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Abstract. The problem of transportation in real-life is an uncertain multi-objective decision-making problem. In particu-
lar, by taking into account the conflicting objectives, Decision-Makers (DMs) are looking for the best transport set up 
to determine the optimum shipping quantity subject to certain capacity constraints on each route. This paper presented 
a Multi-Objective Transportation Problem (MOTP) where the objective functions are considered as Type-2 trapezoidal 
fuzzy numbers (T2TpFN), respectively. Demand and supply in constraints are in multi-choice and probabilistic random 
variables, respectively. Also considered the “rate of increment in Transportation Cost (TC) and rate of decrement in profit 
on transporting the products from ith sources to jth destinations due to” (or additional cost) of each product due to the 
damage, late deliveries, weather conditions, and any other issues. Due to the presence of all these uncertainties, it is not 
possible to obtain the optimum solution directly, so first, we need to convert all these uncertainties from the model into a 
crisp equivalent form. The two-phase defuzzification technique is used to transform T2TpFN into a crisp equivalent form. 
Multi-choice and probabilistic random variables are transformed into an equivalent value using Stochastic Programming 
(SP) approach and the binary variable, respectively. It is assumed that the supply and demand parameter follows various 
types of probabilistic distributions like Weibull, Extreme value, Cauchy and Pareto, Normal distribution, respectively. The 
unknown parameters of probabilistic distributions estimated using the maximum likelihood estimation method at the de-
fined probability level. The best fit of the probability distributions is determined using the Akaike Information Criterion 
(AIC) and the Bayesian Information Criterion (BIC), respectively. Using the Fuzzy Goal Programming (FGP) method, the 
final problem is solved for the optimal decision. A case study is intended to provide the effectiveness of the proposed work.

Keywords: multi-objective optimization, transportation problem, fuzzy goal programming, multi-choice, maximum likeli-
hood estimation, Akaike information criterion, Bayesian information criterion, stochastic programming.

Notations

AIC – Akaike information criterion;
ANFIGS – adaptive neuro-fuzzy inference guidance sys-

tem;
BIC – Bayesian information criterion;
BTP – binary technique procedure;
CM – congestion management;
DM – decision-maker;
FCP – fuzzy compromise programming;
FGP – fuzzy goal programming;
FLP – fuzzy linear programming;

FMCGP – fuzzy multi-choice goal programming;
FOU – footprint of uncertainty;

FP – fuzzy programming;
FTP – fuzzy transportation problem;
GA – genetic algorithm;
GP – goal programming;

LPP – linear programming problem;
MCGP – multi-choice goal programming;
MOAP – multi-objective assignment problem;
MOTP – multi-objective transportation problem;

PDF – probability density function;
RHS – right hand side;

SP – stochastic programming;
T1FS – type-1 fuzzy set;
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T2FS – type-2 fuzzy set;
T1TpFN – type-1 trapezoidal fuzzy numbers;
T2TpFN – type-2 trapezoidal fuzzy numbers;

TC – transportation cost;
TP – transport problem;

TPVDS-A – transportation problem with varying de-
mands and supplies-algorithm.

Introduction

In this, the competitive environment of the business mar-
ket. Every business is so struggling to discover some lu-
crative transport strategies to deliver the products to cus-
tomers. 

The TP is a very fascinating management science tech-
nique, which can be constructed and solved as a LPP. TP 
is considered as a logistic or networking problem, with the 
main purpose is to when and how to deliver products or 
goods from origins to destinations at the maximum profit 
and minimum cost. 

In many real-life problems, the DM intends to send 
similar kinds of goods from their origins (also known as 
plants, sources, supply points) to distinct kinds of des-
tinations (also known as sinks, demand points) to meet 
the destination demands. In this form of TP, the DMs 
primary objective is to find the best financial route to 
transfer a collection of commodities from origin to des-
tination, minimizing the total cost of transportation and 
transportation time. Dantzig (1963) discussed a TP as 
linear programming and used simplex method to obtain 
the optimal solution. Charnes and Cooper (1954) devel-
oped a new method known as the stepping stone method 
and used this method in TP for explaining the linear 
programming solution procedure for the problem. Appa 
(1973) expressed many variations of the TP; Arsham and 
Kahn (1989) considered a general TP and proposed sim-
plex based algorithm for solving TP. Kaliski et al. (1993) 
developed a short out potential reduction algorithm for 
solving TP.

In recent years we have been able to recognize that 
a traditional mathematical programming model is in-
adequate for many of the real-world circumstances. The 
nature of these problems demands, on the one hand, 
that multiple objectives be taken into account. In recent 
years many researchers have considered multiple objec-
tives in TP such as; Lee and Moore (1973) describe the 
GP approach to optimize multiple conflicting goals in 
transportation problems. Aneja and Nair (1979) develop 
a method of finding the non-dominated extreme points, 
which involves a parametric search in the criteria space for 
the bi-criteria transportation problem. Isermann (1979) 
presented an algorithm, which provides a union of a 
minimal number of convex sets of all efficient solutions 
for MOTP. Diaz (1978) described the method for solving 
the MOTP. Diaz (1979) used a complete description of all 
efficient solutions to solve the MOTP. Current and Min 
(1986) included 42 selected references for the bibliography 

and presented a brief history of the use of multi-objective 
analysis in transportation planning. Current and Marsh 
(1993) updated review of multi-objective network design 
and routing problems that provides the variety of prob-
lems addressed reflects the importance and complexity 
of transportation network analysis. Clímaco et al. (1993) 
presented TRIMAP method for solving the three-objective 
transportation problems. TRIMAP seem to be very useful 
for exploiting an interactive way, a progressive and selec-
tive identification of the set of non-dominated solutions. 
Ringuest and Rinks (1987) presented two interactive al-
gorithms that take advantage of the extraordinary form of 
the MOTP. Li and Lai (2000) presented a FCP approach to 
MOTPs at which the synthetic membership degree of the 
global evaluation for all objectives at maximum. Biswas 
and De (2018) introduce a process of defuzzification for 
ranking of T2TpFN in which a two-phase defuzzification 
method has developed for using PDF of the random vari-
ables associates with the fuzzy numbers. FGP technique 
is used for achieving the highest degree of each of the 
defined membership goals to the extent possible in the 
decision-making. Kamal et al. (2018) considered a MOTP 
and developed a new technique called the distance-based 
method for solving it.

Inspired by such type of work have been done in mul-
ti-criteria decision-making TPs. It is challenging for DMs 
to make a reasonable assumption about profit and also 
minimize the total TC if information about the param-
eters of the real-world problem is precisely not known. In 
this manuscript, a model is formulated for multi-objective 
TP in which objective and constraints of the model are 
uncertain and T2TpNs. We have also considered two cases 
in constraints of the proposed model: (1) when demand 
and supply are in interval type multi-choice, and (2) when 
demand and supply are random variables follows some 
types of probability distributions. In our proposed model, 
we have defined a new function in objective functions of 
the model, the rate of increment in TP cost and rate of 
decrement in the profit. As per our best knowledge, no-
body has discussed these issues in their work.

Other than we have also suggested some proposal in 
work like AIC and BIC approach to obtain the best fit 
for probability distributions. The remaining of this pa-
per describe as follows: A brief literature review on TP 
is defined in Section 1. In Section 2, basic models of TP 
are discussed. In Section 3, the mathematical formulation 
MOTP is designed. In Section 4, mixed uncertain con-
straints of TP and transformation techniques have been 
used to convert uncertain parameters into certain have 
been discussed. In Section 5, the stepwise procedure has 
been discussed for the compromise solution. In Section 
6, the numerical example provided for the justification of 
proposed work. In Section 7, results and discussion have 
been discussed. Section 8 provides the managerial im-
plications, contribution and limitations of the proposed 
work. Finally, conclusions have been discussed for the 
proposed work.
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1. Literature review
In the real-world problems, several diverse situations occur 
such as uncertain judgments, unpredictable conditions or 
human error, incomplete knowledge and information and 
other similar causes, due to which we do not need to get 
a relevant, precise data about the problem. Such type of 
impreciseness of any data can be represented in different 
ways. In such cases, the imprecise data information can be 
presented in fuzzy numbers. Zadeh (1965) gives the con-
cept of fuzzy set theory. Many researchers: Bit et al. (1992) 
presented an application of FLP for linear MOTP, and an 
efficient FORTRAN software (https://fortran-lang.org)  
has been developed based on the FLP algorithm, which is 
an extended version of the simplex algorithm. Li and Lai 
(2000) presented a FCP approach to MOTPs at which the 
synthetic membership degree of the global evaluation for 
all objectives at maximum. El-Wahed (2001) described a 
FP approach to determine the optimal compromise so-
lution of a MOTP, and the fuzzy approach outperforms 
the interactive procedure as the number of objectives 
and constraints increases. Dinagar and Palanivel (2009) 
considered a TP in vagueness and used trapezoidal fuzzy 
numbers. FTP converted into crisp by Ebrahimnejad 
(2014) and solved by the standard transportation algo-
rithm for reduction of the computational complexity of 
the existing method. Gupta and Kumar (2012) proposed 
a new method for a linear MOTP by shortcomings of the 
existing method. Zangiabadi and Maleki (2013) used hy-
perbolic and exponential membership functions to solve 
the MOTP, which gives an optimal compromise solution. 
The obtained result has compared with the solution ob-
tained by using a linear membership function.

Rani and Gulati (2014) used unbalanced (availability 
< demand) fully FTPs and proposed a method for solving 
unbalanced fully FTPs. Some others researchers use fuzzy 
set theory in other research areas as Pamucar and Ćirović 
(2018) considered the vehicle route selection problem un-
der some uncertainties and used ANFIGS technique to de-
termine the optimum route for the transportation. Biswas 
and Pal (2019) consider CM problem in electric power 
transmission lines by employing a GA and also used FGP 
to get an optimum solution. Lukovac and Popović (2018) 
presented the fuzzy delphi approach to defining a cycle 
for assessing the performance of military drivers. The ap-
proach is modelled to take into account the importance 
weight of each DM and the homogeneity of the individ-
ual fuzzy preferences and used fuzzy triangular numbers. 
Vilela et  al. (2019) described the value of information 
methodology by integrating fuzzy logic into the decision-
making process, develop human thinking assessment 
and coherently combine several economic criteria. Fuzzy 
inference system in the domain of value of information 
for methodology is applied to an oil and gas subsurface 
assessment in which results of the standard and fuzzy 
methodologies are compared. Si et  al. (2019) compared 
the picture fuzzy numbers using score and accuracy values 
when the values are equal. The proposed ranking method 
based on positive ideal solution, positive and negative 

goal differences, and score and accuracy degrees of the 
picture fuzzy numbers. A new score function proposed 
for calculating the actual score value, which depends on 
the positive and negative goal differences and the neutral 
degree. Stojić et  al. (2018) determined the fuzzy model 
for the renewal problem of truck road freight vehicle fleet 
and the assessment of the period needed for a return on 
the investment. Fazlollahtabar (2018) proposed a substan-
tial operation to fulfil the reverse chain for minimizing 
the total cost of reverse supply chain and formulated the 
mathematical model for return product in reverse supply 
chain considering quality assurance.

In several real-life situations where parameters of de-
cision-making problems have multiple choices. In those 
situations where DMs are allowed to set a goal of multiple 
choices. Sometimes, real-world TP has several multiple 
choices for some parameters. Chang (2007, 2008) was 
first who used the concept of the multi-choice parameter 
in decision-making problem. Biswal and Acharya (2009) 
discussed a multi-choice multi-objective LPP in which 
the RHS parameters of the constraints are multi-choice. 
The formulated mathematical model solved with the help 
of existing nonlinear programming method. Biswal and 
Acharya (2011) described multi-choice programming in 
which the RHS parameters are multi-choice as functional 
values of an affine function at some non-negative integer 
nodes. The interpolating polynomials of all multi-choice 
parameters formulated as a mathematical programming 
problem, which is treated as a non-LPP involving mixed-
integer type variables. Dutta and Murthy (2010) consid-
ered a TP where the objective is expressed in multi-choic-
es and constraints are in fuzzy. They also discussed two 
cases and proposed a technique for solving that problem. 
Maity and Roy (2014) discussed a TP with a multi-choice 
parameter such as; demand, supply and cost, under util-
ity function. A binary variable transformation technique 
has been used by them to convert multi-choices into a 
crisp value. In the last goal, programming is used to obtain 
the optimum solution. Maity and Roy (2016) proposed a 
model for TP, which has a nonlinear objective (cost) and 
constraints (demand and supply) in multi-choices. Roy 
et al. (2012) considered a multi-choice stochastic trans-
portation problem where supply and demand parameter of 
the constraints followed exponential distribution, and cost 
coefficients of objective function have multi-choice. A new 
transformation technique introduced to manipulate cost 
coefficients of objective function involving multi-choice or 
goals for binary variables with additional restriction where 
the additional restriction depend upon the number of as-
piration levels associated with each cost coefficient of the 
objective function. Acharya and Biswal (2016) considered 
some multi-choice parameters on a MOTP, and interpo-
lating polynomials formulated for the multi-choice pa-
rameters. The compromise solution obtained by FP. Kamal 
et al. (2019) described a bi-level multi-objective produc-
tion planning problem in which some of the coefficients 
of objective functions and parameters of constraints are 
multi-choice. The multi-choices parameters of the prob-

https://fortran-lang.org
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lem transformed into their equivalent deterministic form 
based on the binary variables.

The stochastic optimization technique deals with 
the modelling and optimizing of decision-making prob-
lems where probability distributions control the data are 
known or may be estimated using unknown parameters. 
SP techniques explain circumstances where random vari-
ables identify one or more computational programming 
problem parameters rather than deterministic variables. 
While deterministic issues are established with defined pa-
rameters, the real-world issues are about the parameters, 
which are almost probably ambiguous at the time a deci-
sion is to be made. If the parameters are unclear but pre-
sumed to get into some range of values, a solution can be 
found that is feasible for all such parameters, which help 
to optimize a given objective function. In many cases of 
TP, the parameters have characterized as random variables 
instead of absolute values. In such TP, the stochastic opti-
mization technique is used to solve the problem. The main 
concept of solving a stochastic problem is to transform the 
problem into deterministic form. In the latest years, many 
investigators have investigated TP’s parameters as random 
variables and have followed various kinds of probability 
distributions.

Sahoo and Biswal (2005) concerned that SP in which 
parameters are treated as random variables to capture the 
uncertainty An approach to deal with uncertainty is as-
signed a probability distribution to the unknown param-
eters. Two probability distributions Cauchy distribution 
and extreme value distribution are introduced for SP, 
and two different approaches are applied to transform 
the probabilistic multi-objective LPP into deterministic 
models. Roy et  al. (2012) considered a stochastic trans-
portation problem on which exponential distribution is 
used to all constraints containing parameters like supply 
and demand and cost coefficients of objective functions 
are multi-choice. A new transformation technique is in-
troduced to manipulate cost coefficients of objective func-
tion involving multi-choice or goals for binary variables 
with additional restriction, and the specified probabilistic 
constraints are transformed into an equivalent determin-
istic constraint using SP approach. Mahapatra et al. (2013) 
considered a multi-choice stochastic transportation prob-
lem in which the supply and demand parameters of the 
constraints follow extreme value distribution and some 
of the cost coefficient of the objective function is multi-
choice. The probabilistic constraints transformed into 
deterministic constraints and handled the multi-choice 
by using binary variables. Roy (2014) presents a multi-
choice stochastic transportation problem in which supply 
and demand parameters of the constraints follow Weibull 
distribution and cost coefficients of the objective function 
are multi-choice. Barik et al. (2011) considered both single 
and multi-objective SP problem where the RHS parameter 
has Pareto distribution with known mean and variance. 
Chance constrained programming and two-stage SP is 
used, and FP technique is used to solve the multi-objective 
model. Biswas and Modak (2011) developed a FGP meth-
odology for solving chance-constrained programming 

problem involving fuzzy numbers and fuzzy random vari-
ables, which follow a standard normal distribution. Barik 
(2015) presented a linearly constrained probabilistic FGP 
problem in which the RHS parameters of some constraints 
follows Pareto distribution with known mean and vari-
ance and also simple, weighted, and pre-emptive additive 
approaches are discussed for probabilistic FGP model. 
Safi and Ghasemi (2017) described the linear fractional 
transportation problem with an uncertain parameter with 
considering the chance-constrained method for the re-
strictions.

The new development in fuzzy set theory is T1FS, it 
contains four (minimum) kinds of uncertainties: (1)  the 
definitions of the words used in the precedents and sub-
sequent laws can be unclear, (2) implications can be cor-
related with a histogram of values, in particular when in-
formation is derived from a group of experts who do not 
all agree, (3) measures that cause a T1FS may be noisy 
and often uncertain, and (4) data used to fine-tune T1FS 
parameters can also be noisy. All these types of uncer-
tainties are present in T1FS because membership func-
tions of T1FS are finally in crisp form whereas the T2FS 
can handle these uncertainties because their membership 
functions are considered as fuzzy. Membership functions 
of T2FS are three dimensional that allows some additional 
degree of freedom to minimize these uncertainties. In oth-
er words, the membership functions of T1FS are expressed 
in absolute numbers, which also have some disadvantage 
as it has some uncertainties in the membership function. 
T1FS are not able to directly model such uncertainties be-
cause their membership functions are crisp.

On the other hand, T2FS aimed to reduce the level of 
uncertainty and prompt to get results closer to the degree 
of truthiness. In other words, T2FS can model such uncer-
tainties in more appropriately since the membership func-
tions are presented in fuzzy nature. Membership functions 
of T1FS are two-dimensional, whereas membership func-
tions of T2FS are three-dimensional. The third-dimension 
of T2FS provides additional degrees of freedom, which 
make possible to directly model uncertainties. To over-
come these difficulties of T1FS, Zedah in 1975 suggested 
the concept of T2FS. In recent years, many experts have 
utilized the concept of T2FS in decision-making problems. 
Maity and Roy (2019) developed a new technique for solv-
ing TP with T2FS. Sinha et al. (2016) considered a solid 
TP with profit maximization and time minimization ob-
jectives with T2FS and used interactive fuzzy satisficing 
technique to obtain the optimum solution.

The above discussion on literature and Table 1, reveals 
that the majority of researchers formulated their work 
as a single objective or multi-objective and use different 
fuzzy numbers. MOTP with type 2 fuzzy numbers is very 
rare. Motivated by such work, we have to try to formulate 
the TP with multiple objectives in a fuzzy, multi-choice 
stochastic environment. From Table 1, we have observed 
that MOTP with type 2 fuzzy numbers in the fuzzy, multi-
choice stochastic environment is very rare. This is regard-
ed as the big drawback we have found in the past works.
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The above discussion on literature reveals that a lot of 
research papers have published on MOTP in fuzzy envi-
ronment. However, the work published on MOAP with 
T2FS is limited. Table 1 is a list of published works on TP.

Research gap
After analyzing the above literature reviews of the trans-
portation models, there are still some gaps, which are dis-
cussed below:

»» as per our best knowledge; MOTP with objectives 
profit maximization and TC minimization with 
T2FNs is very rare;

»» MOTP with T2FNs, where demand and supply are 
in two situations: (1) multi-choice, and (2) probabil-
istic random variable is also very rare; 

»» a model for MOTP with the rate of increment in 
TC and rate of decrement in profit on transporting 
of each product due to the damage, late deliveries, 
weather conditions, and any other issues have not 
been discussed in the literature review;

»» AIC and BIC approach for best-fit probability distri-
butions for MOTP with T2FNs are also infrequent.

Table 1. Review of some existing works

Reference
Model objective

Nature of uncertainty Types of fuzzy 
number / 

probability 
distribution

Techniquefuzzy stochastic multi-choice

single multi survival TC S and D TC S and D TC S and D

Bit et al. (1992) ü FLP algorithm
Li, Lai (2000) ü FCP approach
El-Wahed (2001) ü FP approach
Liu (2003)

ü
lower and upper 
bounds for total TC

Chakraborty, A., 
Chakraborty, M. 
(2010)

ü ü ü
interval parametric FP and 

preemptive GP

Dutta, Murthy 
(2010) ü ü ü

trapezoidal MCGP

Roy et al. (2012)
ü ü ü

exponential 
distribution

multi-choice SP

Mahapatra et al. 
(2013) ü ü ü

extreme value 
distribution

multi-choice 
programming

Maity, Roy (2014) ü ü ü GP
Roy (2014)

ü ü ü
Weibull 
distribution

multi-choice SP

Ebrahimnejad 
(2014) ü ü

generalised 
trapezoidal

FTP

Liu (2016) ü ü ü triangular fractional FTP
Maity, Roy (2016)

ü
ü 

D only
BTP

Maity et al. (2016)
ü ü ü

normal 
distribution

FMCGP

Acharya, Biswal 
(2016) ü

ü 
D only

FP approach

Xie et al. (2017) ü TPVDS-A algorithm
Roy et al. (2017a) ü ü ü revised MCGP
Roy et al. (2017b)

ü ü
revised MCGP for 
two-stage TP

Rani, Gulati 
(2017) ü ü ü

generalized 
exponential 
fuzzy number

–

Roy, Maity (2017)
ü ü ü

multi-choice 
interval

TP approach

Biswas, Modak 
(2017) ü ü

FGP

Proposed model
ü ü ü ü ü

type 2 fuzzy 
number

FGP

Notes: TC – transportation cost; S – supply; D – demand.
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2. Statement of the transportation problem

The traditional TP is a well-known problem in our daily 
life. The main objective behind optimizing and modelling 
of any TPs under a set of different restrictions to obtain 
the best solution for the objective function. In many real-
life situations problem, the DM wants to ship homogenous 
kind of products from origins (also called plants, sourc-
es, supply points) to different types of destinations (also 
called sinks, demand points) to satisfy the requirements 
of the destination fully. In this type of TP, the main aim 
of the DM to discover the best economic path for trans-
ferring a set of the commodity from origin to destination 
with minimizing the total TC.

Nomenclature
Indices: 

k – index for the objective function, k =1, 2,…, K;
i – index for the origins item, i = 1, 2, …, m;
j – index for destination items, j = 1, 2, …, n.

Decision variable:
xij – manufactured units transported from ith origin to jth 

destination.

Parameters:
ai – availability at the ith source;
bj – demand at the jth destination;
cij – transporting cost from ith source to jth destination;
pij – profit for transporting each unit from ith source to 

jth destination.
The mathematical model of the transportation prob-

lem with equality constraints is defined as:
Model 1

1 1

min
m n

ij ij
i j

Z C x
= =

= ⋅∑∑
subject to:

( )
1

,
n

ij i
j

x a
=

≤ =∑ , 1, 2, ...,i m= ; 

( )
1

,
m

ij j
i

x b
=

≥ =∑ , 1, 2, ...,j n= ;

0ijx ≥ , 1, 2, ...,i m= , 1, 2, ...,j m= .  (1)
where: m is the total number of origins; n is the total 
number of destinations; ai is the supply of commodity at 
the ithorigin; bj is the demand for the commodity jth at 
the destination; cij is the cost of transportation for a unit 
quantity of the commodity modify from the ith origin to 
the jth destination; xij is the quantity of the commodity 
that should be transported from the ith origin to the jth 
destination to minimize the total TC Z. 

It is further noted, for the Model 1 (Equation (1)) is 

feasible if 
1 1

m n

i j
i j

a b
= =

=∑ ∑  and reference TP is called bal-

anced transportation problem. Moreover, for the case of 

inequality constraints Model 1 is feasible if 
1 1

m n

i j
i j

a b
= =

≥∑ ∑  

and reference TP is called unbalanced transportation 
problem.

3. Transportation problem under T2TpFN

In TPs, generally, we assume that the transport expenses 
of items from source to destination are known to the DM. 
However, in several cases, DM does not know the trans-
port expenses. In such situations, if the transport expenses 
are not precise and the information is available in vague 
values. Then the TP can be formulated under fuzziness. 
In TP, the data cannot be dealt with T1FS because there 
is much fuzziness involved in the data. Example, TCs will 
vary from one place to another that might heavily rely on 
time. Therefore it is necessary to introduce T2FS for at-
tempting to tackle such data.

Here we are formulating the MTOP under type-2 
fuzzy numbers. Consider m origins S1, S1, …, Sm, n des-
tinations D1, D1, …, Dn and K objectives Z1, Z1, …, ZK. 
The aim of the DM is the minimization of all K objectives 
function. Suppose that the origins Si have a given supply 
ai ( )1, 2, ...,i m= and destination Dj has a required level of 
demand bj ( )1, 2, ...,j n= . Each objective ZK has a penalty 
cost k

ijc  while transporting units of the goods from origins 
Si to destination Dj, ( 1, 2, ...,i m= ; )1, 2, ...,j n= . We ex-
tended the Model 1 (Equation (1)) as Model 1a (Equation 
(2)) by considering the profit cost function with TC ob-
jective function. Let suppose in objective functions TC ijc  
and profit ijp  earned on selling the products are T2TpFN. 
Model 1 can be expressed with vagueness in Model 1a:
Model 1a

1
1 1

max
m n

ij ij
i j

Z p x
= =

= ⋅∑∑ 

 ;

2
1 1

min
m n

ij ij
i j

Z c x
= =

= ⋅∑∑



subject to:

1

n

ij i
j

x a
=

≤∑ 

 , 1, 2, ...,i m= ;

 

1

m

ij j
i

x b
=

≥∑ 

 , 1, 2, ...,j n= ;

0ijx ≥ , 1, 2, ...,i m= , 1, 2, ...,j n= .  (2)

The T2TpFN is defuzzified using the technique dis-
cussed by Biswas and De (2018). In their proposed work, 
the T2TpFN is presented in four T1TpFNs, i.e., the four 
membership function of a T2TpFN are T1TpFNs that con-
stitutes the FOU of the corresponding T2TpFN. Therefore, 
the defuzzification values of T1TpFNs are used to find the 
defuzzified value of T2TpFNs. The defuzzification pro-
cedure of T2TpFN is portioned into two-phases. In the 
Phase 1, the defuzzification technique converts T2TpFN to 
T1TpFN, and further again (Phase 2) applied to T1TpFNs 
to obtain the defuzzified value of the T2TpFN. The defuzz-
ification procedure is depicted in Figure 1 Biswas (2018).

Some basic definition of T2TpFN has given below.

Definition 1: T1FS (Biswas (2018))
A T1FS λ  has defined on the set of real numbers Y than 
its membership function ( )xλm  characterized as: 
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: 0,1Yλ  m ∈ 

; ( )0 1xλ≤ m ≤


, 
where: y Y∈ , i.e., a T1FS can be defined as: ( ){ }, :y x y Yλλ = m ∈





 ( ){ }, :y x y Yλλ = m ∈


 .

Definition 2: T2FS (Biswas (2018))
Simplification of interval-valued fuzzy sets is known as 
T2FS. We just considered interval-valued fuzzy sets as 
fuzzy, and then after the interval-valued fuzzy sets be-
comes T2FS. Four T1FSs characterized as T2FS, that 
means the four membership function of a T2FS are T1FSs, 
the membership function of T2FS is defined in the form:

: 0, 1Yλ  m →χ 

, 

where: 0, 1 χ   denotes the set of all T1FSs defined on 
[0, 1].

Definition 3: T1TpFN (Biswas (2018))
A fuzzy number ( )1 2 3 4, , ,x x x xλ =  on R is said to be 
T1TpFN if the following features are shown in member-
ship function:

( )

1
1 2

2 1
2 3

4
3 4

4 3
1 4

, if ;

1, if ;

, if ;

0, if , or .

y x
x y x

x x
x y xy x y
x y x

x x
y x y x

λ

−
≤ ≤ −
≤ ≤m =  − ≤ ≤

−
 < >



  

(3)

Definition 4: T2TpFN (Biswas (2018))
T2TpFN can represent in term of four T1TpFN, which are 
the FOU. Four T1TpFNs are used to represent a T2TpFN. 
If all T1TpFNs are identical, T2TpFN is termed as normal 
T2TpFN. T2TpFN is represented as:

( )1 2 3 4, , ,λ = λ λ λ λ

     ,
where: 

( )1 1 0 0 1, , ,L L R Rx x x xλ = ;

( )2 2 0 0 2, , ,L L R Rx x x xλ = ;

( )3 3 0 0 3, , ,L L R Rx x x xλ = ;

( )4 4 0 0 4 , , ,L L R Rx x x xλ =  
represents T1TpFNs. 

Membership values of T1TpFNs must hold the rela-
tion:

( ) ( ) ( ) ( )
1 2 3 4

y y y yλ λ λ λm ≤ m ≤ m ≤ m
   

.

Primary membership function ( )y
λ

m




 of the T2TpFN 
is:

( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 3 4 1

1 2 3 4 1

, , , if ;
ˆ ˆ ˆ ˆ, , , if ;

0, otherwise,

L L L L L L
j j j j j j

R R R R R R
j j j j j j

y y y y x y x

y y y y y x y x
+

+λ

 m m m m ≤ ≤
m = m m m m ≤ ≤







 (4)

where: 

( ) 0
, if ;

0, if ,

L
i

L L Lij i

y x
i jy x x
i j

 −
>m =  −

 ≤
0,1, 2, 3j = ;
1, 2, 3, 4i =

and
( ) 0

, if ;ˆ
0, ,

R
i

R R Rij i

x y
i jy x x

if i j

 −
>m =  −

 ≤
0,1, 2, 3j = ;
1, 2, 3, 4i = .

Secondary membership function ( )
mλ
g m




 for T2TpFN 
is:

( )

( )
( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

1
1 2

2 1

2 3

4
3 4

4 3

, if ;

1, if ;

, if ;

0, otherwise;

L
j L L

j jL L
j j

L L
j j

L
j L L

j jL L
j j

y
y y

y y
y y

y
y y

y y

λm

 m −m
 m ≤ m ≤ m
m −m

 m ≤ m ≤ mg m = 
m −m m ≤ m ≤ mm −m



 

4 0
L Lx y x≤ ≤         (5)

and

( )

( )
( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

1
1 2

2 1

2 3

4
3 4

4 3

ˆ
ˆ ˆ, if ;

ˆ ˆ
ˆ ˆ1, if ;

ˆ
ˆ ˆ, if ;

ˆ ˆ
0, otherwise;

R
j R R

j jR R
j j

R R
j j

R
j R R

j jR R
j j

y
y y

y y
y y

y
y y

y y

λm

 m −m
 m ≤ m ≤ m
m −m

 m ≤ m ≤ mg m = 
m −m m ≤ m ≤ mm −m



 

0 4
R Rx y x≤ ≤ .                                                          (6)

Now using the above-given definitions, we applied the 
concept on the TP Model 1a (Equation (2)). In this model, 
we have assumed that cost function is objective function 
is T2TpFN. The two-phase defuzzification procedure is 
given in brief.
Phase 1
Let:

( )1 2 3 4, , ,ij ij ij ij ijC C C C C=

    

 
 (7)

be a T2TpFN, 
where each 

( )0 0, , ,L L R R
ij ij ijijl ijlC C C C C= , 1, 2, 3, 4l = . 

In this phase we have presented T2TpFN into four 
T1TpFN, i.e.:

( ) ( ) ( ) ( ) ( )( )1 2 3 4, , ,ij ij ij ij ijV C V C V C V C V C=

     ;

Figure 1. Defuzzification process of T2TpFN

Phase I 
defuzzification

T2TpFN T1TpFN
Dcfuzzificd 

value of 
T2TpFN

Phase II 
defuzzification
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1 0 0 1
1 0 0 1

0 1 1 0

2 0 0 2
2 0 0 2

0 2 2 0

3 0 0 3

1    
3  

1    
3  

1    
3

L L R R
ij ij ij ijL L R R

ij ij ij ij R R L L
ij ij ij ij

L L R R
ij ij ij ijL L R R

ij ij ij ij R R L L
ij ij ij ij

L L R
ij ij ij ij

C C C C
C C C C

C C C C

C C C C
C C C C

C C C C
F

C C C C

 ⋅ − ⋅
 ⋅ + + + +
 + − − 
 ⋅ − ⋅
 ⋅ + + + +
 + − − =

⋅ + + + 3 0 0 3

0 3 3 0

4 0 0 4
4 0 0 4

0 4 4 0

 

1    
3  

L L R R
ij ij ij ijR

R R L L
ij ij ij ij

L L R R
ij ij ij ijL L R R

ij ij ij ij R R L L
ij ij ij ij

C C C C

C C C C

C C C C
C C C C

C C C C

 
 
 
 
 
 
 
  ⋅ − ⋅
  +

  + − −  
 ⋅ − ⋅  ⋅ + + + +   + − −  

 .

 

(8)
Phase 2 
The resultant T1TpFN is again defuzzified to obtain a crisp 
value of T2TpFN. 

Let ( )ijV C  is T1TpFN, which is also again fuzzy num-

bers, and with the help of these fuzzy numbers, we obtain 
a crisp value using the formula:

( ) ( ) ( ) ( ) ( )( 1 2 3 4
1    
3ij ij ij ij ijDV C V C V C V C V C= ⋅ + + + +

    

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 4

3 4 1 2

 ij ij ij ij

ij ij ij ij

V C V C V C V C

V C V C V C V C

⋅ − ⋅

+ − − 

   

   

;

                    

(9)

( ) ( ) ( ) ( ) ( )1 2 3 4
1    
3ij ij ij ij ijDV P V P V P V P V P= ⋅ + + + +

    

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 4

3 3 1 2

ij ij ij ij

ij ij ij ij

V P V P V P V P

V P V P V P V P

⋅ −

+ − − 

   

   

.
                    

(10)

Similarly, the same procedure is followed for ia  and ib  
T2TpFN to obtain the crisp value, i.e.:

( ) ( ) ( ) ( ) ( )( 1 2 3 4
1
3i i i i iDV a V a V a V a V a= ⋅ + + + +

    

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 4

3 4 1 2

i i i i

i i i i

V a V a V a V a
V a V a V a V a

⋅ − ⋅
+ − − 

   

   

;
                     

(11)

( ) ( ) ( ) ( ) ( )( 1 2 3 4
1
3j j j j jDV b V b V b V b V b= ⋅ + + + +

    

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 4

3 4 1 2 

j j j j

j j j j

V b V b V b V b

V b V b V b V b

⋅ − ⋅

+ − − 

   

   

.

  

(12)

TC and profit with increment  
and decrement rate function
In general, the primary goal of the DM in the TP is to 
ship the products from sources to destinations should 
have been finished within the defined period. However, 
late delivery in TP is phenomenal due to some random 
factors such as weather conditions, road transport, traffic, 
etc. In such cases, some different types of penalty expens-
es may happen to owe to the delay or cancellation of the 
ordered from the customers. There are so many uncon-
trolled factors responsible, which can influence product 
delay delivery such as road circumstances, traffic, weather, 
etc. Thus these types of penalty expenses can influence 

the company goodwill. Therefore, in these circumstances, 
profit or transportation expenses may not be regarded as 
a fixed amount, i.e. the profit or expenses are inherently 
unsure. We also considered the concept of “survival cost/
profit” for such instant.

The likelihood of completing the shipment of products 
from sources to locations within the speculated period 
without failing due to any reason for shipment of prod-
ucts is known as cost reliability, due to all we may have 
a probabilistic price in the TP. If the probabilistic price 
happens in the transportation problem, the initial value 
of the products may increase, and therefore the profit will 
be suffered.

Let qij be the rate of depreciation in profit due to dam-
age units, late delivery, etc. the rate of depreciation in prof-
it is calculated as follows:

( ) ( )
( )

i j
ij

i

N t N t t

N t

− + δ ⋅
q = ,

  
(13)

where: ( )iN t  is the total number of items, which is trans-
ported to the jth destination from the ith origin.

Now, we have considered cost and profit as a function 
of time. Then, the cost and profit objective functions of 
TP are considered as survival cost and profit. ( )jN t t+ δ ⋅  
is the items remain in good condition at the final desti-
nation. Hence the profit suffered by the depreciation rate 

ij ijpq ⋅  . The total profit is calculated as:

( ) ( )( )ij ij ijt Dotal pro DV p V pfit −q ⋅=  

  .
  

(14)

Further, we assumed that the TC would also be in-
creased due to uncontrolled randomly occurred factors 
occurred during the transportation. These uncontrolled 
factors might be a minor accident or major accident, traf-
fic and other similar issues. Let gij be the rate of increment 
in TP cost, which is calculated as follows:

( ) ( )
( )

ij ij
ij

ij

C t t C t

C t

+ δ −
g = ,

  
(15)

where: ( )ijC t  is the total cost of transportation from ori-
gin to destination, and ( )ijC t t+ δ is the cost with incre-
ment due to traffic and other anonymous issues. The total 
TC is calculated as:

( ) ( )( )ij ij ijtotal TC DV C DV C= + g ⋅ 

  .
  

(16)

After including the incremental rate in TP cost func-
tion and depreciation rate in profit function, we have 
Model 1b (Equation (17)).

Model 1b

( ) ( )( )( )1
1 1

max
m n

ij ij ij ij
i j

Z DV p DV p x
= =

= − q ⋅ ⋅∑∑  

  ;

( ) ( )( )2
1 1

min
m n

ij ij ij ij
i j

Z DV C DV C x
= =

 = + g ⋅ ⋅ 
 ∑∑  

 

subject to:

( )
1

n

ij i
j

x DV a
=

≤∑ 

 , 1, 2, ...,i m= ;
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( )
1

m

ij j
i

x DV b
=

≥∑ 

 , 1, 2, ...,j n= ;

0ijx ≥ , 1, 2, ...,i m= , 1, 2, ...,j n= .  (17)

4. Mixed uncertain constraints of TP

Consider a case where the right side of the constraints are 
imprecise, and the multi-choice parameter and probabil-
istic random variable in the TP reflect this vagueness on 
the right side of the constraint. Nevertheless, the objective 
function of uncertainty is assumed as T2TpFN.

4.1. TP with demand and supply are  
interval type multi-choice 

There are some real-life situations where, the parameters 
of the TPs like demand, and supply problem are multi-
choices. Then our new model with demand and supply in 
multi-choice is described as:

Model 1c

( ) ( )( )( )1
1 1

max
m n

ij ij ij ij
i j

Z DV p DV p x
= =

= − q ⋅ ⋅∑∑  

  ;

( ) ( )( )2
1 1

min
m n

ij ij ij ij
i j

Z DV C DV C x
= =

 = + g ⋅ ⋅ 
 ∑∑  

 

subject to:

1 2

1

or or...or
n

p
ij i i i

j

x a a  a
=

≤∑ , 1, 2, ...,i m= ;

1 2

1

or or....or
m

q
ij j j j

i

x b b b
=

≥∑ , 1, 2,...,j n= ;

0ijx ≥ , 1,2,...,i m= , 1,2,...,j n= .  (18)

The multi-choices is dealt with using the technique of 
Roy and Maity (2017):

1

1

n

ij i
j

x a
=

≤∑
or

2 or...or p
i ia  a ,

1, 2, ...,i m= =

( ) ( )( )
1

1 k kl u
i i

K
k a ak k

i i
k

term a a
=

⋅ − λ + ⋅λ∑ ;
  

(19)

1

1

m

ij j
i

x b
=

≥∑
or

2 or....or q
j jb b ,

1, 2, ...,j n= =

( )
1

1
k kl uj j

K
k b bk k

j j
k

term b b
=

⋅ ⋅ − λ + λ∑ .
  

(20)

4.2. TP with demand and supply  
are probabilistic random variables

Model 1d

( ) ( )( )1
1 1

max
m n

ij ij ij ij
i j

Z DV p DV p x
= =

= − q ⋅ ⋅∑∑  

  ;

 

( ) ( )( )2
1 1

min
m n

ij ij ij ij
i j

Z DV C DV C x
= =

 = + g ⋅ 
 ∑∑  

 

subject to:

1

Prob
n

ij i i
j

x a
=

 
 ≤ ≥φ
 
 
∑ , 1, 2, ...,i m= ;

1

Prob
m

ij j j
i

x b
=

 
 ≥ ≥ψ
 
 
∑ , 1, 2, ...,j n= ;

0ijx ≥ , 1, 2, ...,i m= , 1, 2, ...,j n= .  (21)

where: 0 1i≤ φ ≤  and 0 1j≤ ψ ≤ , ,i j∀  are the specified 
probability limits of the stochastic constraints.

In Model 1d (Equation (21)) is reflecting a condition 
where the constraints are in stochastic form. The probabil-
istic random parameters of TPs are assumed and followed 
some particular distribution. Moreover, the parameters of 
TP followed several distributions, which have shown in 
Table 2. Table 2 Provide a summary of probability distri-
butions and their parameters estimation, equivalent deter-
ministic form and feasibility conditions. Finally, the best 
fit of a probability distribution model for the probabilis-
tic random parameters is approximated using AIC and 
BIC. Several authors have worked on the same concept. 
We have given a summary table of their works, which is 
given below.

4.3. AIC and BIC approach for validation of best fit

Model selection problems belong to the process of choos-
ing the best model from the set of models using the avail-
able data. The most common techniques used for find-
ing the best-fitted models on a data set are AIC and BIC. 
Akaike (1974) proposed the concept of AIC; the best-
fitting probability distribution is selected based on the 
criteria of minimizes the negative likelihood in addition 
to a penalty term described by the number of parameters. 
Apart from AIC, there is another criterion known as BIC, 
which revolves around the Bayesian system. Stone (1979) 
proposed the concept of BIC for best fit. The concept is 
similar to AIC, that is to minimize the likelihood. BIC 
is constructed from a Bayesian point of view, to find the 
most likely model fitting the data. AIC and BIC have the 
same goal of selecting the best models. These two tech-
niques are known as penalized likelihood methods. The 
formulas are given below: 

( )2 log log 2AIC p likelihood p= − ⋅ + ⋅ ;  (22)

( )2 log (log ) logBIC p likelihood p n= − ⋅ + ⋅ ,  (23)

where: p is the number of estimated parameters in the dis-
tribution; n is the total sample size.
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5. Stepwise solution procedure 

FGP is a versatile and robust method for dealing the mul-
ti-objective decision-making problems. Therefore, we also 
have used to solve our formulated TP. 

The stepwise procedure for solving the TP is given as 
follows.

Step 1. Analyze the problem, is the problem crisp, if 
yes; go to Step 3. Otherwise, convert the problem into a 
crisp problem.

Step 2. The appropriate defuzzification technique is 
used to convert uncertain values into their equivalent 
crisp form.

Step 3. Solve the various objective optimization prob-
lems by considering one objective at the moment and 
ignoring the other with the same set of constraints. The 
resulting solution is the idle solution. Idle solutions use to 
construct the payoff matrix. Finally, the payoff matrix ena-
bles each objective function to build the aspiration level.

Step 4. The aspiration level of the kth objective func-
tion is set as the goal value gk, k = 1, 2.

Find ( )1 2, , ..., nX x x x=  to optimize the following 
fuzzy goals:

( )1 1Z X g ;

( )2 2Z X g  
subject to the set of constraints x ∈ X,                      (24)
where: ( )( )1 1maxg Z x=  and ( )( )2 2ming Z x= . The sym-
bol “” (the type of fuzzy-max) referring to that ( )1Z X  
should be approximately greater than or equal to the aspi-
ration level g1 up to the specified tolerance limit. The sym-
bol “” (the type of fuzzy-min) referring to that ( )2Z X  
should be approximately less than or equal to the aspira-
tion level g2 up to the specified tolerance limit. 

Step 5. Construct the fuzzy linear membership func-
tion for the fuzzy goal of:

( )
( ) ( )

( )

1 1

1 1
1 1 1

1 1
1 1

1, if ;

, if ;

0, if ,

Z X g
Z X L

L Z X g
g L

Z X L

 ≥
 −m = ≤ ≤

−
≤

  

(25)

where: L1 is the lower tolerance limit.
Similarly, the membership function for the fuzzy goal 

2 2Z g :

( )
( ) ( )

( )

2 2

2 2
2 2 2

2 2
2 2

1, if ;

, if ;

0, if ,

Z X g
U Z X

g Z X U
U g

Z X U

 ≤
 −m = ≤ ≤

−
≥   

(26)

where: U2 is the upper tolerance limit.
Step 6. Finally, following all the above-given steps, the 

resultant mathematical form is: 
( )max D m = m

subject to set constraint x ∈ X
and some additional constraints:

( )1 1

1 1

Z X L
g L

−
m =

−
;

( )2 2

2 2

U Z X
U g
−

m =
−

;

0 1≤ m ≤ ,  (27)

where: ( )D m  is a fuzzy achievement function. Finally, we 
changed the multi-objective decision-making problems 
into a single objective optimization problem that can be 
solved using an appropriate classical optimization tech-
nique.

6. Illustrative case study

We considered a MOTP to verify the efficiency and use-
fulness of the suggested work. A transportation company 
intends to transport its different kinds of perishable and 
sensitive to damage items, etc, from three states: Uttar 
Pradesh (a1), Uttarakhand (a2) and Punjab (a3), to three 
districts of Kashmir: Srinagar (b1), Anantnag (b2) and 
Baramula (b3). The items are transported in these loca-
tions for the first time. Therefore, DM no data of previous 
years. Nevertheless, from experience and his expert mar-
ket analysis, he has some incomplete information. In this 
TP, we have considered two objectives, first objective Z1 is 
to maximize the total profit and second objective Z2 is to 
minimize the total TC.

In the real-world problems, several diverse situations 
occur such as uncertain judgments, unpredictable condi-
tions or human error, incomplete knowledge and infor-
mation, seasonality, change in policy by the governments, 
etc., due to which we do not need to get a relevant, precise 
data about the problem. These discussed factors that lead 
to uncertainty in the parameters of the TPs. Such type of 
impreciseness of any data can be represented in different 
ways. To present this uncertainty in our proposed model, 
we have discussed T2TpFN, multi-choice approach and 
probabilistic random variables. In our proposed model, we 
have considered the profit and TC of MOTP with vague-
ness. T2TpFN describes this vagueness.

Let suppose that the profit on delivering items from 
ith source to jth destinations and the TC of delivering the 
items is available in the form T2TpFNs. Table 3 is for in-
stant information available to the DM.

The two-phase defuzzification procedure, which is de-
fined in Equations (9) and (10) has been used to obtain 
the crisp form of T2TpFNs. The resultant crisp values of 
Phases 1 and 2 are summarized in Table 4.

In the proposed work, the objective function will re-
main in the form of T2TpFN for the other three cases. The 
other three cases are given below.

Case 1: when both constraints (demand and supply) are 
presented by T2TpFN
In our proposed model, we have considered the demand 
and supply of the MOTP with vagueness. 
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Let suppose that the demand and supply of the TP are 
available in the form T2TpFNs. Table 5 is for instant in-
formation available to the DM.

The two-phase defuzzification procedure, which is de-
fined in Equations (11) and (12) has been used to obtain 
the crisp form of T2TpFNs. The resultant crisp values of 
Phases 1 and 2 are summarised in Table 6.

In order, to obtain the lower and upper bound (pay off 
matrix) of each objective functions; we solved each objec-
tive separately under the same set of constraints by using 
optimization software LINGO 16.0. The values are given 
below:

149752.43 64875.59Z≤ ≤ ;

22878296.0 3708667.0Z≤ ≤ .
In this case, we have considered the constraints (de-

mand and supply) of the formulated model of MOTP are 
uncertain. However, somehow, we figure out the range of 

constraints. T2TpFN used to presents this uncertainty. Af-
ter following the stepwise procedure discussed in Section 5,  
we obtained the compromise solution. The discussed 
model is solved by using optimization software LINGO 
16.0 (https://lingo.informer.com).

T2TpFN:

1 57564.71Z = ,

11 4x = ,

12 73x = ,

13 735x = ,

22 913x = ;

2 3279763Z = , 

23 0x = ,

31 922x = ,

32 0x = ,

33 407x = .

Z1

ijp ijc

(68, 70 ,72, 76) 
(66, 70, 72, 78)
(63, 70, 72, 82) 
(60, 70, 72, 85)

(498, 500, 503, 507) 
(497, 500, 503, 509)
(495, 500, 503, 512) 
(492, 500, 503, 514)

(78, 80, 83, 88) 
(75, 80, 83, 85)
(74, 80, 83, 91) 
(71, 80, 83, 94)

(598, 600, 602, 606) 
(595, 600, 602, 608)
(594, 600, 602, 611) 
(592, 600, 602, 613)

(76, 78, 80, 83) 
(74, 80, 83, 91)
(73, 74, 80, 85) 
(70, 78, 80, 87)

(618, 620, 622, 625) 
(595, 600, 622, 627)
(613, 620, 622, 631) 
(610, 620, 622, 635)

(78, 80, 83, 87) 
(75,80, 83, 88) 
(74, 80, 83, 91) 
(71, 80, 83, 94)

(598, 600, 602, 606) 
(595, 600, 602, 608)
(594, 600, 602, 611) 
(592, 600, 602, 613)

(70, 72, 73, 77)
 (68, 72, 73, 81) 
(65, 72, 73, 81) 
(64, 72, 73, 84)

(498, 500, 503, 507) 
(497, 500, 503, 509)
(495, 500, 503, 512) 
(492, 500, 503, 514)

Table 4. Defuzzifucition Phases 1 and 2 crisp values of profit and TC

Z1

( )ijV p ( )ijD p ( )ijV c ( )ijDV c

(72.06, 72.16, 71.80, 71.50) 71.87 (502.08, 502.40, 502.73, 502.44) 502.30
(82.08, 81.50, 82.11, 82.12) 81.90 (601.60, 601.31, 601.94, 601.95) 601.69
(79.29, 78.40, 78.11, 78.68) 78.66 (621.29, 621.40, 621.60, 621.31) 621.30
(82.08, 81.50, 82.11, 82.12) 81.90 (601.60, 601.31, 601.94, 601.95) 601.69
(73.12, 72.81, 72.82, 73.47) 73.13 (502.08, 502.40, 502.73, 502.44) 502.30
(84.88, 85.50, 85.19, 85.81) 85.34 (550.80, 550.50, 550.81, 551.15) 550.83
(90.80, 91.13, 91.14 ,90.50) 90.80 (651.29, 650.05, 650.36, 650.67) 650.98
(82.08, 81.50, 82.11, 82.12) 81.90 (601.60, 601.31, 601.94, 601.95) 601.69
(77.20, 77.70, 78.11, 78.42) 77.84 (580.80, 580.50, 580.80, 583.77) 581.29

Z1

ijp ijc

(82, 84, 87, 91) 
(80, 84, 87, 91) 
(77, 84, 87, 93) 
(76, 84, 87, 96)

(548, 550, 551, 554) 
(545, 550, 551, 556)
(543, 550, 551, 559) 
(540, 550, 551, 563)

(88, 90, 91, 94) 
(87, 90, 91, 96) 
(84, 90, 91, 99) 
(81, 90, 91 101)

(648, 650, 652, 655) 
(642, 650, 652, 657)
(640, 650, 652, 660) 
(637, 650, 652, 664)

(78, 80, 83, 87) 
(75, 80, 83, 88)
(74, 80, 83, 91) 
(71, 80, 83, 94)

(598, 600, 602, 606) 
(595, 600, 602, 608)
(594, 600, 602, 611) 
(592, 600, 602, 613)

(74, 76, 79, 80) 
(73, 76, 79, 83) 
(71, 76, 79, 86) 
(70, 76, 79, 88)

(578, 580, 581, 584) 
(575, 580, 581, 586)
(573, 580, 581, 604) 
(570, 580, 581, 604)

Table 3. Imprecise profit and TC

https://lingo.informer.com
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Case 2: when the constraints are multi-choice
In several real-life situations where parameters of deci-
sion-making problems have multiple choices. In those 
situations where DMs are allowed to set a goal of mul-
tiple choices. Let suppose that the demand and supply 
of the TP are available in the form multi-choice. Table 7.  
is for instant information available to the DM.

After using Equations (19) and (20) the multi-choice 
parameter is converted into a crisp value.

In order, to obtain the lower and upper bound (pay off 
matrix) of each objective function, we solved each objec-
tive separately under the same set of constraints by using 
optimization software LINGO 16.0. The values are given 
below:

133829.06 68169.10Z≤ ≤ ;

21959488 3476456Z≤ ≤ .
In this case, we have also considered the constraints 

(demand and supply) of the formulated model of MOTP 
are uncertain. Values of the parameters (demand and sup-
ply) are available in multiple choices to us, and we do not 
know, which value is a better fit for getting the optimal 

solutions. This type of uncertainty is presented by multi-
choice approach. After following the stepwise procedure 
discussed in Section 5, we obtained the compromise solu-
tion. The discussed model is solved by using optimization 
software LINGO 16.0.

Multi-choice:

1 51555.71Z = ,

2Z 2693496= ;

11 2x = ,

12 0x = ,

13 0x = ,

21 0x = ,

22 1100x = ,

23 0x = ,

31 713x = ,

32 0x = ,

33 800x = .
The values of the rate of increment and decrement are 

obtained by using Equations (13)–(16). Table 8 shows the 
depreciation rate in profit and increment rate in TC.

Table 5. Imprecise demand and supply

Supply ai Demand bj 
(1000, 1100, 1200, 1300) 
(980, 1100,1200, 1350)
(900, 1100, 1200, 1380) 
(800, 1100, 1200, 1400)

(800, 900, 950, 1000) 
(780, 900, 950, 1050) 
(750, 900, 950, 1080) 
(700, 900, 950, 1100)

(800, 900, 950, 1000) 
(780, 900, 950, 1050) 
(750, 900, 950, 1080) 
(700, 900, 950, 1100)

(800, 900, 1100, 1200) 
(780, 900, 1100, 1250) 
(720, 900, 1100, 1300)
(610, 900, 1100, 1400)

(1100, 1300, 1400, 1550) 
(1050, 1300, 1400, 1600) 
(1000, 1300, 1400, 1650) 
(900, 1300, 1400, 1700)

(1000, 1100, 1200, 1300)
(980, 1100, 1200, 1350) 
(900, 1100, 1200, 1380) 
(800, 1100, 1200, 1400)

Table 6. Defuzzifucition of the T2TFN with T1TFN and crisp value of demand and supply

( )iV a ( )iD a ( )jV b ( )jD b

(1150, 1158.95, 1143.91, 1119.05) 1142 (910, 918.85, 918.77, 909.25) 912.98
(910, 918.85, 918.77, 909.25) 912.98 (1000, 1008.51, 1005.81, 1003) 986.40

(1334.85, 1334.62, 1334.44, 1318.52) 1329.33 (1150, 1158.95, 1143.91, 1119.05) 1142

Table 7. Summarises the value of demand and supply with interval type multi-choice

a1 = (800, 1000), (1000, 1200), (1200, 1400) b1 = (700, 900), (900, 1100)
a2 = (700, 900), (900, 1100) b2 = (600, 800), (800, 1000), (1000, 1200), (1200, 1400)
a3 = (900, 1100), (1100, 1300), (1300, 1500), (1500, 1700) b3 = (800, 1000), (1000, 1200), (1200, 1400)

Table 8. Depreciation rate in profit and increment rate in TC

qij 0.20 0.17 0.17 0.23 0.30 0.15 0.25 0.10 0.18
gij 0.30 0.15 0.18 0.29 0.13 0.21 0.18 0.22 0.25
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Case 3: when constraints are in stochastic form
The SP method is to deal with those decision-making op-
timization problems where the parameters of the problem 
assume continuous or discrete probability distributions. 
The stochastic optimization technique deals with the 
modelling and optimizing of decision-making problems 
where probability distributions control the data are known 
or may be estimated using unknown parameters. In many 
cases of TP, parameters have characterized as random var-
iables instead of absolute values. In such TP, a stochastic 
optimization technique is used to solve the problem.

To discover the best fit distribution of constraints, we 
have tested five separate continuous statistical distribu-
tions. The best distribution for each constraint is deter-
mined based on the AIC and BIC. The distribution that re-
sults with the minimum value of AIC and BIC is concluded 
as the best fit distribution. Once the most suitable distri-
bution has obtained, it is available to find the next suitable 
distributions. A difference factor ( )– minAIC AICΔ =  is 
calculated for every distribution tested for each constraint. 
A difference of 0 means best-fitted distribution, difference 
ranging between 0…2 implies substantial fit, a range of 
4…7 indicates lower support for the distribution and a 
difference above 10 shows no support at all. 

In order, to obtain the lower and upper bound (pay off 
matrix) of each objective functions; we solved each objec-
tive separately under the same set of constraints by using 
optimization software LINGO 16.0. The values are given 
below:

Weibull:

140388.12 70855.48Z≤ ≤ ,

22295711 3899169Z≤ ≤ ;
Extreme value:

140394.46 69522.80Z≤ ≤ ,

22304326 3844281Z≤ ≤ ;
Cauchy:

133989.08 71310.91Z≤ ≤ ,

21907326 3841019Z≤ ≤ ;
Pareto:

158142.86 66646.61Z≤ ≤ ,

23455787 3949635Z≤ ≤ ;
Normal:

140902.47 56921.0Z≤ ≤ ,

22328205 3179955Z≤ ≤ .

In this, the case we have considered the constraints 
(demand and supply) of the MOTP are not known or 
fixed. In such situations, the quantity of demand and sup-
ply is supposed to be random variables; this uncertainty 
expressed by probability distributions. We have considered 
five different distribution functions and also try to find 
out the best fit probability distribution. After following the 
stepwise procedure discussed in Section 5, we obtained 
the optimum solution. The discussed model is solved by 
using optimization software LINGO 16.0:

Table 9 provides the availability of demand and supply. 
Values of parameters for all distributions with defined like-
lihood level and deterministic RHS of constraints are pro-
vided in Table 10. After using Equations (22) and (23) values 
of AIC and BIC are obtained and shown in Tables 11 and 12.

From Tables 11 and 12, the extreme value distribution 
has the minimum AIC and BIC for the value of a1. Simi-
larly, normal distribution for a2, normal distribution for 
a3, Weibull distribution for b1, Weibull distribution for b2, 
normal distribution for b3. These are the best distributions 
for the specified constraints.

The best model and the next most suitable models are 
determined using AIC, BIC and Akaike weights, and these 
are depicted in Figure 2. In every graph, the best model 
curve is shown with black line and the original data is 
shown by a dark goldenrod coloured line. For a1 the best 
model is extreme value distribution, and the next most 
suitable distributions are normal, logistic, Pareto and 
Weibull. Normal distribution fits a2, a3 and b3 the best. 
For b1 and b2, Weibull distribution is the most proper 
distribution. The lowest AIC and BIC values determine 
the best-fitted distributions. Looking at the differences 
between AIC and minimum AIC for each constraint, the 
next most suitable models are obtained, and these can be 
viewed in Tables 13 and 14.

After following the stepwise procedure discussed in 
Section 5, we obtained the compromise solution given in 
Table 15 and analysis of solution is presented in Figure 3. 
LINGO 16.0, optimization software has been used to get 
an optimum solution.

Weibull:

1 56498.78Z = ,
2 3051332Z = ;
11 10x = ,
12 0x = ,
13 433x = ,
21 0x = ,
22 989x = ,
23 0x = ,
31 1018x = ,
32 0x = ,
33 411x = ;

Extreme value:

1 55762.11Z = ,
2 3131864Z = ;
11 16x = ,
12 0x = ,
13 470x = ,
21 0x = ,
22 979x = ,
23 0x = ,
31 969x = ,
32 0x = ,
33 412x = ;

Cauchy:

1 53887.73Z = ,
2 2809897Z = ;
11 1x = ,
12 0x = ,
13 249x = ,
21x = 0,
22 982x = ,
23 0x = ,
31 1080x = ,
32 0x = ,
33 320x = ;

Pareto:

1 58156.176Z = ,
2 3456918Z = ;
11 825x = ,
12 205x = ,
13 197x = ,
21 0x = ,
22 1012x = ,
23 0x = ,
31 0x = ,
32 0x = ,
33 1328x = ;

Normal:

1 40909.95Z = ,
2 2756953Z = ;
11 0x = ,
12 0x = ,
13 877x = ,
21 140x = ,
22 282x = ,
23 3x = ,
31 731x = ,
32 455x = ,
33 0x = .
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a1 a2 a3 b1 b2 b3
833 1042 1540 956 1177 1269

1142 881 902 1050 1125 1332
855 954 1339 1033 1146 1218
945 760 1159 912 951 1120

1001 783 1226 999 967 1068
1099 968 1634 1010 974 949
1309 1061 1681 801 784 952
1282 1060 1291 833 1208 1221
876 957 1015 891 1142 1358

1170 784 981 1044 873 1056
1125 1048 1070 1093 1084 997
1075 1027 1438 939 600 1098
1216 846 982 757 913 1389
1055 841 1691 898 681 1140
858 1004 1582 1058 851 1015
904 863 1237 1056 1201 1300

1065 928 1409 963 1040 962
921 1030 1144 944 1167 1094
866 867 1324 832 870 884

1162 766 1527 1098 708 1379
967 711 1210 1059 1097 1040
863 815 1517 1064 630 1031
816 833 915 865 1136 1113

1095 758 1323 957 1076 1049
988 826 1297 749 643 1370

a1 a2 a3 b1 b2 b3
968 1003 1688 728 1043 800

1085 1020 1081 742 1374 986
1090 992 1411 806 841 1205
846 1066 1553 800 626 1289
983 790 1090 707 1215 1009

1068 785 1000 959 1133 805
996 854 1372 805 1293 1117

1218 856 919 1089 732 1212
1182 1064 933 1086 932 968
1394 866 1038 949 650 1392
830 824 955 786 1173 1104

1151 983 1604 1043 1332 1273
831 942 1249 725 1371 1302

1202 813 1332 892 661 1239
1016 747 1686 856 901 1374
1370 796 1219 830 1285 1018
1215 952 1677 871 943 838
881 931 1127 795 853 801

1045 901 1203 1029 888 955
1079 849 936 979 1357 1369
1048 851 1628 811 768 1353
840 1012 1559 772 899 1077
909 990 1405 1035 1356 1059

1132 1000 1575 1080 1101 1373
936 895 949 710 1364 995

Table 9. Availability of demand and supply

Table 10. Values of parameters with distributions 

Probability 
distribution

Random 
variables Shape parameter Scale parameter Location 

parameter
Specified probability 

level
Deterministic RHS 

values

Weibull 

a1 7.23412 1102.19 – 0.88 1222.85
a2 10.1178 949.439 – 0.78 989.176
a3 5.80018 1397.58 – 0.68 1429.39
b1 8.77822 968.265 – 0.66 876.081
b2 5.0586 1093.40 – 0.87 740.507
b3 7.42876 1200.88 – 0.93 843.615

Extreme value 

a1 – 125.997 964.161 0.88 1223.34
a2 – 90.4754 853.956 0.78 979.94
a3 – 224.832 1167.01 0.68 1381.23
b1 – 111.317 853.931 0.66 845.487
b2 – 212.721 888.078 0.87 736.402
b3 – 162.068 1039.69 0.93 881.18

Cauchy 

a1 – 102.906 1031.12 0.88 1291.03
a2 – 77.3216 889.308 0.78 982.774
a3 – 187.184 1282.13 0.68 1400.92
b1 – 95.123 921.857 0.66 869.563
b2 – 165.134 1016.02 0.87 634.418
b3 – 117.888 1095.42 0.93 568.019

Pareto 

a1 4.37666 816.00 – 0.88 1324.6
a2 4.27783 711.00 – 0.78 1012.95
a3 2.94186 902.00 – 0.68 1328.67
b1 4.01989 707.00 – 0.66 924.635
b2 2.05834 600.00 – 0.87 1616.67
b3 3.03056 800.00 – 0.93 1923.87

Normal

a1 – 149.632 1036.06 0.88 877.692
a2 – 100.921 903.9 0.78 833.477
a3 – 253.506 1292.46 0.68 1187.11
b1 – 121.627 914.92 0.66 870.442
b2 – 228.237 1002.7 0.87 736.495
b3 – 173.038 1126.34 0.93 879.568
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Figure 2. Spread of distributions for constraints
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Table 11. AIC of the data set

Distribution a1 a2 a3 b1 b2 b3
Weibull 651.8605 608.7026 699.6887 625.4354 687.9826 661.5466
Extreme value 644.6901 609.7100 701.2756 630.0263 693.8819 666.1192
Cauchy 671.0197 637.8488 728.8230 657.2916 716.0416 687.5926
Pareto 649.6615 638.6991 710.5494 645.8538 720.0861 694.5837
Normal 646.7118 607.3281 699.4324 625.9900 688.9322 661.2447
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7. Discussion and analysis

In this proposed work, we have considered a MOTP with 
conflicting objectives and mixed constraints. The objective 
functions of the formulated model are uncertain. T2TpFN 
used to expresses this uncertainty. We used a defuzzifica-
tion technique to convert the T2TpFN into crisp value dis-
cussed by Biswas and De (2018). In this proposed study, 
we have also discussed three different cases. 

»» when the constraints (demand and supply) of the 
model are T2TpFN;

»» when the constraints (demand and supply) of the 
model are multi-choice;

»» when the constraints (demand and supply) of the 
model are in stochastic form and dealt by five dif-
ferent probability distributions.

We have considered all three above situations and pro-
posed models for MOTP. We have considered a suitable 
example for all three situations to show the applicability 
of the proposed work, in many real-life situations where 
the parameters of MOTP are precisely not known or un-
certain. In those situations, uncertainty can be expressed 
by fuzziness, multi-choices and probability distribution, 
respectively. 

Case 1. In this case, we have considered a situation 
where the input information about the parameters of the 
MOTP is not known or fixed. However, anyhow we can 
find some range about the parameters. Therefore, this un-
certainty is presented by T2TpFN and transformed into 
a crisp value by a defuzzification technique discussed by 
Biswas and De (2018). 

Case 2. In this case, we have considered a situation 
where the constraints (demand and supply) of the MOTP 
are in multi-choices. Therefore we used a transformation 
technique discussed by Roy and Maity (2017) to convert 
the multi-choices into a crisp value. 

Table 12. BIC of the data set

Distribution a1 a2 a3 b1 b2 b3

Weibull 655.4292 612.5266 703.2565 629.2595 691.8066 665.3707
Extreme value 648.5141 613.534 705.0997 633.8504 697.7060 669.9432
Cauchy 674.8437 641.6729 732.6470 661.1157 719.8656 691.4166
Pareto 653.4855 642.5231 714.3735 649.6779 723.9101 698.4078
Normal 650.5358 611.1521 703.2565 629.8140 692.7562 665.0687

Table 13. Differences Δ between AIC values

Distribution a1 a2 a3 b1 b2 b3

Weibull 6.915 1.3745 0.0523 0 0 0.3019
Extreme value 0 2.3819 1.8432 4.5909 5.8993 4.8745
Cauchy 26.3296 30.5207 29.3906 31.8562 28.059 26.3479
Pareto 4.9714 31.371 11.117 20.4184 32.1035 33.339
Normal 2.0217 0 0 0.5546 0.9496 0

Table 14. Akaike weights [%]

Distribution a1 a2 a3 b1 b2 b3

Weibull 41.16 26.51 39.48 52.11 56.76 41.16
Extreme value 4.18 16.01 16.12 5.24 2.97 4.18
Cauchy 9.09 1.24 1.68 6.35 4.58 9.09
Pareto 2.76 8.12 0.15 0.0019 6.065 2.76
Normal 47.87 52.70 40.53 39.49 35.30 47.87

Figure 3. Analysis of solutions
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Case 3. In this case, we have considered a situation 
where the constraints (demand and supply) of the MOTP 
are random variables. Five different types of probability 
distribution functions have been discussed. We have also 
used AIC and BIC technique to find the best probability 
distributions among them. 

Therefore, discussing all three cases, we have followed 
the stepwise procedure of Section 6, to find the lower and 
upper bound and compromise solutions.

From Table 15, we can observe that the value of the 
first objective (profit maximization)is maximum when we 
consider the stochastic form with Pareto distribution. That 
means the model with the stochastic form with Pareto dis-
tribution gives the maximum profit as compared to the 
other models. From Table 15, we can also observe that 
the value of the second objective is minimum when the 
proposed model with multi-choice. That means the model 
with multi-choice gives the minimum cost as compared 
to the other models. Figure 3 depicted the behaviour of 
objective functions in different uncertain conditions and 
probability distribution. 

Table 15. Analysis of compromise solutions

Uncertainty/
distributions  
in parameters

Optimal objective 
function values

Optimal 
transportation plan

T2TpFN

1 57564.71Z = ,
2 3279763Z =

11 4x = ,
12 73x = ,
13 735x = ,
21 0x = ,
22 913x = ,
23 0x = ,
31 922x = ,
32 0x = ,
33 407x =

Multi-choice

1 51555.71Z = ,
2 2693496Z =

11 2x = ,
12 0x = ,
13 0x = ,
21 0x = ,
22 1100x = ,
23 0x = ,
31 713x = ,
32 0x = ,
33 800x =

Weibull

1 56498.78Z = ,
2 3051332Z =

11 10x = ,
12 0x = ,
13 433x = ,
21 0x = ,
22 989x = ,
23 0x = ,
31 1018x = ,
32 0x = ,
33 411x =

Extreme value

1 55762.11Z = , 
2 3131864Z =

11 16x = ,
12 0x = ,
13 470x = ,
21 0x = ,
22 979x = ,
23 0x = ,
31 969x = ,
32 0x = ,
33 412x =

Uncertainty/
distributions  
in parameters

Optimal objective 
function values

Optimal 
transportation plan

Cauchy

1 53887.73Z = , 
2 2809897Z =

11 1x = ,
12 0x = ,
13 249x = ,
21x = 0,
22 982x = ,
23 0x = ,
31 1080x = ,
32 0x = ,
33 320x =

Pareto

1 58156.176Z = , 
2 3456918Z =

11 825x = ,
12 205x = ,
13 197x = ,
21 0x = ,
22 1012x = ,
23 0x = ,
31 0x = ,
32 0x = ,
33 1328x =

Normal

1 40909.95Z = , 
2 2756953Z =

11 0x = ,
12 0x = ,
13 877x = ,
21 140x = ,
22 282x = ,
23 3x = ,
31 731x = ,
32 455x = ,
33 0x =

8. Managerial implications, key contributions, 
limitations, comparison

8.1. Managerial implications

There are several managerial implications of the proposed 
work as given below:

»» the proposed work has a powerful practical appli-
cation in industrials transportation problems. This 
study helps the mangers from industries to find op-
timum order quantity of shipment from source to 
destination at minimum TC;

»» the proposed model is designed under fuzziness, 
multi-choice and probabilistic situations, that can 
help the managers for making better decisions in 
these types of situations; 

»» in the presented model, TC, profit, demand and sup-
ply are considered with vagueness rather than exact 
value, that types of scenario provide a flexible view 
to the transportation managers to make a right deci-
sion under vagueness;

»» the proposed work helps the managers to select the 
best transportation route to deliver the products 
from sources to destinations at minimum TC; 

»» every industries or organization have their primary 
objective to maximize the profit; this study helps 
them to make a profit at minimum TC; 

»» our study helps managers to make better decisions 
for industries under an uncertain environment in 
transportation problems and also provide the ideas 

End of Table 15
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on how to perform under such types of unexpected 
scenarios; 

»» this study gives an idea about how to tackle those 
situations, where some additional cost may be added 
to every product due to damage, late delivery, etc.; 

»» the proposed work helps the managers to make a 
better decision of multi conflictive objectives of 
transportation problem under fuzzy environment. 

»» moreover, the proposed work is simple, easy to use 
and also helps to find solutions to other multi-crite-
ria management decision-making problems;

»» our study may be useful to researchers and organiza-
tions to build transportation evaluation systems in a 
fuzzy environment.

8.2. Contributions

Here is a list of the key contributions of this study.
»» a mathematical model of MOTP is designed with 

objectives of profit maximization and cost minimi-
zation;

»» the proposed model is considered in an uncertain 
environment, where all involved parameters are in 
an uncertain nature and presented by T2FNS;

»» constraints of the proposed model are discussed 
with two situations: (1) multi-choice, (2) probabilis-
tic random variables, where random variable follows 
some different types of probability distributions; 

»» AIC and BIC approach is used for the best fit prob-
ability distributions of MOTP;

»» a new function, rate of increment in TC and rate of 
decrement in profit on transporting of each product 
due to the damage, late deliveries, weather condi-
tions, and any other issues are discussed in the pro-
posed model;

»» FGP is used to solve the proposed MOTP;
»» the proposed work helps to understand the concept 

of T2FS in MOTP;
»» T2FS minimizes the more uncertainty than T1FS. 

Thus, the DMs can make better decisions with the 
help of the proposed study.

8.3. Limitations 

There are few limitations related to our study, which is 
defined as follows:

»» in our proposed model, we mainly considered two 
factors; future studies can also use some other fac-
tors like time, sustainability, etc.; 

»» computational work in the proposed study has been 
based on a hypothetical case study. It would be bet-
ter to expand this work supported by real data;

»» FGP approach has been used in proposed work lim-
ited to only linear membership function, but there 
are some others membership functions available in 
the literature review, in future research some other 
memberships function can also be used in the pro-
posed model;

»» the presented model is based on vagueness, but in 
some other situations, DMs have to face when the 
model is not in the form of vagueness.

8.4. Comparison with previous works

After analyzing the above literature reviews of the trans-
portation models, the objective with profit maximization 
is very rare. The researchers have done most of the past 
works on TP with one objective (TC). In our proposed 
work, we have considered both objectives. These objec-
tives are opposite to each other. In our proposed study, we 
have considered all types of uncertainty and the concept 
of T2FS in both objectives and constraints, which is a new 
investigation in TP as per our best knowledge.

Conclusion and future work

In the supply chain, networking of transportation plan-
ning is a critical decision-making problem. The decision-
making of transportation planning of raw material to in-
dustries, and finished goods to customers, vendors, ware-
houses, etc. are very challenging to the top stakeholders of 
the companies. Every supply chain’s efficiency is directly 
correlated with the effective use of transport. For maxi-
mum profitability, each company makes use of different 
transport modes and routes. A logistics department uses 
transport to minimize the overall cost of the goods to be 
delivered, thus maintaining a fair degree of accessibility 
for customers. 

The TP is a crucial problem of supply management 
and networking optimization and had been used in dif-
ferent areas of production distribution system, networks, 
rail, etc. The presented work enlightens various types of 
real-world challenging decision-making environments of 
transportation planning.

The paper has focused on the issues of various types 
of vagueness in the information. The vagueness has pre-
sented by fuzzy patterns (T2TpFN), multi-choices and 
stochastic. The vagueness of the information has been re-
moved using the appropriate methods. The multi-choices 
of the information are dealt with using the binary conver-
sion method, and fuzziness T2TpFN of the information is 
removed using the two-phases defuzzification procedure. 
The Stochastic information is dealt with the probability 
distributions, whereas the c method used to estimate pa-
rameters of the distribution.

Moreover, to best-fit distribution to a particular situ-
ation is determined by AIC and BIC approaches. Finally, 
the resultant crisp problem is a multi-objective optimiza-
tion problem; for the final solution, we have used the FGP 
approach. An essential fact about the proposed work is 
that we have considered two different objectives, which 
are opposite to each other. The input parameters of the de-
signed model are considered in an uncertain environment. 
Moreover, to present the uncertainty, we have considered 
three different scenarios T2TpFN, multi-choice and sto-
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chastic. The main contribution of the proposed work in 
the MOTP can be defined as follows:

»» the proposed model is considered in an uncertain 
environment, where all involved parameters of the 
MOTP are uncertain – this uncertainty expressed by 
fuzzy, multi-choice and stochastic;

»» AIC and BIC approach is used for the best fit prob-
ability distributions of MOTP;

»» a new function, rate of increment in TC and rate of 
decrement in profit on transporting of each product 
due to the damage, late deliveries, weather condi-
tions, and any other issues are discussed in the pro-
posed model;

»» the proposed work helps to understand the concept 
of T2FS in MOTP;

»» T2FS minimizes the more uncertainty than T1FS. 
Thus, the decision-makers can make better decisions 
with the help of the proposed study.

TCs represent a large percentage of the supply chain’s 
total expense, managers need a thorough analysis to 
choose a suitable mode of transportation to reduce costs 
and monitor the amount of shipment. Supply chain man-
agers should take advantage of emerging technology to 
minimize TCs and boost their efficiency of networks allo-
cation. Uncertainty of demand and supply for transporta-
tion must be taken into account while designing transport 
networks. If vagueness in transportation is avoided, it will 
increase expenses the transportation. The proposed ap-
proach is very easy and can be applied in many areas such 
as reliability, inventory management, queuing theory, etc. 
In future work, the discussed work can also be expressed 
as a bi-level optimization problem, the multi-level optimi-
zation problem for more complex TP case studies.
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