consist of the behaviour of three 
groups of users. In studying the travel behaviour, both the 
conventional transport modes and AVs were simulated 
separately and then together. In the simulation, several 
variables that impact the travel behaviour, such as the road 
capacity factors, the fleet size, the speed, the acceptable 
waiting time, the travel distance, and the distribution of 
AVs on the network, were considered. The results of the 
simulations demonstrated differences among the groups 
regarding AV usage. Moreover, in line with the concept of 
the utility function, the traveling ((dis)utility) is improved 
in case of AVs because the VOT was smaller than the con-
ventional cars’. Furthermore, other factors pertaining to 

the traveller preference, such as arrival time and travel 
distance or time impact the improving the travel utility 
by using fast and cheap transport mode. 

3 simulations were conducted for each scenario, a sim-
ulation of the existing conditions, and 2 simulations with 
the presence of AVs on the market with two penetration 
levels, i.e., the 10 and the 20% of the demand. Scenario 1 
simulated all travellers, in which the travel behaviour 
measures were presented, such as 33 min was the average 
trip time per traveller. The results demonstrated a travel 
time reduction compared to the average trip time of the 
existing conditions due to the shift to the AVs. Scenario 2 
simulated the long commuters with high-income, where 
the average trip time was 46 min per traveller, and it de-
creased when AVs entered the market. The largest shift to 
the AVs was in this group of users, which concludes that 
as travel time increases the shift to AVs increases consid-
ering the smaller VOT of AV than the car. In Scenario 
3, the average trip time was 33 min per traveller, and it 
decreased when AVs were introduced into the market be-
cause of the occurred shift to the AVs from other modes of 
travel. In Scenario 4, the part-time workers were simulat-
ed, and the average trip time was 38 min per traveller. The 
average trip time decreased when AVs were used due to 
the occurred shift to the AVs. The reduction in the average 
trip time comes from the removed parking time, the mini-
mized travel delay, the removed access and egress times 
(i.e., AV is a door-to-door service), and the percentage 
of users who shift from slower transport modes to faster 
modes or AVs, as a result of introducing the new mode 
to the market.

In all scenarios, the results of the simulations showed 
a large shift to the AVs, which means the travellers were 
attracted to the AVs more than to the conventional trans-
port modes, especially, cars. The large shift is justified by 
several factors, for instance, the VOT of using AVs was 
evaluated less than that of the conventional cars, where 
the score was evaluated as the highest. It is worth men-
tioning that the variations in the results of the simulations 
between the scenarios refer to the variations in the char-
acteristics of each scenario, for example a larger shift (i.e., 
47.5%) to AVs was demonstrated in Scenario 2, while the 
lowest was in case of Scenario 3. Furthermore, the simu-
lations showed a considerable shift from public transport 
to AVs because some travellers received the highest utility 
when they shifted to AVs. The new modal share did not 
show large differences in the bike and the walking modes 
compared to the original modal share (Figures 4 and 8). 
Practically, the users of the bike and the walking modes 
usually optimize their daily activities based on different 
factors, such as health, than those who choose motorized 
modes. While the motorized modes are normally selected 
based on the availability of car or public transport, weath-
er, cost, and travel time. The obtained small shift from 
non-motorized modes to the AVs were justified based on 
the pre-set criterion of the simulations about the maxi-
mum walkable distance (i.e., 800 m) as well as a small per-
centage of the travellers reported long walking distances 
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in their daily activity plans. Moreover, the changes in the 
arrival and departure times of a traveller (see the re-plan-
ning step) determine the use of a specific mode based on 
the obtained utility (see the scoring step). For instance, in 
Scenario 2 the decrease in the modal share of walking was 
caused by the travellers who reported long time walking, 
such as a 2 h walking time. Additionally, the simulation 
demonstrated that the shift to AVs does not follow a linear 
relationship with the fleet size of AVs since the shift was 
already relatively high when the AVs fleet size was 10% 
and did not change dramatically when the fleet size of AVs 
became 20% (Figure 8).

Furthermore, the availability of idle AVs affects the us-
age of AVs because the travellers will schedule their travel 
based on such preferences as departure time and arrival 
time. Additionally, increasing the larger fleet size of AVs 
enhances the quality of the service to the travellers rather 
than to the operators because travellers tend to have as 
small waiting time as possible. The waiting time is an im-
portant factor that affects the usage of AVs in addition 
to other factors, such as sharing acceptability and service 
trust. The waiting time is controlled by the fleet size, as 
the fleet size is increased, the waiting time is decreased, as 
demonstrated in Tables 3 and 4. Therefore, in the future, 
the operators should consider the waiting time when op-
erating AVs because the willingness of people to use AV 
depends on the quality of the service that is connected to 
the available fleet size, where one of the quality indicators 
is having as small waiting time as possible. The changes 
in the modal share are not affected only by the fleet size 
of AVs but by other factors, too, such as the VOT of the 
travellers, the time preferences regarding the time sched-
ules of the individuals and the activities.

The results of the simulations demonstrated that as 
the fleet utilization increases, the extra driven distance 
decreases. Additional AVs on the market lead to a smaller 
number of served orders per AV, while the high utiliza-
tion ratio leads to more profit for the operators and gives 
an indication of the efficiency of the AV fleet size. Ad-
ditional VMT is not preferable because it increases the 
energy consumption, the deterioration of the roads, and 
the depreciation of the vehicles. AVs remove the parking 
time, which was 9 min for conventional car travellers that 
were estimated from the travellers’ records. This advanced 
technology (i.e., AV) decreases the delay generated from 
human behaviour and traffic congestion. Additionally, the 
AVs will enhance the safety, the comfort, the privacy, and 
other features, which make the travel time more produc-
tive and enjoyable. Additionally, the fleet size of AV that is 
required to serve each demand of the four scenarios was 
determined considering the average waiting time is not 
more than 10 min. The results demonstrated that the de-
mand can be served with a smaller fleet of AV compared 
to conventional car.

The indirect consequences of using AVs can be real-
ized from this study. AVs decrease the travel time for the 
travellers based on the locations of the travellers and their 

destinations as well as the traffic condition, which is af-
fected by the time of the travel during the day. The de-
creased number of vehicles on the street and the reduction 
of using the parking spaces will influence the price of the 
properties in the urban areas and converting many park-
ing spaces to serve other useful aims, such as into public 
spaces. Budapest is classified as a historic city where a lot 
of buildings do not have parking garages, and widening 
the streets is not a solution to satisfy the increasing de-
mand of the travellers. Moreover, taxes and fees should 
be applied to parking and driving to discourage people 
from using cars in the city centre. The AVs will provide a 
solution for the parking areas and narrow roads as well as 
might motivate people to redistribute the existing urban 
formation at the city centre. In this study, the AVs were 
assumed to be parked at the last place after the last travel-
ler is served when there was no call to pick up a traveller.

Future works are included in this section. Parking was 
not included in this study due to the absence of suitable 
data to provide the minimum requirement of input data 
to MATSim, but it is recommended to be examined in a 
further study. The fleet size of AVs is affected by the num-
ber of people who request an AV before a certain time, 
for example travellers can order an AV for 8:00 AM of the 
following day, and the AVs have to consider this (i.e., pre-
bookings), which means that the AVs should be available 
with priority to those who booked earlier. Pre-booking was 
not simulated in this paper because currently, MATSim  
does not support it, but it is an interesting concept, which 
should be elaborated on in the future. AVs will affect the 
choice of the locations of the people, which means the 
travel distance will increase with similar travel times, 
and people will tend to buy houses in areas further from 
their destinations if they can reach their activity locations 
within the same travel time. However, studying the impact 
of AVs on the land use and the relocation of the people’s 
places is still a hot topic. Studying the impacts of AVs 
on the location choice requires to expand the knowledge 
about the impacts of AVs on both the short- and the long-
term future. For example, the saved parking places can be 
obtained within a short term, while the travellers’ housing 
relocation can be obtained within a long term. The analy-
sis of AVs still needs more research and different methods 
in predicting the implications of AVs on the mobility of 
people and the surrounding environment until it appears 
on the market (i.e., empirical studies are needed). 

Conclusions

The simulation of the daily activity chain plans of the dif-
ferent types of people in the presence of future technol-
ogy (i.e., AV) was conducted. Previous studies focused on 
studying the impacts of AVs on people in general through 
simulations, while this study examined the impact of AVs 
on different groups of users. In this research, a large-scale 
open-source agent-based simulation model was used to 
study the impacts of AVs on the travel behaviour of people 
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in general and on three selected groups, which are more 
likely to use the AVs in the future. To simulate the ac-
tivity plans of the travellers based on flexible functions, 
the MATSim software tool was chosen because it has the 
power to apply a co-evolutionary algorithm. The intro-
duction of AVs into the market was examined through 
two cases, first, with a penetration of 10% of the demand, 
and second, with the 20% penetration of the demand. The 
study included four scenarios with the following groups of 
people: all travellers, long commuters with high-income, 
elderly people who are retired, and part-time workers. The 
scenarios were examined through simulations, in which 
different variables were assessed, such as the modal share, 
the waiting time, an additional VMT, the AV fleet utiliza-
tion, the travel time, and the travel distance. The results 
demonstrated differences between the groups of people 
when AVs were introduced, as shown in the new devel-
oped modal share. The differences in the characteristics 
of the travellers definitely affect the travel behaviour, 
which is manifested in the result of the four scenarios. 
The VOT, the travel cost, and the fleet size of AVs were 
the main determinants that participate in either encour-
aging the acceptance of AV as a new transport mode or 
not. As a result, it can be stated that the availability of 
AVs is expected to decrease the usage of conventional 
cars and public transport and will slightly impact the non-
motorized modes. The percentage of the travellers who 
shifted to AVs increased slightly when the fleet size of AVs 
increased from 10 to 20%. This leads to the conclusion 
that the determination of the fleet size of AVs is important 
for both the operator and the travellers since providing a 
larger fleet size than the required increases the satisfac-
tion of the travellers, while the utilization ratio of the AV 
fleet decreases significantly, which causes an unsustainable 
situation for the fleet operator due to the increase in the 
operating cost. Additionally, the fleet size of AVs, in which 
a full replacement for the conventional transport modes 
was determined. The output of this study can be fruitful 
for policy-makers, urban planners, transport modes op-
erators, and vehicle manufacturers.
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