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Abstract. High Occupancy Vehicle (HOV) lanes are widely used on freeways and play an important role in network design 
and management. Likewise, link performance functions serve as an essential tool for transport system analysis. This paper 
aims to support network analysis by providing a tailored link performance function for HOV lanes contiguous with gen-
eral motor lanes on freeways. Specifically, real traffic data is used for model calibration and evaluation that was assembled 
from the Performance Measurement System (PeMS) maintained by the California Department of Transportation. Three 
alternative models for link performance functions of HOV lanes on freeways are developed, which take traffic performance 
on both HOV lanes and adjacent sets of general motor lanes into consideration. To calibrate the parameters of the mod-
els, linear regression is made through stepwise and enter methods and nonlinear regression is carried out using sequential 
quadratic programming. Statistical analysis together with an evaluation using real traffic data is conducted to evaluate the 
validity of the proposed models. Our results show that all the three proposed models for contiguous HOV lanes on free-
ways are statistically significant and perform better in representing real traffic condition with regards to a traditional link 
performance function, with one specific nonlinear model best supported.

Keywords: high occupancy vehicle lane, freeway, link performance function, regression model, traffic estimation.

Introduction

A High Occupancy Vehicle (HOV) lane is a motor vehicle 
lane exclusively allowed for HOV traffic to travel on, in-
cluding buses, carpools and all other vehicles, which carry 
two or more persons. HOV lanes are widely used on free-
ways in some countries, e.g. the US. The application of 
HOV lanes helps to improve the average travel speed, in-
crease the average number of persons per vehicle, enhance 
bus operations and reduce delay during peak hours, lead-
ing to significant improvement in transportation system 
reliability and level of service (Krimmer, Venigalla 2006; 
Daganzo et al. 2008; Kwon, Varaiya 2008). For example, 
according to ‘The 2005 Urban Mobility Report’, travel time 
on 19 surveyed lanes declined by 20% on average after 
HOV lanes had been employed, which obviously relieved 
the previous severe congestions on these lanes (Schrank, 
Lomax 2005). For another example, Li et al. (2007) recom-
mended that exclusive bus lanes should be transformed 
into HOV lanes and demonstrated the necessity and fea-
sibility of applying HOV lanes on Yan’an East tunnel and 
Siping-Zhongshan East Road in Shanghai, China. Besides 
traffic performance, HOV lanes are effective in reducing 

vehicle emissions and improving air quality (Boriboon-
somsin, Barth 2008; Shewmake 2012; Fontes et al. 2014). 
Thus, in the US, federal policies encourage the construc-
tion of HOV lanes and restrict funding for mixed-flow 
lanes in metropolitan areas that do not meet federal air 
quality standards such as Los Angeles, San Francisco 
(FHWA 2016). Although HOV lanes have not been wide-
ly used in some countries and regions, the application of 
HOV lanes would become a tendency mainly for the fol-
lowing two reasons: 

 – rapid development of Intelligent Transportation 
System (ITS) is beneficial to further use of HOV 
lanes by provision of traffic information (Lee et al. 
2010); 

 – the residential layouts in densely populated ur-
ban areas lead to a large number of travellers with 
the same origins and destinations in daily trips, 
which probably creates the prevailing conditions 
for incentivizing rideshare and use of HOV lanes 
(Chen, W., Chen, B. 2003).

http://creativecommons.org/licenses/by/4.0/
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In order to promote the deployment of HOV lanes 
on freeways, the characteristics of traffic streams in HOV 
lanes should be explored, based on which we can esti-
mate traffic conditions, manage traffic flow and evaluate 
transport systems. Link performance functions can be 
used to characterize traffic streams, describing relation-
ships among traffic factors including infrastructure con-
figuration elements (lane, ramp, shoulder, etc.) and traffic 
stream parameters (volume, speed, etc.). Therefore, this 
paper focuses on contiguous HOV lanes, where no buffer 
separates HOV lanes and general motor lanes, allowing 
HOV traffic to enter and exit a HOV lane along its length. 
It aims to propose a link performance function for con-
tiguous HOV lanes on freeways, which is the primary con-
tribution of this study.

The remainder of this paper is organized as follows. 
The Section 1 summarizes the main research outcomes in 
HOV lanes and link performance functions. In Section 2, 
data of roadway information and traffic performance are 
collected and processed, in preparation for model calibra-
tion and evaluation. In Section 3, three alternative models 
for link performance functions of freeway HOV lanes are 
developed and calibrated. In Section 4, the proposed mod-
els are examined and compared through statistical analysis 
and the evaluation based on real traffic data. Finally, last 
section summarizes outcomes, makes conclusions and 
presents future studies.

1. Literature review

So far, most existing studies on traffic performance of 
HOV facilities have focused on evaluation of HOV lanes. 
Based on ‘before and after study’, some researchers ex-
plored the effects of adding new HOV lanes and the ef-
fects of lane conversion from mixed-flow to HOV lanes 
and vice versa (Kim 2000; Wang 2011; Shewmake, Jarvis 
2014). Typically, Sisiopiku et  al. (2010) made a detailed 
alternatives analysis and cost-benefit analysis with the help 
of Traffic Software Integrated System (TSIS) and Integrat-
ed Development Assessment System (IDAS), in order to 
determine the operational, environmental and economic 
impacts of HOV lanes on traffic condition in Birmingham, 
Alabama. Chow et al. (2010) researched the influences of 
HOV lanes with regard to vehicular trip reduction and 
congestion relief based on hypothetical scenarios. Bori-
boonsomsin and Barth (2007) explored the vehicle emis-
sions contributed from HOV lane configurations, using a 
new emissions modelling methodology that integrates a 
microscopic traffic simulation model (PARAMICS) with 
a modal emissions model (CMEM). Most of these studies 
made positive evaluation of HOV lanes (Jou et al. 2005). 
However, some exceptions exist. For example, Dahlgren 
(1998) pointed out that in certain condition, adding a 
HOV lane to a three-lane freeway can be less effective than 
adding a general-purpose lane. Plotz et  al. (2010) con-
cluded that pure HOV lanes contribute little to relieving 
congestion without additional managed use and pricing 

features. Almost all previous studies have been conducted 
on specific scenarios, which contribute to the substantial 
divergence in the findings. Thus, a quantifiable methodol-
ogy that takes into consideration all the relevant factors is 
needed in order to evaluate the performance of existing 
HOV lanes and potential additional HOV lanes. Dedicat-
ed link performance functions can be used to carry out 
this analysis, since they integrate the fundamental traffic 
flow characteristics. Hence, in this study, we introduce a 
link performance function tailored for HOV lanes. To the 
best of our knowledge, studies on link performance func-
tions of HOV lanes, especially on freeways, have not been 
extensively explored before.

Among all the existing link performance functions, 
three types are the most predominant: Bureau of Public 
Roads (BPR) function, Transport and Road Research Lab-
oratory (TRRL) function and Highway Capacity Manual 
(HCM) method (Wang 2010; Highway Capacity Manual 
2010). The BPR function is the most influential and wide-
ly-used link performance function, which adapts well to 
freeways, multilane highways as well as arterial streets. 
The TRRL function is developed based on data from traf-
fic field investigations conducted in England, correspond-
ing well with urban arterial streets. The HCM method can 
generally forecast speeds more accurately than the BPR 
model, especially in an oversaturated condition. However, 
the computations required by the HCM model can hardly 
be implemented by software due to its high complexity, 
to the point that in the Highway Capacity Manual (2000, 
2010), the use of the BPR function is strongly recom-
mended as an alternative and practical link performance 
function. For all these three aforementioned link perfor-
mance functions, the modelling devices are developed for 
generic motor lanes. Given the general-motor-lane data 
collected and employed for model calibration, they all as-
sume a default traffic composition, a majority of which 
are cars. Considering the discrepancy between this as-
sumption and the HOV traffic, none of these three well-
developed functions would be a justified match with the 
operation of HOV lanes.

Besides these three functions, further studies have 
also proposed some variations on link performance func-
tions. Nie and Zhang (2005) made an attempt to propose 
a delay function with both high modelling accuracy and 
First-In-First-Out (FIFO) consistency. Pulugurtha and Pa-
supuleti (2010) developed the working of methodology to 
estimate travel time and its variations, congestion score 
and reliability of each link in the network. Zhang et  al. 
(2013) formulated a three-layer neutral network model 
based on sparse probe vehicle data and estimated the 
complete travel time for individual vehicle traversing the 
link. Hans et  al. (2015) proposed a method of estimat-
ing travel times on isolated urban arterials by using Vari-
ational Theory (VT). However, most of these functions 
are established for homogeneous traffic on a general mo-
tor lane, which consider uniform traffic comprised of cars 
in most cases. Since compared to other vehicles, HOVs 
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have distinctive traffic characteristics in terms of speed 
and flexibility, these functions are not entirely appropriate 
for HOV lanes (Zhang et  al. 2013). In addition, several 
studies considered the impacts of different vehicle classes 
on delay functions, and proposed separate models for a 
variety of lanes in terms of different traffic compositions. 
Thomas et al. (2012) proposed the development of several 
volume delay functions specific to different traffic condi-
tions, but vehicular flow on HOV lanes was not investi-
gated in that study. Lu et al. (2016) developed link travel 
time functions using microscopic traffic-simulation based 
four-step method for heterogeneous traffic on freeways, 
wherein high-occupancy vehicles and oversized vehicles 
were accounted for. However, different from research on 
HOV lanes, in that work, a variety of vehicles was allowed 
to travel on freeway lanes, including Low-Occupancy Ve-
hicles (LOVs).

In a transport system, general motor lanes are the 
most popular lanes, but there exist some special lanes in-
cluding bicycle lanes, bus exclusive lanes, HOV lanes and 
emergency lanes. Not only do special lanes play an impor-
tant role in transportation systems, but they are often seen 
side-by-side with general motor lanes in a road segment 
without any barrier between them. Inevitably, traffic flow 
on general motor lanes will interfere with that on an adja-
cent special lane and this may cause network inefficiencies. 
Previously, some research efforts have been focused on the 
traffic flow interference between general lanes and exclu-
sive bus lanes (Arasan, Vedagiri 2010; Khoo et al. 2014), 
or general lanes and bicycle lanes (Chen et al. 2016), but 
few investigated such situation for HOV lanes. To address 
the gaps of previous research, this study aims to propose a 
link performance function dedicated to HOV lanes, and in 
the meantime, seeks to explore the interaction of general 
motor lanes and contiguous HOV facilities.

2. Data

In this section, we collect and process the real traffic data, 
which is the preparatory work for model formulation. The 
regression models developed in Section 3 will be calibrated 
and assessed by using the data obtained from this section. 

2.1. Data collection

2.1.1. Data collection site

In this study, two categories of data are necessary, i.e. road-
way information data and traffic performance data. These 
data are accessible from the online database of Perfor-
mance Measurement System (PeMS) maintained by Cali-
fornia Department of Transportation (Caltrans) (CDoT 
2014). In this study, data are collected at seven collection 
sites on freeways in the state of California shown in Fig-
ure and Table 1. The HOV lane at each site is contiguous, 
which allows HOV traffic to enter and exit the HOV lane 
along its length. Further, the collected traffic data at these 
sites are of high quality, which will be stated later.

2.1.2. Roadway information data

Roadway information data collected from the seven sites 
are summarized in Table 2. All the roadway attributes are 
used for computing values of the Free Flow Speed (FFS) 
and capacity in link performance functions.

Note that in this study, the right-side lateral clearance 
refers to the outer shoulder of the whole roadway con-
taining HOV lanes and general motor lanes, rather than a 
buffer between HOV lanes and general motor lanes. At all 
these seven sites, the HOV lane is the median lane and on 
the left side of the general motor lanes, wherein no buffer 
separation is employed between them.

Figure. Data source: a – Site No 1; b – Site No 2; c – Site No 3; d – Site No 4; e – Site No 5; f – Site No 6; g – Site No 7

a)

e) f) g)

b) c) d)
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2.1.3. Traffic performance data
The traffic performance data collected include traffic flow 
on each general motor lane (i.e. mainline lane) and HOV 
lane, and speed on each HOV lane for every five-minute 
interval during the periods when the health of detectors 
is 100%. The traffic performance data are summarized in 
Table 3. In this study, every observation corresponds to 
one five-minute interval, including all the flow and speed 
data collected during the five minutes on a certain site, 
which is defined as a data set. Some collected data sets are 
discarded, because the flow on HOV lane is zero and no 
effective travel speed is recorded.

As is shown in Table 3, the time periods for different 
sites are not exactly the same, resulting in the difference in 
the number of the collected data sets. This is because the 
situation when the detector condition is 100% good does 
not necessarily happen concurrently for all the studied 
sites. Only data collected from the 100% health detector 
are acceptable regardless of the time periods.

2.2. Data processing

In this research, we seek to develop the link performance 
function on HOV lanes, which requires the computation 
of the FFS, capacity and flow rate. These variables are de-
termined in accordance with the methods provided by 
Highway Capacity Manual (2010).

2.2.1. Free flow speed and capacity
The FFS can be calculated based on roadway information 
data by the equation:

0.8475.4 3.22 LW LCFFS f f TRD= − − − ⋅ ,                    (1)

where: fLW, fLC, TRD are adjustment factors for lane width 
and right-side lateral clearance of the whole roadway (not 
a buffer between HOV and general motor lanes), and total 
ramp density, respectively. 

FFS derived from Eq. (1) is rounded to the nearest 
5 mi/h (Highway Capacity Manual 2010). For capacity, it 
can be determined by FFS accordingly (e.g. 70 mi/h cor-
responding to 2400 pc/h/ln, 65mi/h to 2350 pc/h/ln). For 
details in methods of how to determine fLW, fLC and ca-
pacity, please refer to Highway Capacity Manual (2010). 
Based on the collected roadway information data in Sec-
tion 2.1.2, it has been determined that the FFS and capac-
ity are 70 mph and 2400 pc/h/ln for all the seven inves-
tigated sites.

2.2.2. Flow rate
For the flow rate, the hourly flow rates under the equiva-
lent base condition are required in order to calculate the 
flow-to-capacity ratios later, while the collected data are 
five-minute flow rates under prevailing conditions. Thus, 
we convert the raw data to the required. Collected five-

Table 1. Data collection site

Site No No of freeway County City Location 
(CA PM / Abs PM)a

Direction 
(H–L or L–H)b LDSc

1 SR22-E Orange Orange 9.9 / 11.5 L–H 1202889
2 I405-N Orange Fountain Valley 13.74 / 13.5 L–H 1201626
3 I405-S Los Angeles Long Beach 8.45 / 32.2 H–L 771884
4 I405-S Orange Costa Mesa 12.16 / 11.9 H–L 1209226
5 I405-S Los Angeles Long Beach 7.63 / 31.4 H–L 771867
6 I405_N Orange Westminster 17.92 / 17.7 L–H 1201844
7 I105-W Los Angeles Paramount 14.4 / 14.4 H–L 715816

Notes: 
a) CA PM – California jurisdictional post mile; Abs PM – absolute post mile; 
b) H–L – from high PM to low PM; L–H – from low PM to high PM; 
c) LDS – loop detector station.

Table 2. Roadway information data collected

Site No Lane width [ft] Lanes in one 
directiona

Outer shoulder 
width [ft]b

Total ramp density 
[ramps/mile] Population Roadway use

1 12.0 3 6 1.3

urbanized median lane  
is HOV lane

2 12.4 5 10 1.4
3 11.2 6 10 1.4
4 11.6 7 10 0.9
5 11.2 4 0 1.4
6 12.4 5 10 1.4
7 12.7 6 10 1.2

Notes:  
a) including both general motor lanes and HOV lanes;  
b) i.e. right-side lateral clearance for the whole roadway.
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minute flow data should be multiplied by twelve and then, 
modified by the equation:

p
HV p

Vv
f f

=
⋅

,                                                        (2)

where: vp, V are flow rates under equivalent base condi-
tions [pc/h/ln] and prevailing conditions [veh/h/ln] re-
spectively; fp, fHV are adjustment factors for unfamiliar 
driver populations and presence of heavy vehicles in the 
traffic stream respectively.

fp  = 1.0, because of urbanized population type ac-
cording to Table 2 (Roess et al. 2010). For fHV, it can be 
determined by the equation:

( ) ( )
1

1 1 1HV
T T R R

f
P E P E+ − +⋅ ⋅

=
−

,                      (3)

where: PT, PR represent the proportion of buses and the 
proportion of Recreational Vehicles (RV) in the traffic 

stream respectively; ET, ER are passenger-car equivalents 
of one bus and one RV respectively. 

Default values of these four parameters are PT = 0.05, 
PR = 0, ET = 1.5, ER = 1.2, which can be adopted in general 
cases (Roess et al. 2010). However, values of PT should be 
different among all the lanes in this study since a HOV 
lane exists, which appeals to HOV traffic considerably. 
Thus, it can be assumed that all the HOVs are driven on 
the HOV lane. In this case, fHV for mainline lanes is 1.0 
while fHV for HOV lane is determined by the equation 
set below:
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Table 3. Summary of traffic performance data collected

Site No Date (day/month/year) Time period Granularity [min]
Number of data sets

Collected Discarded Effective

1
01/12/2014 – 03/12/2014

from
6:00:00 

to 
23:59:59 

5

648 0 648
01/03/2015 – 03/03/2015 648 0 648
01/08/2015 – 03/08/2015 648 6 642

2
01/12/2014 – 03/12/2014 648 0 648
01/03/2015 – 03/03/2015 648 0 648
01/08/2015 – 03/08/2015 648 0 648

3
01/12/2014 – 03/12/2014 648 0 648
01/03/2015 – 03/03/2015 648 0 648
01/08/2015 – 03/08/2015 648 0 648

4
01/01/2014 – 03/01/2014 648 3 645
01/02/2014 – 03/02/2014 648 1 647
01/04/2014 – 03/04/2014 648 1 647

5
02/12/2014 216 0 216

01/03/2015 – 02/03/2015 432 0 432
03/08/2015 216 0 216

6
02/12/2014 216 0 216

01/03/2015 – 02/03/2015 432 0 432
03/08/2015 216 0 216

7
02/12/2014 216 0 216

01/03/2015 – 02/03/2015 432 0 432
03/08/2015 216 0 216

Total 10368 11 10357
Detector condition for all the time periods investigated

Working Percent [%] Suspected errors Percent [%]

Bad 0.00

Line down 0.00
No data 0.00

Insufficient data 0.00
Card off 0.00

Good 100.00

Intermittent 0.00
Constant 0.00

Feed unstable 0.00
Good 100.00
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where: VH, VM,i are flow rates under prevailing conditions 
[veh/h/ln] on the HOV lane and each mainline lane re-
spectively; m is the number of mainline lanes. 

With the help of Eqs (2)–(4), the collected traffic per-
formance data in Section 2.1.3 can be converted to hourly 
flow rates under the equivalent base condition for both 
HOV lanes and mainline lanes. Since there are 8629 effec-
tive data sets of traffic performance in total, they cannot 
be listed here.

3. Model formulation and calibration

In this section, we introduce tailored formulations for link 
performance functions of HOV lanes on freeways and de-
rive three specific models. The three models are calibrated 
and analysed. 

3.1. Model formulation

The traffic flow on a contiguous HOV lane is inevitably 
influenced by traffic on the general motor lanes (mainline 
lanes) at the same directed link (Jang et al. 2012; Qi et al. 
2016). Therefore, traffic performance on the adjacent set 
of mainline lanes should be taken into consideration when 
the link performance on a HOV lane is analysed. Since the 
way that the link travel time on the HOV lane and traffic 
conditions on different types of lanes interact is unknown, 
we first propose several different models, and then select 
the significant one(s). By referring to the mathematical 
pattern of the most commonly used BPR function, the 
link performance function for HOV lanes on freeways can 
be formulated as follows.

Model (I):

1 2

1 2

0 1 ;

.
1

b b
H M

H M

b b
H M

v v
T T a

c c

FFSS
a X X

     = ⋅ + ⋅ ⋅       







=
+



⋅ ⋅







  (5)

In the first formula of Eq. (5), T and T0 are link 
travel time at actual speed and FFS respectively; vH, vM 
are equivalent car flow rates [pc/h] on HOV lane and the 
adjacent set of mainline lanes at the same site respectively; 
cH, cM are a capacity of HOV lane and a total capacity 
of all the mainline lanes respectively. Since T and T0 are 
equal to link length divided by actual speed S and FFS 
respectively, and H

H

v
c

, M

M

v
c

 are flow-to-capacity ratios 

denoted as XH and XM respectively, the link performance 
function can be also formulated in terms of speed as the 
second equation in Model (I). a, b1 and b2 are parameters.

Besides Model (I), given a different interaction of 
traffic on HOV lanes and that on adjacent mainline lanes, 
the link performance function for HOV lanes on freeways 
can be alternatively formulated as the following model.

Model (II):

1 2

1 2

0 1 2

1 2

1 ;

,
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b b
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H M

b b
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T T a a

c c
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a X a X
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


 

=
+ ⋅ + ⋅



  

 (6)

where: a1, a2, b1 and b2 are parameters; the other denota-
tions are the same as Model (I).

Both Model (I) and Model (II) are alternative models 
for link performance functions of HOV lanes. Since val-
ues determined in Section 2 for speed and FFS are used 
for further analysis, Model (I) and Model (II) in terms of 
speed are studied below.

Given a freeway segment, FFS is fixed according to 
Eq. (1), so both models have one dependent variable S 
and two independent variables XH and XM. In nature, 
both models can be approached using Multiple Nonlinear 
Regression (MNR) models. However, Model (II) cannot 
be linearized, while Model (I) can be transformed into a 
Multiple Linear Regression (MLR) model below:

1 2ln 1 ln ln lnH M
FFS a b X b X

S
 − = + ⋅ + ⋅ 
 

.            (7)

As Y, X1, X2 and A are substituted for ln 1FFS
S

 − 
   

, 

ln XH, ln XM and ln a, respectively, the linearized Mod-
el (I), denoted as Model (I)-L, is achieved:

Model (I)-L:

1 1 2 2Y A b X b X= + ⋅ + ⋅ ,                                          (8)

where: Y is dependent variable; X1, X2 are independent 
variables; A, b1, b2 are parameters. Model (I)-L is derived 
from Model (I), so they are strictly not different in terms 
of the interaction between the flow-to-capacity ratios of 
the HOV lane and the adjacent motor lanes. However, dif-
ferent techniques for linear and nonlinear regression will 
be applied to calibrate Model (I)-L and Model (I) respec-
tively, with the different formats of explanatory variables 
integrated. Thus, we define them as two different models 
in this work. The three proposed Models (I), (II) and (I)-L 
are formulations for link performance functions of contig-
uous HOV lanes on freeways, which we need to calibrate 
in order to demonstrate their validity. 

3.2. Model calibration

In this section, all the effective data collected from Sites 
No 1–4 (7765 data sets in total) in Section 2 are used to 
calibrate the parameters of the three proposed models 
separately. Data analysis is carried out using SPSS 19.0 
(Statistical Product and Service Solutions, 19.0 Version, see 
Norusis (2011)).
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3.2.1. Model (I)-L
For a MLR model, linear correlation between independent 
variables should be tested before parameter calibration. If 
the correlation coefficients among independent variables 
are high, some independent variables should be consid-
ered to be removed from the MLR model. In this study, 
Pearson correlation coefficient, Kendall correlation coef-
ficient and Spearman correlation coefficient are used to 
test the correlation between two independent variables of 
Model (I)-L. Results are summarized in Table 4.

Table 4. Correlations between two independent variables  
in Model (I)-L

X1 X2

Pearson X1

Correlation coefficient 1.000 0.901*

Sig. (2-tailed) 0.000

N 7765 7765

Kendall X1

Correlation coefficient 1.000 0.654*

Sig. (2-tailed) 0.000

N 7765 7765

Spearman X1

Correlation coefficient 1.000 0.842*

Sig. (2-tailed) 0.000

N 7765 7765

Note: * – correlation is significant at the 0.01 level (2-tailed).

Table 4 shows that Pearson, Kendall and Spearman 
correlation coefficients are equal to 0.901, 0.654, 0.842 re-
spectively, which indicates that independent variables X1 
 and X2 are significantly positive correlated. Moreover, 
two-tailed significance probability is obviously less than 
that under significant level (0.01), so non-correlation as-
sumption should be rejected. Thus, it seems better to re-
move either X1 and X2 due to this significant linear cor-
relation. In terms of traffic characteristics, this correlation 
reveals that traffic performance of mainline lanes has sig-
nificant effects on that of HOV lanes. It can be illustrated 
from the following two perspectives:

 – when the flow rate on mainline lanes rises, a por-
tion of HOVs on the mainline lanes tend to change 
lanes and enter the HOV lane, leading to increase 
in flow-to-capacity ratio on the HOV lane;

 – drivers on the HOV lane can be affected by the 
change in traffic performance on mainline lanes; 
they might adjust driving situations such as speed, 
headway, leading to variation in flow-to-capacity 
ratio on the HOV lane.

Then a linear regression is conducted to calibrate 
Model (I)-L. The objective of linear regression is to mini-
mize the sum of squared residuals (the most commonly-
used loss function), which is called least square method 
(Montgomery et al. 2012). In addition, in terms of model 
selection, there are several methods (e.g. enter method, 
stepwise method, forward method, backward method and 

remove method), among which enter method and step-
wise method are the most widely used. Since either b1 
or b2 may be considered as zero, stepwise method, with 
potentially removed independent variable, is more suit-
able. Also, enter method, with all independent variables 
remaining, is used as a comparison. The inputs of the lin-
ear regression are all of the 7765 data sets { }1, 2,, , n n nY X X  
( )1, 2, ,7765n = …  for Sites No 1–4, and the outputs are 
summarized in Table 5.

In Table 5, Model (I)-LS and Model (I)-LE are 
achieved using stepwise method and enter method re-
spectively. It shows that in stepwise method, variable X2 
is removed from the Model (I)-LS; while in Model (I)-LE 
both X1 and X2 remain. Based on Table 5, the regression 
results are analysed as follows:

 – in Part (i) Model Summary, the adjusted R squared 
are achieved, which indicate the goodness of fit. 
The value of an adjusted R squared ranges from 0 
to 1. The greater the value is, the better the good-
ness of fit is. Since there are no uniform criteria 
of evaluating the goodness of fit through the ad-
justed R squared, it is hard to determine whether 
the adjusted R squared 0.291 and 0.325 are high 
enough or not. However, the goodness of fit for  
Model (I)-LE is better than that for Model (I)-LS 
in terms of the adjusted R squared;

 – in Part (ii) ANOVA, according to F-test on both 
models, the probability that a value in correspond-
ing F-distribution is higher than the F-value for the 
model is less than 0.01, which indicates that linear 
correlations described by both models are highly 
significant.

 – in Part (iii) Coefficients, parameter calibration re-
sults are shown on the column ‘Unstandardized co-
efficients’. Meanwhile, according to t-test on both 
models, the probabilities are less than that under 
highly significant level (0.01), which indicates that 
all the independent variables have highly signifi-
cant effects for both regression models.

 – in terms of the adjusted R squared, F-test and t-
test, the effectiveness of regression for both models 
are generally good. Despite the greater R squared, 
Model (I)-LE fails to describe the impacts the in-
dependent variables have on the dependent vari-
able appropriately. According to Part (iii), the un-
standardized and standardized coefficients of X2 
are –0.734 and –0.425 respectively. Also Part (iv) 
reveals that if X2 remained, the partial correlation 
between X2 and Y would be –0.220. These three 
negative numbers indicate that X2 and Y are nega-
tively correlated. In other words, Model (I)-LE 
states that the larger the flow rate on the mainline 
lanes is, the faster the vehicles on the HOV lane in-
cline to be driven. It contradicts the fact that heav-
ier traffic flow on mainline lanes can interfere with 
traffic flow on the HOV lane passively, leading to 
drop in travel speed on the HOV lane. Therefore, 
Model (I)-LE should not be accepted.
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 – according to Table 5, independent variable X2 is 
removed from the model, which indicates that: (1) 
there is significant correlation between X1 and X2 
as mentioned before; (2) the extent to which X2 
influences dependent variable Y is less than that 
to which X1 influences Y; (3) the influences which 
X1 has on Y contains those which X2 has on Y to 
a large degree. Therefore, although only one inde-
pendent variable X1 exists in Model (I)-LS, it has 
indicated the impacts which traffic flow of main-
line lanes has on that of the HOV lane.

Based on analysis above, Model (I)-LS derived from 
stepwise method is acceptable and the parameter values 
are as follows:

1.399A = − ;
( )exp  0.247a A= = ;

1 0.515b = ,

2 0b = .

Thus, the calibration result of Model (I)-L is achieved:
Model (I)-L:
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3.2.2. Model (I) and Model (II)
Both Models (I) and (II) are MNR models, so they can 
be analysed in the same way. For MNR models, Pearson, 
Kendall and Spearman correlation coefficients are not ap-
plicable since they indicate linear correlation among vari-
ables. Even if significant linear correlation exists between 
two independent variables XH and XM in Model (I) and 
Model  (II), no variable should be removed without any 
further evidence because of the nonlinear relationships 
among the dependent variable and independent variables.

Similarly to linear regression, the objective of nonlin-
ear regression is to minimize the sum of squared residuals 
(Seber, Wild 2003). Sequential quadratic programming is 
adopted in this study to perform this analysis. Through 
sequential quadratic programming, a quadratic program 
is established at each iteration in order to determine the 
direction of the optimization. Then, at each iteration, the 
estimated parameters should be put into the loss func-
tion to calculate the loss. The procedure will terminate 
when the loss function reaches its minimum. The inputs 
of the nonlinear regression are all of the 7765 data sets 
{ }, ,, , , n n H n M nS FFS X X  ( )1, 2, , 7765n = …  for Sites No 
1÷4, and the outputs are summarized in Table 6.

Table 6 shows that after 12 and 18 iterations, the sum of 
squared residuals for the nonlinear regression Model (I) and 
Model (II) reach the minimum respectively, with parameter 
calibration results achieved. Meanwhile, Table 6 presents 
standard errors and 95% confidence intervals of parameters.  

Table 5. Model (I)-L regression analysis summary

(i) Model Summary
Model R R squared Adjusted R squared Std. error of the estimate
(I)-LSa 0.540 0.291 0.291 0.663898
(I)-LEb 0.571 0.326 0.325 0.647717

(ii) ANOVA
Model Sum of squares df Mean square F Sig.

(I)-LS
regression 1407.502 1 1407.502 3193.347 0.000

residual 3421.625 7763 0.441
total 4829.127 7764

(I)-LE
regression 1572.679 2 786.340 1874.303 0.000

residual 3256.448 7762 0.420
total 4829.127 7764

(iii) Coefficients

Model
Unstandardized coefficients Standardized coefficients

t Sig.
B Std. error Beta

(I)-LS
constant –1.399 0.014 –98.712 0.000

X1 0.515 0.009 0.540 56.510 0.000

(I)-LE
constant –1.501 0.015 –101.724 0.000

X1 0.880 0.020 0.923 43.053 0.000
X2 –0.734 0.037 –0.425 –19.842 0.000

(iv) Excluded Variables
Model Beta in t Sig. Partial correlation

(I)-LS X2 –0.425 –19.842 0.000 –0.220

Notes: 
a) predictors: (constant), X1; dependent variable: Y; 
b) predictors: (constant), X1, X2; dependent variable: Y.
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Table 6. Nonlinear regression analysis summaries
Model (I)

Iteration History

Iteration numbera Residual sum of squares Parameter
a b1 b2

0.3 727224.998 0.100 0.100 0.100
1.3 571288.595 0.199 0.100 0.100
2.2 482776.300 0.342 0.845 0.357
3.1 434425.709 0.378 1.078 0.042
4.1 372201.244 0.547 1.249 0.042
5.1 359745.684 0.637 1.414 0.042
6.1 348680.826 0.793 1.716 0.042
7.1 345991.611 0.885 1.867 0.042
8.1 345118.326 0.944 1.945 0.042
9.1 344937.800 0.971 1.971 0.042

10.1 344926.850 0.978 1.974 0.042
11.1 344926.776 0.978 1.974 0.042
12.1b 344926.775 0.978 1.974 0.042

Parameter Estimates

Parameter Estimate Std. error 95% confidence interval
Lower bound Upper bound

a 0.978 0.027 0.925 1.031
b1 1.974 0.036 1.904 2.044
b2 0.042 0.067 –0.089 0.173

ANOVA
Source Sum of squares df Mean squares

Regression 28748133.825 3 9582711.275
Residual 344926.775 7762 44.438

Uncorrected total 29093060.600 7765
Corrected total 625523.498 7764

Adjusted R squaredc 0.449
Model (II)

Iteration History

Iteration number Residual sum of squares Parameter
a1 a2 b1 b2

0.3 606210.014 0.100 0.100 0.100 0.100
1.6 554511.187 0.100 0.100 0.708 0.401
2.3 451432.219 0.438 0.431 3.958 1.999
3.2 417952.592 0.706 0.193 4.668 0.904
4.2 399900.351 1.090 0.247 5.912 0.841
5.1 399402.889 1.121 0.256 5.964 0.939
6.3 336166.151 0.843 0.087 3.078 0.326
7.5 318950.576 0.836 0.065 2.310 0.307
8.1 314881.095 1.620 0.093 4.107 0.455
9.2 304488.731 1.454 0.116 3.840 0.472

10.2 298743.823 1.333 0.084 3.219 0.255
11.2 294870.988 1.393 0.073 3.302 0.094
12.1 293072.359 1.506 0.079 3.578 0.013
13.1 292662.116 1.536 0.074 3.560 0.013
14.1 292554.556 1.572 0.074 3.592 0.013
15.1 292506.506 1.614 0.075 3.640 0.013
16.1 292505.744 1.620 0.075 3.647 0.013
17.1 292505.740 1.621 0.075 3.648 0.013
18.1d 292505.740 1.621 0.075 3.648 0.013

Parameter Estimates

Parameter Estimate Std. error 95% confidence interval
Lower bound Upper bound

a1 1.621 0.056 1.512 1.730
a2 0.075 0.005 0.066 0.085
b1 3.648 0.096 3.459 3.837
b2 0.013 0.051 –0.086 0.112

ANOVA
Source Sum of squares df Mean squares

Regression 28800554.860 4 7200138.715
Residual 292505.740 7761 37.689

Uncorrected total 29093060.600 7765
Corrected total 625523.498 7764

Adjusted R squared 0.532
Notes:  
a) major iteration number is displayed to the left of the decimal, and minor iteration number is to the right of the decimal;  
b) run stopped after 12 iterations; optimal solution is found;  
c) adjusted R squared = 1 – (Residual sum of squares) / (Corrected sum of squares);  
d) run stopped after 18 iterations; optimal solution is found.
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It shows that all the standard errors are below 0.1, and 
95% confidence intervals are relatively small. Thus, the 
degrees of confidence of all the estimated parameters are 
high, and the nonlinear regression results are acceptable. 
Additionally, since the adjusted R squared of Model (II) 
is greater than that of Model (I), Model (II) has a better 
goodness of fit than Model (I). Thus, the calibration re-
sults of Model (I) and (II) are as follows:

Model (I):
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3.648 0.013

0

3.648 0.013

1 1.621 0.075 ;

.
1 1.621 0.075

H M

H M

H M

v v
T T

c c

FFSS
X X

     = ⋅ + ⋅ + ⋅       




 

=
+ ⋅ + ⋅





     (11)

As a result, the calibrated Models (I)-L, (I) and (II) 
have been achieved and depicted as functions (9), (10) 
and (11), respectively. To summarise, these three derived 
models are all statistically meaningful in terms of the sig-
nificance of each explanatory variable and the regression 
relationship that each model expresses. Through statisti-
cal analysis, we have compared the calibration results for 
Model (I)-L obtained from two different methods, and 
selected the significant one. In addition, the nonlinear 
Model (I) and Model (II) have been validated and com-
pared via regression techniques including the 95% con-
fidence interval and the adjusted R squared. For further 
assessment of these three models, they will be tested in the 
traffic performance estimation process in the next section. 

4. Model evaluations

Firstly, the three proposed models can be evaluated 
through statistical analysis, with the help of some indica-
tors including adjusted R squared, t-value, F-value, sig-
nificance probability, standard error, 95% confidence in-
terval, etc. In terms of these indicators, the effectiveness 
of regression for all the three models is good in general 
according to the aforementioned analysis. In other words, 
all the three models are reliable in theory. Additionally, 
Model (II) has a better goodness of fit than Model (I) in 
terms of the adjusted R squared. However, it is hard to 
compare Model (I)-L with Model (I) or (II) based on sta-
tistical analysis only, since:

 – essential distinctions exist between linear and non-
linear regression. For example, F-test is applicable 
to linear regression only;

 – the independent variables of Model (I)-L are differ-
ent from those of Model (I) and Model (II), i.e., the 
former one is the logarithms of the flow-to-capac-
ity ratios while the latter is the ratios themselves. 

Furthermore, in order to firmly validate the proposed 
models and make convincing comparison, we carry out 
another evaluation using the real traffic data, i.e. the esti-
mation error test. Data used in this test are effective data 
collected for Sites No 5÷7 (2592 data sets in total), which 
have not been used during the parameter calibration. 
Based on these real traffic data, three proposed link per-
formance models for HOV lanes are evaluated by compar-
ing their estimation performance with regards to a tradi-
tional BPR model. For Sites No 5÷7, the BPR model below 
is applied (Nie, Zhang 2005; Roess et al. 2010):

7.01 0.32 H

FFSS
X

=
+ ⋅

.                                                 (12)

The above BPR model serves as the baseline, through 
which the strength of the HOV-specific model will be 
demonstrated later.

In the evaluation process, inputs are all the 2592 
practically measured and processed data sets excluding 
actual speeds on the HOV lane { }, ,, , n H n M nFFS X X  
( )1, 2, , 2592n = …  from the three investigated sites. Then, 
the speeds on the HOV lane for the corresponding 2592 
five-time intervals are estimated using the three proposed 
models and the BPR model. Then, the estimated speeds 
(theoretically calculated values) are compared to the ac-
tual speeds (practically measured values) and estimation 
errors can be achieved with the following equation:

100%e a

a

S S
S
−

ε = ⋅ ,                                                (13)

where: e is the estimation error; Se, Sa are the estimated 
speed and actual speed respectively.

As a result, for all these three models, the residuals of 
the dependent variable, i.e. link travel speed, do not have 
any apparent distribution across any of the explanatory 
variables. The homoscedasticity indicates the validity of 
the proposed regression models. Specifically, for the 2592 
data sets, the average estimation errors of Model (I)-L, 
Model (I) and Model (II) are 5.31, 6.76, and 3.80%, re-
spectively. By contrast, the link travel speed calculated by 
the traditional BPR function bears 18.82% estimation er-
ror. Some analysis is made based on the result:

 – in terms of estimation errors, all the three pro-
posed models have advantages over BPR model;

 – the estimation errors of Model (I)-L and Model (I) 
are close, since both models originate from the 
same model.

 – Model (II) has obviously less estimation error 
among all the four models considered;

 – the most important characteristics of traffic flow 
are randomness and uncertainty caused by many 
factors such as diverse comprehensive qualities of 
drivers (Matas et al. 2012), so travel speeds might 
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be quite different in the same condition. Thus, no 
model can make prediction absolutely precisely. By 
comparison, estimation errors 5.31, 6.76 and 3.80% 
are relatively low.

Through the real traffic data based evaluation, it re-
veals that the three proposed models have higher accuracy 
than the most commonly-used BPR function, and they are 
all reliable in practice. Moreover, by contrast, Model (II) is 
superior to the others in terms of estimation errors.

Conclusions and future studies

The primary objective of this study is to provide a tailored 
link performance function for contiguous HOV lanes of 
freeways. Real roadway data and traffic performance were 
collected from PeMS as maintained by Caltrans (CDoT 
2014), and processed using ‘Highway Capacity Manual’ to 
determine values of the required variables, i.e. FFS, capac-
ity and equivalent car flow rate. Link performance func-
tions for HOV lanes were modelled in consideration of 
traffic conditions on both HOV lanes and adjacent sets 
of mainline lanes. Three potential models were examined: 
one linear model (Model (I)-L) and two nonlinear ones 
(Model (I) and Model (II)). The parameter calibration 
was carried on these three models separately via linear 
and nonlinear regression based techniques. For the linear 
model, Pearson, Kendall and Spearman correlation co-
efficients were used to test the linear correlation among 
independent variables and accordingly, stepwise method 
as well as enter method was used for regression. For the 
two nonlinear models, sequential quadratic programming 
was adopted to conduct the regression. Finally, evaluation 
was made to demonstrate the validity of the three devel-
oped models. Through the statistical analysis, the three 
proposed models prove statistically meaningful. Further, 
among the two nonlinear models, Model (II) has a better 
goodness of fit. Through the evaluation based on real traf-
fic data, it was shown that all the three proposed models 
have less estimation errors than the popular BPR function 
in practice. Additionally, nonlinear Model (II) has the best 
accuracy overall.

In conclusion, all the three proposed models are reli-
able and significant in both theory and practice, and the 
nonlinear Model (II) appears best suited. In the proposed 
Model (II), the variables (i.e. FFS, capacity, flow rate) inte-
grate location-specific elements (lane width, lane number, 
ramp density, population, volume, etc.) and describe im-
pacts of general motor lane flow on the contiguous HOV 
lane flow. Thus, Model (II) can serve as a quantifiable 
methodology in traffic assessment, specifically:

 – it can be used for estimating link travel time and 
speed on a median HOV lane, as shown in Sec-
tion 4.

 – it can be used in traffic assignment. Although 
typical BPR functions have been adopted in most 
cases, this manuscript proposes that Model (II) is 
more suitable to serve as a tailored link perfor-
mance function for freeway HOV lanes.

Admittedly, future studies are necessary to further 
improve the proposed framework. First, in this study, the 
HOV lane is the median lane of the freeway. Alternative-
ly, a HOV lane can also be located between two general 
motor lanes, so more configuration patterns should be 
investigated. Additionally, some important factors, such 
as accidents, terrain and weather, could have impacts on 
traffic conditions on HOV lanes, which will be explored 
in future work.
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