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Abstract. The maritime transport industry continues to draw international attention on significant Greenhouse Gas emis-
sions. The introduction of emissions taxes aims to control and reduce emissions. The uncertainty of carbon tax policy af-
fects shipping companies’ fleet planning and increases costs. We formulate the fleet planning problem under carbon tax 
policy uncertainty a multi-stage stochastic integer-programming model for the liner shipping companies. We develop a 
scenario tree to represent the structure of the carbon tax stochastic dynamics, and seek the optimal planning, which is 
adaptive to the policy uncertainty. Non-anticipativity constraint is applied to ensure the feasibility of the decisions in the 
dynamic environment. For the sake of comparison, the Perfect Information (PI) model is introduced as well. Based on a 
liner shipping application of our model, we find that under the policy uncertainty, companies charter more ships when 
exposed to high carbon tax risk, and spend more on fleet operation; meanwhile the CO2 emission volume will be reduced.
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Notations and variables

Sets:
 A – set of container ship types;
 R – set of liner trade routes;
Lr – set of legs in route r;
    S – set of carbon tax scenarios.

Parameters:
αt

i – chartering fee of ship type i for whole period t 
[USD/ship];

 t
ir – variable voyage costs of ship type i in period t on 

route r (e.g., fuel expenses, port charges, container 
handling fees) [USD/voyage/ship];

ηt
ir – fixed voyage costs of ship type i in period t on 

route r (e.g., crew salaries, maintenance expenses, 
ship insurance) [USD/voyage/ship];

ψt
i – laying-up costs of ship type i for whole period t 

[USD/ship];
jt – CO2 emissions tax in period t [USD/ton];
µ – capital discount rate during planning horizon;
κi – carrying capacity of ship type i [Twenty foot Equiv-

alent Unit (TEU)/per ship];

0
iE – number of ships type i existing in the fleet at the 

beginning of planning horizon;
ρt

rl – container demands on leg l of route r in period t 
[TEU];

γt
r – voyage interval required by market on route r in 

period t [days];
βir – convention factor for CO2 emissions of ship type i;
υt

ir – number of voyages that can be completed per ship 
type i on route r in period t;

∆t – duration of period t;
ϖt – available capital for chartering in period t [USD];
ζt

i – capacity available for chartering of ship type i in 
period t [TEU];

ξt
i – available number of ships type i in shipping market 

in period t.

Variables:
t
iE  – number of available ships type i at the beginning 

of period t;
t

irW  – number of ships type i assigned to route r in pe-
riod t;

t
iU  – number of laid-up ships type i in period t;
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t
irlQ  – number of containers transported by ship type i 

assigned to route r in leg l during period t per ship;
t
ipI  – number of ships type i chartered-in for duration p 

at the beginning of period t.

1. Introduction 

Around 80% of global goods by volume are carried by 
ships and handled by ports (UNCTAD 2013). Since the 
global economic depression began in 2008, maritime ship-
ping companies have faced a more complicated financial 
market and been concerned more over climate change by 
international community.

By far, CO2 is the most abundant Greenhouse Gas 
(GHG), and also the most problematic from an environ-
mental standpoint. Though shipping is more CO2 efficient 
than other transportation modes, emissions from ships 
do contribute to climate change. In 2007, CO2 from ship-
ping represented 3.3% of global emissions (IMO 2009). 
The emissions could grow 1.9…5.2% by 2050 if there is 
no action taken and the regulatory control is one of these 
possible actions, but not the only one (Lee et al. 2013).

Various market-based measures could mitigate emis-
sion levels, including: (1) applying a tax or required 
contribution against all CO2 emissions; (2) developing 
emissions trading systems for ships; and (3) establishing 
schemes based on a ship’s actual efficiency (IMO 2009). 
With regards to the first measure – regulators could fix tax 
rates for the industry, and emissions would decrease ac-
cording to ship operators’ responses to their increased tax 
burden (Franc, Sutto 2014). On the other hand, this would 
introduce greater financial burden on ship operators. 

Yet, environmental concerns must necessarily come 
into play in fleet management decision-making, as inevi-
tably, profits are affected by regulatory uncertainty – espe-
cially uncertainty brought about by climate change activ-
ism. One possible solution is chartering – a tactic that im-
proves a company’s ability to manage uncertain business 
factors, as risks tied to vessel ownership are transferred to 
charter-owners (Cariou, Wolff 2013; Mason, Nair 2013). 

This paper investigates optimal maritime fleet mix 
strategy made under carbon tax uncertainty. A multi-pe-
riod integer Stochastic Programming (SP) is established 
to model the fleet planning decisions, and a scenario tree 
is employed to describe carbon taxation and price uncer-
tainty; this is important, because simple predictions can-
not reflect the dimensional structure of variable carbon 
taxes, especially as they relate to future business strate-
gies. A numerical experiment based on a real-world case 
in liner shipping is designed to analyse the impact of car-
bon tax uncertainty on fleet mix decisions, costs and CO2 
emissions. In the experiment, several carbon tax risk levels 
which indicate different chances of getting a high carbon 
tax are incorporated.

1.1. Literature review

In the last decade, various deterministic models have been 
developed to investigate fleet strategy (Mason, Nair 2013; 

Bang et al. 2012; Fagerholt et al. 2009; Meng et al. 2015). 
However, these models have been unable to fully manage 
uncertainty factors.

Instead, some researchers have proposed dynamic and 
SP tools that are more effective at modelling problems 
with uncertainty: Bakkehaug et al. (2014) develop a gen-
eral SP model to handle fleet planning based on variable 
freight rates and shipping demand. The resulting formula-
tion significantly improves fleet renewal decisions when 
compared to traditional deterministic programming. Yu 
(2009) also evaluates fleet planning using mixed-integer 
SP, where unstable shipping demand is described by a 
scenario tree and a branch and price framework. Meng 
and Wang (2010) employ a chance constraint program-
ming model, where variable cargo demand is represented 
by normal distribution. Meng and Wang (2011) then ex-
tend their research using a scenario tree and integer linear 
programming that solve the dynamic model by a short-
est path algorithm. However, Meng and Wang (2011) use 
pre-determined values for chartering, buying, selling, and 
keeping in each period, while we treat them as important 
decision variables of the fleet planning problem.

For the researches focusing on the market-based mech-
anisms that can promote industries to reduce emission, 
Kim et al. (2013) conclude that carbon taxation is a more 
effective constraint than emissions for optimizing speed 
and fleet size according to their case study. Conversely, He 
et al. (2012) claims that there is no winner between carbon 
tax and emission trading system, as policies show their 
relative advantages and disadvantages with respect to dif-
ferent criteria. As the emission reduction mechanism has 
not been determined, which mechanism has better effect 
on mitigation is still in dispute. However, International 
Chamber of Shipping (ICS 2009) worries that maritime 
shipping is expected to be a long-term buyer of carbon 
allowances or credits, irrespective of whether the market-
based instrument adopted is an emission-trading concept 
or a tax scheme.

Regarding studies on carbon tax uncertainty, Avi-
Yonah and Uhlmann (2009) argue that once taxation is 
in place, it is usually not so hard to raise its rate despite 
oppositions to tax hikes. Ramseur and Parker (2010) con-
clude that policymakers could devise a tax program that 
yields short-term emission fluctuations, and one of the 
disadvantages of a carbon tax is that it would yield un-
certain emissions.

The emission reduction mechanism and its potential 
impact is affected by many factors, that is why no com-
prehensive tax policy has been so far used or seriously 
contemplated widely (Strand 2013). For example, if the 
centralized agency is fully informed about the emissions 
and abatement costs of all parties, setting emission price 
and mitigation levels are a straightforward task. Unfortu-
nately, parties prefer to keep the information private and 
the costs of emission reductions remain unknown (Ermo-
lieva et al. 2010). Another important factor is fuel price, 
Hammoudeh et al. (2014) conclude that an increase in the 
crude oil price generates a substantial drop in the carbon 
prices when the latter is very high; in spite of their study 
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focuses on emission trading allowance price, their conclu-
sion may indicate that along with the rising of fuel price, 
emitters may require fewer allowances as they emit less. 

As the potential impact of emission reduction mecha-
nism is sophisticated, it is meaningful to do research on 
this topic. Our paper suggests an SP model to accommo-
date multi-period fleet planning under carbon tax uncer-
tainty. Uncertainty is outlined as a scenario tree, which 
requires uniform decision structure to maintain risk neu-
trality (King, Wallace 2012). Improving upon models pro-
posed by Bakkehaug et al. (2014) and Kim et al. (2013), 
we introduce non-anticipativity constraints in order to 
achieve uniform the decision steps and carbon tax scenar-
ios, and consider carbon taxation and price uncertainty in 
terms of implementation time and magnitude. We aim to 
develop a practical model that can help managers coping 
with uncertain carbon tax factors when making fleet mix 
decision first; and further study the impact of carbon tax 
on fleet mix strategy and carbon mitigation.

1.2. Problem description

Fleet planning involves two important aspects: (1) fleet 
size and mix problem, which determines the size and 
number of ships, and requires strategic oversight on ship 
purchasing, selling, chartering, and scrapping; and (2) 
fleet deployment, which includes ship routing based on 
demand (Pantuso et  al. 2014). As this paper focuses on 
fleet mix strategy, ships’ routing and demand is assumed 
to be predictable, which is used to support the fleet size. 
A fleet can increase its capacity by purchasing ships, but 
this requires large amounts of capital and a view of the 
company’s long-term strategic prospects. By comparison, 
chartering is a more agile option, because it offers flexible 
contract periods and lower capital investments than own-
ing a vessel outright. 

In order to highlight chartering decisions under car-
bon tax uncertainty, this paper limits fleet planning to 
short-term, where increased fleet capacity can be achieved 
only through chartering. As suggested by Bakkehaug et al. 
(2014), it is more significant to describe near-term uncer-
tainty with fleet planning than in distant periods. There 
are several business modes in shipping practice, e.g. liner 
shipping, tramp shipping; each one has different operation 
characteristics. Here we focus on liner shipping, one of the 
main modern transportation methods for containerized 
cargoes. Liner shipping is defined as a fleet that operates 
according to a published itinerary between fixed ports.

The company makes its fleet-planning decisions at the 
start of each period, as realizations of carbon taxes are re-
vealed. Only the carbon tax is uncertain in our fleet plan-
ning problem, and other operational factors are known or 
can be predicted. In order to minimize operational costs, 
the company needs to adjust fleet capacity based on their 
specific business environment and CO2 emissions taxa-
tion realizations. Note that chartered vessels can only be 
redelivered or idle when there is temporary overcapacity; 
subletting and chartering out is not allowed here for the 
short-term consideration. 

1.3. Assumptions

Multi-period fleet planning includes consecutive single 
plans with t periods, as t = 1, 2, …, N. Here we take the 
length of one year, so the planning horizon includes t 
years. Vessels can be charted in at the beginning of each 
period, but returned only at the end of a period to com-
ply with shipping practices. The shortest chartering period 
is set to one year and the longest time can be the whole 
planning period.

Types of available containerships are denoted by set A 
on R routes; each route has Lr legs. Demand for contain-
er transportation on each leg is estimated from historic 
transportation volume. 

Ships call ports in a pre-determined order and inter-
val. Thus, duration of a round trip and the total number 
of voyages completed by a single ship are fixed.

Capital used for the existing fleet is deemed ‘sunken’, 
and will not affect decisions in planning periods. In view 
of time value, all capitals referred are discounted to the 
beginning of the planning horizon. 

1.4. CO2 emissions tax scenario design

We follow Reinelt and Keith (2007) by modelling a future 
CO2 tax with uncertain execution time and magnitude. 

Let jt indicate the carbon tax rate in period t with 
probability denoted by q t for t = 1, 2, …, N. The distri-
bution of tax execution time is uniform during planning 
periods; the tax rate remains constant once imposed. Let 
u t denote the execution probability of a carbon tax at the 
beginning of period t. If the tax is not executed in any 
period, the execution probability in the following period 
will be:

( )
′

′=

′ ′< =

∑
| not executed in period 

t

N
t

t t

uu t t t
u

. (1)

Thus, a scenario structure is introduced to describe 
carbon tax uncertainty. Several proper realizations occur 
in each period, and every realization is a branch in one 
period. Carbon tax realizations are only available until 
the beginning of each period. Let s represent a carbon tax 
scenario which belongs to set S, namely ∈Ss . For each 
scenario s, a carbon tax development path is described by 
jts and ps for t  = 1, 2, …, N, where jts denotes the tax 
rate in period t under scenario s, realization probability of 
scenario s is indicated by ps, satisfying 

∈

=∑
S

1s

s
p .

The remainder of our paper is structured as follows. 
Section 2 develops a multi-stage stochastic integer pro-
gram and an extended SP model. Section 3 details the nu-
merical study and results. Conclusions and future work 
are discussed in the last section.

2. Mathematical model

This section describes our method for establishing a math-
ematical model for chartering decisions analysis. Deter-
ministic formulation, parameters, and variables are devel-
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oped first for an explicit SP model base. The deterministic 
model can be extended to a SP model by considering more 
than one carbon tax scenarios.

Deterministic objective function:

=Min  cost Z
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In Eq. (2), all parameters are assumed to be predict-
able and known, and it is assumed that there are three 
different types of ships i (e.g. ship type 1, 2 and 3). Note 
that all the ships in the same category are the same (e.g. 
all the ships categorized in ship type 1 are the same type 
of ship). As mentioned above, tax realization is described 
as scenarios. Decisions must have the identical structure 
within the scenario tree in order to focus on and cope 
with uncertainty. Scenario dependent decision variables 
are further indexed by s.

The objective function becomes: 
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where: ts
iE  is an intermediate variable explained by rela-
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Eq. (3) denotes the minimization of discounted fleet 
costs for the whole planning horizon under different tax 
scenarios, includes chartering fees, fixed operating costs, 
variable voyage costs, laying-up costs, and carbon taxes. 
The left-hand side of Constraint (4) is an intermediate 
variable indicating the number of available ships of type 
i at the beginning of period t. Constraint (5) ensures that 
capital used for chartering will not exceed the company’s 
available budget. Eq. (6) safeguards that chartered capacity 
will not outweigh market supply. The left-hand side of Eq. 
(7) indicates that available ships of type i can be assigned 
to routes or laid up given overcapacity. Constraint (8) con-
firms that voyages completed by ships on each route can 
satisfy market requirements for sailing frequency. Eq. (9) 
requires that containers carried by vessels on each ship-
ping leg should at least meet market demands; this implies 
that the company will keep its market share under differ-
ent situations. Constraint (10) indicates that the total car-
rying capacity assigned to each route should be equal to or 
greater than accomplished container volume on each leg. 
Eq. (11) is a non-anticipativity constraint, which requires 
decision variables with the same ancestor nodes and de-
veloped paths to be identical. Constraint (12) requires all 
decision variables to be non-negative integers.

Figure 1 shows the relationship between decision vari-
ables bounded by non-anticipativity.

Non-anticipativity constraints prevent using future in-
formation in the decision; in other words, if two scenario 
paths share same history so far, then all historical deci-
sions should be identical. Unrevealed information cannot 
be used (King, Wallace 2012). Thus, companies could re-
main neutral about risk and avoid loss caused by replacing 
uncertain factors with average or extreme values. 

Figure 1. Decision steps with non-anticipativity constraints
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3. Numerical study
This section outlines the design, computes the numerical 
case from our model, and delivers resulting decisions of 
liner company. Most of the data has been collected from 
international company reports based in China in order to 
expose the capabilities of our model and not to discuss the 
case-results per se.

3.1. Case design

Consider Company X that intends to build a three-year 
fleet plan for transport between East Asian and European 
ports. For simplicity, we assume two legs on one typical 
route (i.e., Shanghai, China to Hamburg, Germany, and 
back). Clarkson Research Services Ltd (2014) forecasted 
basic container volume demand on East Asian-European 
routes in 2014 at 7.2 million TEUs eastbound and 14.9 
million TEUs westbound. This company must complete at 
least 10% of container demands to maintain market share. 
Container shipping demand increases by 3% annually.

Per Table 1, at the beginning of the planning horizon, 
Company X only owns ships of types 1 and 2; we assume 
that ships of type 3 will be available besides ships of types 
1 and 2 in the next three years. Based on IMO (2009) 
estimation, we adopt a CO2 emission conversion coeffi-
cient of 0.98 for ships of type 1 containerships (combining 
the distance between Shanghai and Hamburg). For ships 
of types 2 and 3, 17% and 35% conversion discounts are 
taken, respectively, based on better carbon-efficiency. 

To our knowledge, no public records exist charter fix-
tures for containerships over 13000 TEU. Thus, we use a 
one-year chartering fee for an 8000 TEU containership 
(Seaspan Corporation 2013). We adopt 5 and 10% dis-
counts for two- and three-year chartering fees, respective-
ly, to conform to chartering practices. We then estimate a 
3% increase in chartering fees per year to cover inflation 
(Table 2). 

Per Table 3, variable, fixed, and laying-up costs cover 
one round trip per ship. In our model, capital and ships 
are abundant enough to meet chartering requirements, in-
cluding a rising annual rate of USD$100000 for inflation.

3.2. Carbon tax scenario tree assumptions 

As discussed in Section 1.2, CO2 taxation is modelled with 
uncertain execution time and magnitude. Following Lee 
et al. (2013), we adopt the low tax rate of $30/tCO2, and a 
more stringent high rate of $300/tCO2.

For the first planning year, tax is set to 0 because no 
carbon tax is levied on shipping. For year 2, suppose even 
probabilities for levying tax, which means 50% probability 
to impose and 50% probability for no tax. Thus, if taxation 
is adopted, the probability for the low or the high rate is 
also equal. Once applied, taxation remains unchanged until 
the end of the planning horizon. Upon year 3, there is 50% 
probability to levy either the low or high tax rate. Accord-
ingly, in Table 4, four scenarios are created (s1, s2, s3, s4).

Table 2. Charter fee by ship type

Charter fee 
[M$USD]

t = 1

Ship type

t = 2

Ship type

t = 3

Ship type

1 2 3 1 2 3 1 2 3

1-year 12 20.5 27.5 12.36 21.1 28.32 12.73 21.75 29.17
2-year 22.8 38.95 52.25 23.28 40.11 53.81
3-year 32.4 55.35 74.25

Note: ship type 1 – old type with low emission efficiency; ship type 2 – old type with median emission efficiency; ship type 3 – new 
type with high emission efficiency.

Table 3. Operational and laying-up costs by ship type

t = 1

Ship type

t = 2

Ship type

t = 3

Ship type

1 2 3 1 2 3 1 2 3

Variable cost [M$USD/round trip] 5.1 8.1 9.3 5.3 8.3 9.6 5.4 8.6 9.9
Fixed cost [M$USD/round trip] 3.7 6 7.7 3.8 6.2 7.9 3.9 6.4 8.1
Laying-up expense [M$USD/year] 4.4 5.6 6.7 4.5 5.8 6.9 4.7 6 7.1

Note: ship type 1 – old type with low emission efficiency; ship type 2 – old type with median emission efficiency; ship type 3 – new 
type with high emission efficiency.

Table 1. Fleet composition at the beginning of planning period

Ship type

1 2 3

Capacity [TEU] 8000 13000 16000
Technical condition old old new
Self-owned number 10 5 0
CO2 emission convention 
factor [ton/TEU]

0.98 0.81 0.64

Available [days/year] 360 355 350
Sailing [days/round trip] 61 64 67

Note: ship type 1 – old type with low emission efficiency; ship 
type 2 – old type with median emission efficiency; ship type 3 – 
new type with high emission efficiency.

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.2.0.4311&q=%E8%BD%AC%E6%8D%A2%E7%B3%BB%E6%95%B0
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.2.0.4311&q=%E8%BD%AC%E6%8D%A2%E7%B3%BB%E6%95%B0
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Table 4. Carbon tax scenario paths and probabilities

t = 1 t = 2 t = 3 Path

tax = 0
tax = 0, 50%

tax = 30, 25% s1
tax = 300, 25% s2

tax = 30, 25% tax = 30, 25% s3
tax = 300, 25% tax = 300, 25% s4

3.3. Numerical results

A solver developed by Frontline Solvers that can be added-
in MS Excel is used to do the calculations in this case. 

Table 5 summarizes decision variable values, and Ta-
ble 6 provides results with basic assumptions set in Sec-
tion 3.1 and 3.2, where realization probabilities of carbon 
tax scenarios are equal.

Table 5. Decision variables and objective function under different scenarios

Scenario Period Ship type ts
irW ts

iU ts
irlQ , east ts

irlQ , west t
ipI , p = 1 t

ipI , p = 2 t
ipI , p = 3 t

iE

s1

t = 1

1 24 0 359454 1133114 13 1 0 24

2 5 0 360546 356886 0 0 0 5

3 0 0 0 0 0 0 0 0

t = 2

1 25 0 381054 1174154 7 7 25

2 5 0 360546 360546 0 0 5

3 0 0 0 0 0 0 0

t = 3

1 17 0 0 802285 0 17

2 5 0 345938 360546 0 5

3 5 0 417910 417910 5 5

s2

t = 1

1 24 0 359454 1133114 13 1 0 24

2 5 0 360546 356886 0 0 0 5

3 0 0 0 0 0 0 0 0

t = 2

1 11 0 0 505498 0 0 11

2 5 0 72944 360546 0 0 5

3 8 0 668656 668656 1 7 8

t = 3

1 10 0 0 467957 0 10

2 5 0 11610 360546 0 5

3 9 0 752238 752238 2 9

s3

t = 1

1 24 0 359454 1133114 13 1 0 24

2 5 0 360546 356886 0 0 0 5

3 0 0 0 0 0 0 0 0

t = 2

1 25 0 381054 1174154 14 0 25

2 5 0 360546 360546 0 0 5

3 0 0 0 0 0 0 0

t = 3

1 26 0 403302 1220195 16 26

2 5 0 360546 360546 0 5

3 0 0 0 0 0 0

s4

t = 1

1 24 0 359454 1133114 13 1 0 24

2 5 0 360546 356886 0 0 0 5

3 0 0 0 0 0 0 0 0

t = 2

1 25 0 381054 1174154 14 0 25

2 5 0 360546 360546 0 0 5

3 0 0 0 0 0 0 0

t = 3

1 10 0 0 467957 0 10

2 5 0 11610 360546 0 5

3 9 0 752238 752238 9 9
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Table 6. Part of computing results

Minimum cost [USD] 5797820203
Total CO2 emission [ton] 5929163
Container volume [TEU] 6830889

The non-anticipativity constraint requires decisions in 
period 1 under each tax scenario to be identical. Because 
managers are not able to determine which scenario they 
are in, unrevealed information cannot be used. The re-
quirement for decisions in period 2 of scenarios 3 and 4 
is the same: Managers only know that there is a 50% prob-
ability of no tax at the beginning of period 2 for these two 
scenarios, but they still do not know which tax scenario 
will realize for period 3. 

Generally, results show that ships of type 1 are most 
popular. They represent the oldest and smallest ships; have 
the highest carbon emission factor, unit voyage and oper-
ating costs, but the lowest chartering fees. Ships of type 3 
ships are ranked second – they are most carbon-efficient, 
have the lowest unit voyage and operating costs, but the 
highest chartering fees. More ships of type 3 are chartered 
under high carbon tax scenarios (s2 and s4). In terms of 
periods, no ships are chartered with three-year contracts, 
because this relatively long period is not flexible enough 
to deal with uncertain tax scenarios. Values in Table 5 
are weighted by combining tax scenario probabilities and 
relevant parameters. These will be used as indicators for 
comparison of decisions under different situations. 

3.4. Comparison with decisions  
under perfect information

We can find that the implementation timing and mag-
nitude of carbon taxation is still uncertain by using the 
same distribution and probabilities from the scenario tree 
in Section 3.2. However, with the application of Perfect 
Information (PI) (Birge, Louveaux 2011), we can obtain 
more precise information that can apply to decision-mak-
ing prior to carbon tax realization timelines.

In this section, we investigate chartering decisions 
based on SP versus PI planning to gain insights into fleet 
strategies that deal with carbon tax uncertainty. 

We now introduce different carbon tax scenario prob-
abilities to represent risk levels. 

3.4.1. Even carbon tax scenario probabilities 
Eq. (2) with relative constraints developed in Section 2 
can solve decisions with PI. Let ( )js s

tX denote the op-
timal solution of Model (1) with carbon tax realization 
js

t , define:

( )( )= jmins s tsPI X ,  (13)

where: PIs is the value of objective minimum costs with 
carbon tax jts. Then the expected value of the objective 
function with PI can be written as 

∈

= ⋅∑ s s

s S
EPI p PI , 

where ps is the occurrence probability of the carbon tax 
scenario defined in Section 1.2. ( )

∈

= j⋅∑ s s ts

s S
EX p X  can 

be calculated, where EX indicates each variable’s expected 
value, including chartering. 

All data required to compute EX and EPI follow as-
sumptions from Section 3.1, here the carbon tax scenario 
probabilities for s1, s2, s3, s4, are even (1/4, 1/4, 1/4, 1/4), 
denoted by M, to represent medium chances of high car-
bon taxes.

For simplicity, Table 7 and Figure 2 summarizes only 
the results that contribute to chartering capacity compari-
son. Chartering capacity is a product of ship numbers, pe-
riods, and container capacities. ‘Total CO2 emission’ and 
‘Number of containers (being carried)’ take into account 
the sum for the whole fleet in the planning horizon. ‘Mini-
mum cost’ is the value of the objective function.

Company X charters more capacity to complete the 
same container volume with SP than through PI-based de-
cisions (Table 7, Figure 2). Among ship types, SP charters 
more ships of type 3 but fewer ships of type 1. These re-
sults in lower fleet CO2 emissions, which relates to carbon 
tax costs directly, but leads to higher overall costs. 

Table 7. Optimization results

PI SP

Minimum cost [USD] 5778966192 5797820203
Total CO2 emission [ton] 5989384 5929163
Container volume [TEU] 6830889 6830889

3.4.2. Uneven probabilities of carbon tax scenarios 

First, we change the carbon tax scenario probabilities to 
(1/6, 1/3, 1/6, 1/3) for s1, s2, s3, s4, denoted by H, to rep-
resent greater chances of high carbon taxes. We apply the 
same method to optimize fleet planning with SP and PI 
models. Next, we assign probabilities of (1/3, 1/6, 1/3, 1/6) 
to s1, s2, s3, s4, denoted by L, to represent greater chances 
of low carbon taxes. Besides scenario probabilities, other 
data remains unchanged. 

Figure 2. Chartering capacity comparison
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H: probabilities of (1/6, 1/3, 1/6, 1/3) for s1, s2, s3, s4;
L: probabilities of (1/3, 1/6, 1/3, 1/6) for s1, s2, s3, s4.

With greater probability of high carbon taxes, Compa-
ny X still charters more capacity under SP, with increased 
usage of ships of types 2 and 3, but fewer ships of type 1 
(Table 8, Figure 3). 

Compared to decisions under probability H, Com-
pany X makes similar chartering strategies under L (Ta-
ble 9, Figure 4). Generally, similar results are found under 
different carbon tax probabilities. For instance, ships of 
type 1 may be most useful when dealing with carbon tax 
uncertainty due to their low chartering fees, even if they 
have relatively high voyage and operating costs and unit 
carbon emissions levels. Ships of type 3 are not as highly 
preferred by SP compared to PI, likely due to their higher 
chartering fees.

In addition, all results demonstrate that different car-
bon tax scenario probabilities will not change chartering 
trends. The uptrend is stable, so as long as carbon tax 
uncertainty exists, rational liner companies who are risk-
neutral will charter more ships to cope with that uncer-
tainty.

3.5. Chartering trend under different risk levels

The aforementioned scenario trees L, M, H share the same 
two structures: (1) equal probabilities of carbon tax reali-
zation in planning years 2 and 3, and (2) two outcomes 
of carbon tax rate – $30/tCO2 or $300/tCO2. Hence, the 
ordering of risk for L, M, H is equivalent to the order of 
the carbon tax itself. For L, conditional probability of high 
carbon tax is 1/3; conditional probability of low carbon 
tax is 2/3. Accordingly, the conditional carbon tax risk of 
L is lower than M, for which the conditional probability 
of both high and low carbon tax is 1/2. Similarly, the con-

ditional carbon tax risk of M is lower than H, for which 
conditional probability of high carbon tax is 2/3, and con-
ditional probability of low carbon tax is 1/3. We can con-
clude that in a business setting, for H, the chance of get-
ting a higher carbon tax is high. As a result, the company 
would be exposed to high risk. In the same way, the com-
pany would be at medium risk for M, and low risk for L. 

The above intuitive explanation of why H is riskier than 
M, which is riskier than L, can be rigorously proven using 
stochastic dominance theory: H, M, L exhibits first-order 
stochastic dominance (Dentcheva, Ruszczynski 2003):

( ) ( )> >1 1H M L .  (14)

A proof is in the Appendix.
Figure 5 represents the chartering capacity balance 

between SP and PI decisions under various risk levels. 
Results show that Company X would charter more ship 
capacity to cope with increased carbon tax risk. It can then 
be deduced that a greater degree of tax risk will result in 
increased containership chartering demand.

3.6. Fleet costs and CO2 emissions  
under different risk levels

Figure 6 summarizes the solution from SP model under 
three carbon tax risk levels. With increasing risk levels, 
Company  X spends more on running the fleet for the 
same container volume (6830889 TEUs); however, CO2 
emission does go down. We conclude that higher carbon 
tax would give more pressure to liner companies, and they 
are inclined to discharge less CO2. Some similar discus-
sions can be found from Psaraftis (2012) and Fagerholt 
et  al. (2015), which in turn echoes our opinions from 
other perspectives. However, this causes financial burden 
to liner companies. As our case study results show, when 

Figure 3. Chartering capacity comparison – under H Figure 4. Chartering capacity comparison – under L

Table 8. Optimization results – under H

PI SP

Minimum cost [USD] 5888447219 5915953943
Total CO2 emission [ton] 5876695 5874083
Container volume [TEU] 6830889 6830889

Table 9. Optimization results – under L

PI SP

Minimum cost [USD] 5669485165 5689326000
Total CO2 emission [ton] 6102073 5981730
Container volume [TEU] 6830889 6830889
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companies face high carbon tax risk, they charter more 
ships of type 3, which stands for new type with high emis-
sion efficiency to undertake the same cargo volume, com-
pared with lower tax risks situations; but the chartering 
of ships of type 3 leads to higher fleet cost as they require 
more capital cost (variable, fixed cost per voyage as well as 
chartering fee per period) although the energy consump-
tion of ships of type 3 is lower relatively.

Conclusions

This paper investigates the fleet mix strategy under carbon 
emissions tax uncertainty through comparing planning 
decisions using SP and PI programming, non-anticipativ-
ity constraints are applied to ensure that the formulated 
decisions maintain alignment with uncertainty factors. 
Results demonstrate the feasibility of the SP model and 
recourse decisions in different planning periods and sce-
narios. Upon investigating decisions from real-world case, 
we find that the uncertain carbon tax policy and its risk 
levels do have an impact on fleet planning strategies. More 
ships are chartered when company does not have PI about 
future carbon emissions taxation; company tends to char-
ter more capacity when it is exposed to high carbon tax 
risk. 

While new ships with better energy and carbon ef-
ficiency seems not preferred by the company compared 
with older ones due to their higher capital costs, which 
may indicate that shipping companies care more about 
minimizing costs than CO2 emissions. In terms of tax 
policy impact, higher carbon tax risks make company 
reduce CO2 emissions, but it costs more to manage the 

fleet. Therefore, high taxation risk does motivate carbon 
mitigation with causing more costs to companies; policy 
makers should embark on setting out a reasonable tax rate 
and the way to make use of potential revenue.

Further, market based instruments will have different 
impact on emission reduction with different fuel price lev-
els. Shipping companies may reduce ship’s speed to save 
costs when the fuel price rises, which may lead to emis-
sion reduction per ship. However, more ships capacity will 
be required if the cargo transportation keeps the same vol-
ume while ships reduce speed, it is hard to say whether 
total emission was reduced or not of the whole industry. 

In view of the complicated impact of taxation on car-
bon emission, it will be interesting to do further investiga-
tion on this topic, which in turn shows how important the 
study on uncertain carbon reduction instrument is. This 
study can be extended in several ways. First, we assume 
the impact of carbon emissions regulations by way of a 
carbon tax. However, other regulations (such as emissions 
trading systems) could provide a counterpoint to market-
based measures. Second, other uncertain factors, such as 
fuel price, ship speed, and freight rates could be intro-
duced under SP to arrive at a more comprehensive and 
realistic business perspective. 
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APPENDIX 

Definition:
A real valued r.v. A has first-order stochastic dominance 

over a real valued r.v. B, or ( )> 1A B, ( ) ( )≥ ≥ ≥P A x P b x  , ∀ ∈ x R  
and for some x, ( ) ( )≥ > ≥P A x P b x , ∀ ∈ x R . 

Theorem:

( ) ( )> >1 1H M L .

Proof:
For  ∈ 0, 30x :

( ) ( ) ( )≥ = = ≥ = ≥1  P L x P M x P H x .

For ( ∈ 30, 300x :

( ) ( ) ( )≥ = ≤ ≥ = ≤ ≥ =
1 1 2 
3 2 3

P L x P M x P H x .

For ( )∈ +∞300,x :

( ) ( ) ( )≥ = ≥ = ≥ = 0P L x P M x P H x .

Note, that policy implementation time is also ran-
dom, but is independent to the tax rate, and is identical 
for L, M, H.

For each possible policy implementation, the tax rates 
of L, M, H exhibit the first-order stochastic dominance 
relationship. Hence, the conclusion follows.


