
TRANSPORT
ISSN 1648-4142 / eISSN 1648-3480

2015 Volume 30(1): 117–128
doi:10.3846/16484142.2015.1021835

Corresponding author: Hao Wang
E-mail: haowang@seu.edu.cn
Copyright © 2015 Vilnius Gediminas Technical University (VGTU) Press
http://www.tandfonline.com/TRAN

BI-LEVEL PROGRAMMING MODEL AND ALGORITHMS FOR 
STOCHASTIC NETWORK WITH ELASTIC DEMAND

Xiang Zhang, Hao Wang, Wei Wang
School of Transportation, Southeast University, China

Submitted 25 February 2013; resubmitted 21 April 2013; accepted 20 August 2013

Abstract. Based on a state-of-the-art review of the Road Network Design Problem (RNDP), this paper proposes a 
bi-level programming model for the RNDP as well as algorithms for it. In the lower level of the proposed model, the 
elastic-demand Stochastic User Equilibrium (SUE) model is adopted to coincide well with characteristics of users be-
havior, and additionally, the parameter calibration method for the model is developed based on the Logit path choice 
model. In the upper level of the proposed model, the consumer surplus is maximized to improve the social benefit of 
a network in consideration of the travel demand, the construction cost, the off-gas emissions and the saturation level. 
The algorithm for the lower-level model is developed based on the descent iteration method, Dijkstra’s algorithm and 
linear search technology. A modified Genetic Algorithm (GA) is developed as the algorithm for the whole bi-level 
model, which takes designed elitist selection operator, adaptive cross operator, mutation operator and niche technology 
into consideration. The proposed model and algorithms are applied to a numerical example. The results demonstrate 
the validity and efficiency of the model and algorithms, which shows a bright prospect of the application in RNDP.
Keywords: road network; traffic design; bi-level program; elastic-demand stochastic user equilibrium; genetic  
algorithm.

Introduction

Road Network Design Problem (RNDP) is regarded as 
one of the most complicated and challenging problems 
in transportation field. RNDP consists in optimizing a 
network to maximizing social benefit, by means of add-
ing new links and improving existing links, with respect 
to a set of factors (traffic, cost, environment, etc.) (Cas-
cetta 2001). Given an existing urban network, the prob-
lem is to define the optimal configuration of the road 
network in terms of link attributes (grade, capacity, 
etc.). In RNDP, both users and non-users (system plan-
ners in charge of traffic, investment, environment, etc.) 
participate in the decision process, who are interrelated 
and interactional, so RNDP is a typical bi-level program 
(Chiou 2009). As a more comprehensive review, Yang 
and Bell (1998) presented a review analysis of models 
and algorithms for RNDP. In recent years, various ad-
vanced bi-level programming models and algorithms for 
RNDP have been proposed (Luathep et al. 2011; Wang, 
Lo 2010; Bagloee, Ceder 2011). 

For most bi-level programming models, the lower 
level is represented as a User Equilibrium (UE) assign-
ment problem, while the upper level can be regarded as 

an investment decision problem. In the lower level, UE 
assignment problem can be classified as Deterministic 
User Equilibrium (DUE) and Stochastic User Equilibri-
um (SUE). Also, two types of travel demands are usually 
concerned with UE problems, namely, the fixed demand 
and the elastic demand. Thus, there are several kinds of 
assignment models, in which, the fixed-demand DUE 
model is adopted under most circumstances. Asakura 
and Sasaki (1990) used elastic-demand DUE model in 
RNDP in 1990 for the first time; Patriksson (2008) made 
a pioneer study in which the fixed-demand SUE model 
is adopted. Admittedly, the elastic-demand SUE model 
corresponds with users’ behavior the best (Chen, Alfa 
1991), but it can hardly be used in RNDP due to its com-
plexity. In the upper level, most traditional models em-
phasized minimizing system costs, including travel time 
and/or construction cost, as an ultimate objective. As an 
exception, Friesz et al. (1993) established a multi-fac-
tors RNDP model, taking both system costs and vehicle 
miles travelled into consideration for the first time. In 
recent years, resource and environment problems have 
increased seriously, so that some other factors, includ-
ing the use ratio of link and the off-gas emissions, are 
thought highly of by researchers (Sharma et al. 2009; 
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Qin et al. 2010; Chen et al. 2010). Multi-factors pro-
grams are becoming the new hotspot in RNDP.

So far, previous algorithms for elastic-demand SUE 
model have great limitations in use, in which, for in-
stance, method of successive average only adapts well 
to rail transit network and public transit network, while 
method of network diagram transformation produces 
fictitious links inevitably (Zhou, J. 2001; Zhou, Z. 2008). 
For bi-level programs, many heuristic algorithms are 
used in previous researches, including simulated an-
nealing algorithm (Friesz et al. 1992), neural network 
algorithm (Xiong, Schneider 1995), Genetic Algorithm 
(GA) (Drezner, Wesolowsky 2003), ant system algorithm 
(Poorzahedy, Abulghasemi 2005), hybrid meta-heuristic 
algorithm (Poorzahedy, Rouhani 2007), particle swarm 
optimization (He et al. 2013), among which GA is most 
widely used because of its parallelism and compatibility 
(Cantarella, Vitetta 2006). Drezner, Salhi (2002) and Ka-
roonsoontawong, Waller (2006) compared performance 
of these advanced heuristics in test problems, respec-
tively. Both studies demonstrate that GA is superior in 
finding optimal solutions of RNDP. Despite this, GA 
also has shortcomings, such as slow convergence rate, 
premature convergence. Therefore, improvement mea-
sures should be taken.

In this paper, a bi-level programming model for 
RNDP is presented. The model adopts elastic-demand 
SUE model in the lower level to describe users’ behav-
ior in networks. Meanwhile, a new parameter calibration 
method for this model is provided, which is developed 
by minimizing the difference between theoretical traffic 
demands and actual ones. The upper-level subprogram 
takes multi-factors into consideration, including the 
travel demand, the construction cost, the off-gas emis-
sions and the saturation level. Additionally, solution 
algorithms are also developed for both elastic-demand 
SUE model and proposed bi-level programming model, 
based on some classic methods including descent it-
eration (Ortega, Rheinboldt 1970), Dijkstra’s algorithm 
(Kung et al. 1984), linear search technology (Florian 
1977), GA and so on.

In Section 1, a bi-level programming model for 
RNDP is proposed. In Section 2, solution algorithms 
are developed for the proposed model. Section 3 pres-
ents a numerical example for a specific network. Finally, 
some conclusions and future work are summarized in 
last section.

1. Bi-Level Programming Model

1.1. Notations 
Notations used throughout the paper are listed as fol-
lows unless otherwise are specified:

A – set of links in a network, including probably 
added links;

a – link index, where a ∈A;
Ca – capacity of link a;

Dij(·) – travel demand function of O–D pair ij;
fa – flow for link a;
f – link flow vectors whose elements are fa;

hk
ij – flow for path k of O–D pair ij;
h – path flow vector whose elements are hk

ij;
i – origin node index;

ij – origin–destination (O–D) pair index;
j – destination node index;

K – set of paths;
Kij – set of paths connecting origin i with destina-

tion j;
k – path index, where k∈K;

La – length of link a;
qij – travel demand between O–D pair ij;
q – N×1 vector of O–D travel demands whose ele-

ments are qij;
ta – travel cost on link a;

tk
ij – travel cost on path k of O–D pair ij;

Z1, Z2 – objective function values of upper-level sub-
program and lower-level subprogram, respec-
tively;

q – accuracy degree of perceived travel cost;
δa,k – link-path incidence coefficient, whose value is 

equal to one if link a belongs to path k, zero 
otherwise.

1.2. Lower-Level Subprogram
In the bi-level programming model for RNDP, the lower 
level adopts UE assignment model. As it is known to us, 
a famous phenomenon called Braess’s Paradox exists in 
RNDP, which indicates that if path choice behavior of 
users is not taken into comprehensive consideration in 
RNDP, the running statement cannot be improved and 
what is more, crowdedness degree might ascend in a 
network (Braess 1968). For this reason, the assignment 
model in the lower level must coincide well with char-
acteristics of users behavior. There are two main charac-
teristics, namely, the uncertainties of both travel demand 
and path choice. Uncertainty of travel demand indicates 
that travel demand is elastic which varies with network 
reformation, while uncertainty of path choice indicates 
that users are not always choosing the very path with 
minimum cost due to limitation of their knowledge level 
and information obtainment. To correspond with these 
two characteristics, model for SUE assignment with elas-
tic demand is adopted in the lower-level subprogram in 
this research. The elastic-demand SUE model can be for-
mulated as a mathematical program as follows (Zhou, 
Xu 2001):

( )
( ) ( )= + ⋅ − −

θ∑ ∑∑∫2 0, ,

1
min ln 1af ij ij

a k kf q h a ij k
Z t x dx h h

( ) ( )−⋅ − −
θ∑ ∑∫ 1

0

1
ln 1 ijq

ij ij ij
ij ij
q q D x dx   (1a)

subject to:

≥ 0ijhk , ∀ , ,i j k ;  (1b)

=∑ ij
ijk

k
h q , ∀ ,i j ;  (1c)

= δ∑∑∑ ,
ij

a a kk
i j k

f h , ∀ a ;  (1d)

where: constraints (1b–d) are flow constraints for UE 
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assignment models. Specifically, constraint (1b) denotes 
the non-negativity on path flows; constraint (1c) is the 
travel demand conservation constraint and constraint 
(1d) is a definitional constraint that sums up all path 
flows passing through a given link. In the formulation 
above, ta can be expressed as travel time on link a, which 
is calculated by Bureau of Public Road function (High-
way Capacity Manual 2010):

  
 = ⋅ + ⋅     

4

0 1 0.15 a
a a

a

f
t t

C
,  (2)

where: ta0 is free-flow travel time which equals to the 
link length divided by the free-flow speed.

Though objective function (1a) has no real mean-
ings by itself, it represents SUE Principle that no traveler 
can improve his or her travel cost that he or she per-
ceives by unilaterally changing routes. The route choice 
process in this case is probabilistic rather than determin-
istic. A distinction exists between the actual travel cost 
and perceived travel cost (Zhou, Xu 2001):

= + εij ij ij
k k kT t ,  (3)

where: ij
kT  is the perceived travel cost on path k of O–D 

pair ij, εijk  is a random variable whose expectation is 
equal to zero. 

εijk  can be expressed in the following form (Zhou, 
Xu 2001):

ε = ⋅ξ
θ
1ij ij

k k ,  (4)

where: q is a constant that represents accuracy degree 
of perceived travel cost. The higher its value is, the more 
probability there is for users to choose the path with 
minimum travel cost. ξk

ij is a kind of independently 
and identically distributed random variates. The corre-
sponding path choice model is Logit model, which is 
equivalent to elastic-demand SUE model and provides 
a closed-form expression of path choice probabilities 
(Kuang et al. 2007):

( )
( )

∈

−θ⋅
=

−θ⋅∑

exp

exp
ij

ij
kij

k ij
w

w K

t
P

t
. (5)

Then flow for path k can be expressed as follows:

= ⋅ij ij
ijk kh q P .  (6)

In model (1), travel demand is elastic and has direct 
relationship with travel cost, which can be calculated as 
follows (Kuang et al. 2007):

( ) ( )= = ⋅ −β ⋅0 expij ij ij ij ijq D S q S ,  (7)

where: 0
ijq  is the maximum potential travel demand 

between O–D pair ij. There are many factors that in-
fluence 0

ijq  including population, income, employment 
level, vehicle stock at origin node and stopping attrac-
tion at destination node. Values of 0

ijq  are determined 

by resident travel survey and travel demand prediction. 
β is a constant that represents the sensitivity of travel 
demand to its cost. Generally speaking, the higher net-
work crowdedness degree is, the larger the value of β 
is. Sij is expectation of minimum perceived travel cost, 
which can be calculated as follows (Kuang et al. 2007):

( )
∈

 
 = − ⋅ −θ⋅

θ   
∑1

ln exp
ij

ij
ij k

k K
S t .  (8)

Combining equations (7) and (8), qij can be ex-
pressed as follows:

( )
∈

  β  = ⋅ − ⋅ −θ⋅ =
 θ    

∑0 exp ln exp
ij

ij
ij ij k

k K
q q t

( )
−β θ

∈

 
 ⋅ −θ ⋅
  
∑

/

0 exp
ij

ij
ij k

k K
q t .  (9)

Combining equations (5), (6) and (9), ij
kh  can be 

expressed as follows:

( ) ( )
−β θ

∈

 
 = ⋅ = ⋅ −θ⋅ ×
  
∑

/

0 exp
ij

ij ij ij
ij ij wk k

w K
h D S P q t

( )
( ) ( )

−β θ−

∈
∈

 −θ⋅
 = ⋅ −θ⋅ ×
 −θ⋅  
∑

∑

/ 1

0
exp

exp
exp ij

ij

ij
k ij

ij wij
w Kw

w K

t
q t

t

( )−θ ⋅exp ij
kt .  (10)

In equations (9) and (10), ij
kt  can be calculated as 

follows:

= ⋅δ∑ ,
ij

ak a k
a

t t ,  (11)

where ta has direct connection with flows. Hence, equa-
tions (9) and (10) are implicit functions of flow solutions 
in model (1), so flow solutions can not be obtained only 
with these two equations.

Admittedly, it is almost impossible for any model 
to avoid Braess’s Paradox absolutely, including elastic-
demand SUE model. For instance, as q expands to in-
finity, SUE solutions approach DUE solutions, and thus 
Braess’s Paradox can be reproduced to an arbitrary de-
gree. The extent to which elastic-demand SUE model is 
consistent with users’ behavior depends on precision de-
gree of values of β and q. However, in previous studies, 
values of β and q are not quantitatively determined, but 
empirically estimated according to crowdedness degree 
of a network, knowledge level and information obtain-
ment of users. According to previous literature, refer-
ence range of q is between 0.1 and 3.5 (Zhou, Xu 2001); 
reference range of β is between 0.01 and 0.1 (unit: pcu/h 
for demand and min for cost) (Li et al. 2001). Actually, 
either of equations (9) and (10) can help determine pa-
rameters β and q quantitatively. In this paper, equation 
(9) is used to develop a parameter calibration method 



for the elastic-demand SUE model. The main steps of 
the procedure as depicted in Fig. 1 are summarized:
Step 1. Initialization:

Set initial solutions, β = 0.01 and θ = 0.1.
Step 2. Gaining theoretical value of travel demand:

 – Calculate travel cost on each path by equations 
(2) and (11).

 – Calculate qij with equation (9), which serves as 
theoretical value of travel demand between each 
O–D pair.

Step 3. Termination:
 – Besides theoretical value ijq , there is also actual 
travel demand ′ijq , which represents travel de-
mand between O–D pair ij on the existing road 
network and can be got through traffic investiga-
tions. Calculate the error ε1 between ijq  and ′ijq  
as follows:

( )− ′

ε =
′

∑

∑

2

1

ij ij
ij

ij
ij

q q

q
.

 – If ε < ε1 0  (where: ε0 is the maximum permissible 
error), output current values of β and θ as final 
results and stop the whole solving procedure. 
Otherwise, continue this step.

 – If θ = 3.5, then reset β and θ, β = β + 0.01, θ = 
0.1. Otherwise, reset θ, θ = θ + 0.1.

Go to Step 2.
Remark 1. The method above uses flows in an origi-

nal network to determine parameters with implicit func-
tion (9) of flow solutions for programming model  (1). 
The aim is to search the optimal values of β and θ which 
can make theoretical travel demands gained by Logit 
model correspond well with actual flows under current 
circumstance.

Remark 2. The whole procedure amounts to a dou-
ble-deck circulation structure. In outer circulation, the 
feasible solution of β ranges from 0.01 to 0.1 with the 
interval of 0.01, while in intimal circulation, the feasible 

solution of θ ranges from 0.1 to 3.5 with the interval of 
0.1. The optimization starts from β = 0.01 and θ = 0.1, 
and continues until the error in Step 3 is less than the 
maximum permissible one.

1.3. Upper-Level Subprogram
In bi-level programming models for RNDP, the upper 
level is usually represented as some investment deci-
sion problem. In most construction projects, measures 
of both adding new links and improving existing links 
are taken, and the corresponding problem is a mixed 
RNDP. Hence, mixed RNDP model is adopted in the 
upper level. In consideration of elastic travel demand in 
the lower level, the upper level should not pursue the 
minimum of construction costs or travel costs. Other-
wise, travel demands would drop markedly, which is 
contrary to the original intention of network design. 
Under elastic demand, the upper-level subprogram 
should improve social benefit by maximizing consumer 
surplus, which accounts for the difference between total 
user benefit and total social cost. In RNDP, consumer 
surplus is expressed by the difference between travel de-
mand and construction cost in common circumstances, 
while in this paper, off-gas emissions is also taken into 
consideration. With the goal of maximizing consumer 
surplus, it is expected to attract more travel demands at 
the expense of fewer construction costs as well as fewer 
pollutant emissions. Also, saturation level is taken into 
account to guarantee appropriate use ratio and service 
level on links. Thus, the upper-level subprogram can be 
formulated as a nonlinear integer program as follows:

( ) ( )= − θ ⋅ −∑ ∑1 1max ij a aY ij a
Z q G yY

( )θ ⋅ ⋅ ⋅∑2 a a a
a
h L f Y   (12a)

subject to:
{ }∈ ∀ ∈0,1,2, ,ay m a A ;  (12b)

≤ ≤ ∀ ∈l a hR R R a A ,                                  (12c)

where: Y is design vector of the program, which involves 
a set of integer elements ya that represent attributes of 
link a after network reformation. qij(Y) and fa(Y) are 
travel demands under certain road network reformation 
scheme which can be obtained by solving lower-level 
subprogram; Ga(ya) is the construction-cost function of 
link a; Ra is the saturation level on link a; Rl and Rh are 
the upper and lower bounds of saturation level respec-
tively; θ1 is a constant coefficient matching units of trav-
el demand and construction cost; θ2 is a constant coeffi-
cient matching units of travel demand and off-gas emis-
sions; ha is off-gas emissions coefficient of link a which 
represents off-gas emissions of an equivalent car when 
it runs normally for a single-unit distance on link a.

Remark 3. According to professional standard 
(Ministry of Housing and… 1991; Highway Capacity 
Manual 2010) and reference (Guo 2009), link grades and 
attributes for urban areas are summarized in Table 1. In 
construction projects, attribute values can be changed 
flexibly in accordance with actual situation.Fig. 1. Parameter calibration for elastic-demand SUE model

Step 3

θ = 0.1,

β = β + 0.01

θ= θ + 0.1

EndOutput β & θ

Yes

θ = 3.5
No

No
ε1<ε0

Calculate error ε1 between theoretical

and actual travel demands

Step 2·Calculate travel cost

Calculate theoretical travel demand

Initialize parametersStart Step 1

Yes

·
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Remark 4. In RNDP, there is a phenomenon called 
Pollutant Emissions Paradox, which indicates that vol-
ume of off-gas emissions rises dramatically though mea-
sures of adding new links or improving existing links in 
network design (Zhao et al. 2005). In order to avoid de-
cision-making failure, off-gas emissions should be taken 
into consideration as shown in objective function (12a), 
where off-gas emissions coefficient can be expressed as 
a polynomial function with respect to travel speed (An-
derson et al. 1996):

= + ⋅ + ⋅ + ⋅2 3
0 1 2 3a a a ah b b v b v b v ,  (13)

where: va is the mean speed on link a; b1, b2, b3, b4 are 
constant coefficients which are necessary to determine 
according to specific areas with the help of curve fitting 
calculations (Wang 2002).

Remark 5. In terms of social benefits, q1 indicates 
that incremental social benefits caused by decreasing 
one-unit construction cost amount to those caused by 
increasing q1-unit travel demands, while q2 indicates 
that incremental social benefits caused by decreasing 
one-unit off-gas emissions amount to those caused 
by increasing q2-unit travel demands. Thus, these two 
coefficients essentially reflect the importance of traffic 
benefit and social benefits. For a construction project, if 
economical efficiency is relatively more important, then 
the upper bound of construction cost is lower and the 
minimum expected travel demand contributed by one-
unit construction cost is more. Therefore, the value of 
q1 needs to be set higher in this case. Similarly, if envi-
ronmental efficiency is of more importance, value of q2 
needs to be set higher, while if traffic benefit is of more 
importance, values of both q1 and q2 should be set lower. 
In fact, the upper-level formulation can be expressed in 
another form:

( )= ∑1max ijY ij
Z q Y ,

 
 (14a)

subject to:

( ) ≤∑ 1a a
a
G y A ;  (14b)

( )⋅ ⋅ ≤∑ 2a a a
a
h L f AY ;  (14c)

{ }∈ 0,1,2, ,ay m , ∀ ∈a A ;           (14d)

≤ ≤l a hR R R , ∀ ∈a A .  (14e)

It can be proved in mathematics that formulation 
(14) is identical with formulation (12) if Lagrange mul-
tipliers of constraint (14b) and (14c) are equal to q1 and 
q2 respectively. In this case, negative correlation exists 
between q1 and A1, as well as q2 and A2, which corre-
sponds to the analysis above.

1.4. Bi-Level Program
Based on Sections 1.2 and 1.3, the bi-level programming 
model for mixed RNDP can be established as follows:

( ) ( )= − θ ⋅ −∑ ∑1 1max ij a aY ij a
Z q G yY

( )θ ⋅ ⋅ ⋅∑2 a a a
a
h L f Y   (15a)

subject to:

{ }∈ 0,1,2, ,ay m , ∀ ∈a A ;  (15b)

≤ ≤l a hR R R , ∀ ∈a A ,  (15c)

where the flow set can be obtained by solving the lower-
level model below:

( )
( )= + ⋅ ×

θ∑ ∑∑∫2 0, ,

1
min af ij

a kf q h a ij k
Z t x dx h

( ) ( )− − ⋅ − −
θ∑
1

ln 1 ln 1ij
ij ijk

ij
h q q

( )−∑∫ 1
0
ijq

ij
ij

D x dx
 

 (15d)

subject to:

≥ 0ij
kh , ∀ , ,i j k ;  (15e)

=∑ ij
ijk

k
h q , ∀ ,i j ;  (15f)

= ⋅δ∑∑∑ ,
ij

a a kk
i j k

f h , ∀ a.  (15g)

Compared with some previous advanced RNDP 
models (Luathep et al. 2011; Farvaresh, Sepehri 2011; 

Table 1. Values of ya and the corresponding link attributes

ya Link grade Link category Lane number Design speed
[km/h]

One-way capacity
[pcu/h]

Cost 
[1000 yuan/km]

1 I express way 8 60–80 4800 1600
2 II express way 8 60–80 3600 1300
3 III arterial road 6 30–60 4000 1000
4 IV arterial road 6 30–60 3000 800
5 V sub-arterial road 4 20–50 2400 600
6 VI sub-arterial road 4 20–50 1600 400
7 VII branch 2 20–40 1500 300
8 VIII branch 2 20–40 750 200
0 Not add or improve link

Notes: 1) for existing links, construction cost equals the expense on link performance improvements; 2) 1 yuan ≈ 0.16 dollar.

Transport, 2015, 30(1): 117–128 121



Chen et al. 2011), this model has advantages mainly in 
following aspects:

 – For the lower-level subprogram: 
 – in consideration of two main characteristics 
in assignment (uncertainties of the travel de-
mand and the path choice), the elastic-demand 
SUE model is adopted to coincide well with 
characteristics of users’ path choice behaviour; 

 – values of coefficients can be quantitatively de-
termined by implicit functions of flow solu-
tions for the model.

 – For the upper-level subprogram: objective in the 
upper level is maximizing consumer surplus to pur-
sue social benefits by measures of both adding new 
links and improving existing links, taking multi-
factors including travel demand, construction cost, 
off-gas emissions and saturation level into consid-
eration. What’s more, the importance of traffic ben-
efit, economical efficiency and environmental effi-
ciency in construction projects can be represented 
through adjusting unit-matching coefficients. 

2. Solution Algorithms

2.1. Algorithm for Lower-Level Subprogram
Nowadays, only a few algorithms have been proposed 
to solve elastic-demand SUE model, and existing al-
gorithms are more or less defective. In this research, a 
utility algorithm for elastic-demand SUE model is de-
veloped based on some classic methods such as descent 
iteration method, Dijkstra’s algorithm and linear search 
technology. Main steps of solution procedure as depicted 
in Fig. 2 are summarized:
Step 1. Initialization:

 – Set initial iteration counter n = 0. 
 – Set initial solution set { }1

af , { }1
ijq  and { },1ij

kh , 
which meet flow constraints for UE assignment 
models.

Step 2. Determining iteration direction:
 – Calculate travel cost on each link a by equa-
tion (2). 

 – With the help of Dijkstra’s algorithm, find out the 
very path m with minimum travel cost ,ij n

mt  of 
each O–D pair ij and calculate µ 0i

ij  representing 
minimum travel cost of each O–D pair ij when 
there is none flow in the whole network.

 – Calculate ( )−1 n
ij ijD q  by equation (5). Calculate 

augmentation flow for each path ,ij n
mg  as follows:

if ( )−<, 1ij n n
m ij ijt D q , then ( )= µ, 0ij n

m ij ijg D   
and =, 0ij n

kg , ∀ ≠k m ;
if ( )−>, 1ij n n

m ij ijt D q , then = ∀, 0 ,ij n
kg k ;

if ( )−=, 1ij n n
m ij ijt D q , then =, / 2ij n

m ijg q   

and =, 0ij n
kg  , ∀ ≠k m .

 – Based on ,ij n
mg , calculate augmentation flow for 

each link n
ay  and augmentation travel demand 

between each O–D pair n
ijv  as follows:

= ⋅δ∑∑∑ ,
,

ij n ijn
a k a k

i j k
y g , ∀a ;

=∑ ,ij nn
ij k

k
v g , ∀ ,v i j .

Step 3. Determining iteration step size:
Gain iteration step size by solving the fol-

lowing one-dimensional program with the help 
of linear search technology, specifically Fibonacci 
method (Bergum et al. 1992).

( ) ( )( )+α ⋅ −
α = +∑∫0min

n n n n
a a af y fn

a
a

Z t x dx

( )( )+ α ⋅ − ×
θ∑∑

, , ,1 ij n ij n ij nn
k k k

ij k
h g h

( )( ) + α ⋅ − − −  
, , ,ln 1ij n ij n ij nn

k k kh g h

( )( )+ α ⋅ − ×
θ∑
1 n n n n

ij ij ij
ij

q v q

( )( )( )+ α ⋅ − − −ln 1n n n n
ij ij ijq v q

( )( )+α ⋅ − −∑∫ 1
0

n n n n
ij ij ijq v q

ij
ij

D x dx

subject to:
≤ α ≤0 1n .

Step 4. Updating flows:

( )+ = + α ⋅ −1n n n n n
a a a af f y f ,∀a ;

( )+ = + α ⋅ −1n n n n n
ij ij ij ijq q v q , ∀ ,i j ;

( )+ = + α ⋅ −, 1 , , ,ij n ij n ij n ij nn
k k k kh h g h , ∀ , ,i j k .

Step 5. Termination:
 – Calculate the error ε1:

( )+ −

ε =

∑∑

∑∑

2, 1 ,

1 ,

ij n ij n
k k

ij k
ij n
k

ij k

h h

h
.

If ε < ε1 0 (where ε0  is the maximum per-
missible error), continue this step. Otherwise, 
increment iteration counter n = n + 1 and go to 
Step 2.

 – Calculate +1n
at , +, 1ij n

kt , +1n
ijS , ( )+1n

ij ijD S  and +, 1ij n
kP  

by equations given above.
 – Calculate the error ε2:

( )( )+ ++

+

− ⋅

ε =

∑∑

∑∑

2, 1 , 11

2 , 1

ij n ij nn
ij ijk k

ij k
ij n
k

ij k

h D S P

h
.

If ε < ε′2 0 (where ε′0  is the maximum per-
missible error), output the solution set { }+1n

af , 
{ }+1n

ijq  and { }+, 1ij n
kh , and stop the whole solving 

procedure. Otherwise, increment iteration coun-
ter n = n + 1 and go to Step 2.
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Remark 6. The whole procedure is essentially a de-
scent iteration process. In Step 2, Dijkstra’s algorithm 
and the shortest-path assignment are used to determine 
iteration direction. In Step 3, Fibonacci method of lin-
ear search technology is used to determine iteration step 
size. Detailed descriptions of Dijkstra’s algorithm and a 
Fibonacci method may refer to some literature (Wang 
2004; Li 2006).

Remark 7. It can be proved in mathematics that 
updated flows in Step 4 in each iterative loop inevitably 
meet flow constraints of the program. In other words, 
this algorithm transforms constrained optimization 
problem into unconstrained optimization problem, so 
that feasible region need not be considered, which leads 
to the simplification in solving process. The proof is be-
low.

Proof. In elastic-demand SUE model, the feasible 
region caused by flow constraints (1b–d) is a convex 
set. Let X1 and X2 be { }, , ,ij n n n

a ijkh f q  and { }, , ,ij n n n
a ijkg v v

 
, 

respectively, which are two points in this convex set. Ac-
cording to characteristics of convex set, the line segment 
connecting X1 and X2 is also in this convex set. Let X3 
be { }+ + +, 1 1 1, ,ij n n n

a ijkh f q , which is equal to (1 – αn)·X1 + 

αn·X2. Then X3 is in line segment X1X2 because value 
range of αn is [0, 1]. Thus, X3 is in the convex set (fea-
sible region) and the updated flows { }+ + +, 1 1 1, ,ij n n n

a ijkh f q  
meet flow constraints.

Remark 8. In Step 5, there are two iteration termina-
tion criteria. The first criterion tests flow change between 
two adjacent iterations. If the change is small enough, it 
indicates that the objective function value can hardly be 
improved through the flow adjustment in certain itera-
tion direction. In this case, the second criterion should 
be applied to judge whether current flow set is the final 
assignment result by an implicit function of flow solu-
tion. If current flow set meets the second criterion, it is 
the solution to implicit function (9). In this case, this 
flow set also serves as the solution to elastic-demand 
SUE model, which can be referred to as the global op-
timal solution because implicit functions (9) and (10) 
have equivalence relationship with elastic-demand SUE 
model. Thus, a flow set which meets the second, theo-

retically speaking, the first criterion is not necessary. De-
spite this, the computational efficiency would descend 
sharply without the first criterion, because the compu-
tational complexity in Criterion 2 is much higher than 
that in Criterion 1. Moreover, for most cases, if the flow 
sets in iteration process can not meet Criterion 1, then 
they can not meet Criterion 2 consequentially.

Compared with previous algorithms for elastic-de-
mand SUE model, this algorithm mainly has following 
advantages:

 – the algorithm can obtain the final assignment re-
sults, rather than merely the implicit functions of 
flow solution;

 – the algorithm is appropriate for any general traf-
fic network, not confined to some specific ones 
such as public transit network;

 – the algorithm produces no fictitious link in the 
whole solving procedure, which avoids the con-
fusion caused by fictitious links and added links 
in the upper-level subprogram.

2.2. Algorithm for Bi-Level Program
Bi-level programs are generally difficult to solve by tra-
ditional calculus-based optimization methods, not only 
because evaluation of the upper-level objective function 
requires solving the lower-level subprogram, but the fea-
sible solution set is too large as well. To solve the bi-level 
programming model proposed in this paper, a heuristic 
algorithm is developed, which consists of the proposed 
algorithm for elastic-demand SUE model and a modi-
fied GA. GA is the main body of the whole algorithm, 
which handles the nonlinear and non-convex nature of 
the bi-level program. Compared with other heuristic al-
gorithms, GA has two main advantages: 

 – the operation object of GA is a group of feasi-
ble solutions rather than a single solution, which 
avoids trapping in local optimum to some extent; 

 – the objective function need not meet certain re-
quirements such as differentiability. 

Despite the above stated advantages, slow conver-
gence rate and premature convergence exist in basic GA. 
Hence, some operators are designed to overcome these 
shortcomings, including elitist selection, adaptive cross, 
adaptive mutation and niche technology. Main steps of 
the solution procedure as depicted in Fig.  3 are sum-
marized:

Step 1. Define GA parameters: mutation probability pm0, 
crossover probability pc0, group sizes (N&M, M < N), 
maximum number of generations kmax. Initialize coun-
ter for the number of generations k and a set of initial 
solutions (initial group ( ){ } ( ) ( ) ( )( )= 1 20 0 , 0 ,..., 0NY Y Y Y

 
.

Step 2. Evaluate the objective function of every solution 
( )iY k  in group ( ){ }Y k  and calculate the fitness value of 

every solution.
Step 3. Select solutions with relatively high fitness value 
in group ( ){ }Y k  to produce a new group ( ){ }X k  of 
size M.

Fig. 2. Solution procedure for elastic-demand SUE model

End

Step 5 Yes

Output flow solution

Meet termination criteria

Step 4

Step 3

Determining iteration step size by

linear search technology

Update flows according to iteration

direction and step

Step 1

Start

Initialize iteration counter and solution set

Step 2

Calculate travel cost on links

Determine iteration direction (augmentation

flow set) by Dijkstra algorithm

No

··
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Step 4. Evolve all solutions in group ( ){ }Y k  via GA op-
erators: elitist selection, adaptive crossover, and adap-
tive mutation, resulting in producing another new group 

( ){ }Z k  of size N. Calculate the fitness value of every 
solution ( )iZ k .
Step 5. Select N solutions from group ( ){ }X k  and group 

( ){ }Z k  with the help of niche technology, resulting in 
producing the next generation group ( ){ }+1Y k . Incre-
ment = +1k k .
Step 6. If k = kmax, output the solution with the maxi-
mum fitness value in the last generation. Otherwise, go 
to Step 3.

Remark 9. In Step 2, evaluation of objective func-
tions of every solution requires solving of the lower-
level subprogram to obtain flow set {fa},{qij} and {hk

i1} 
by algorithm in Section 2.1. The fitness value of every 
solution is expressed as the difference between objective 
function value in the upper level of the reformed net-
work and that of the original network. When a solution 
doesn’t meet the saturation level constraint, the con-
struction cost and off-gas emissions will be expanded 
several times to drop its fitness value, avoiding it being 
the final solution.

Remark 10. In Step 4, elitist selection, adaptive 
crossover and adaptive mutation operators are designed 
in order to improve convergence rate of GA. Elitist se-
lection operator finds out the solution with maximum 
fitness value in a group which does not participate in 
crossover and mutation. Adaptive crossover and muta-
tion operators determine crossover and mutation prob-
abilities respectively according to fitness value. If fitness 

value of a solution is higher than average one in a group, 
its crossover and mutation probabilities will descend. 
Calculation method is shown below:

−′
− ⋅ ≥′ −= 

 <

0 0
max

0

, when ;

, when ' ;

ave
c c ave

avec

c ave

f f
p p f f

f fp
p f f

  (16)

−
− ⋅ ≥ −= 

 <

0 0
max

0

, when ;

, when ,

ave
m m ave

avem

m ave

f f
p p f f

f fp
p f f

 (17)

where: pc and pm are adaptive crossover and mutation 
probabilities respectively; pc0 and pm0 are ordinary cross-
over and mutation probabilities respectively; f is fitness 
value of a solution; ′f  is the higher value in two so-
lutions which make crossover operation; fmax and fave 
are the maximum and average fitness values in a group 
respectively. Elitist selection, adaptive crossover and 
adaptive mutation operators carry out the persistence of 
solutions with relatively high values, which avoid these 
solutions trapping in circulation between appearance 
and disappearance and result in an improvement in con-
vergence rate consequently.

Remark 11. In Step 5, niche technology is designed 
to overcome premature convergence in basic GA, be-
cause it can guarantee diversity of solutions in every 
generation so as to avoid all solutions approaching some 
local optimum simultaneously. In the niche technology, 
difference between each two solutions of two groups – 

( ){ }X k  and ( ){ }Z k  – are calculated as follows:

Fig. 3. Solution procedure for proposed bi-level program
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=
− = −∑

1
,

n

i j ik jk
k

Y Y y y   (18)

where: Yi is a design vector (solution) and yik is a design 
variable of Yi; i = 1 ~ (M + N – 1), j = (i + 1) ~ (M + N). 
If the difference is less than a certain value r, these two 
solutions are regarded as similar solutions. The solution 
with lower fitness value will be punished by cutting its 
fitness value in half.

Detailed description of GA solution procedure may 
refer to related literature (Xu et al. 2009).

3. Numerical Example

In this section, the proposed bi-level programming 
model for RNDP and its algorithm are applied to a spe-
cific road network, in order to demonstrate their valida-
tion.

3.1. Problem Description
Fig.  4 shows an original road network, link attributes 
and travel demands in the network as well as maximum 
potential travel demands. Necessary to say, any two 
nodes can be connected to form a probably added link. 
However, if a large number of probably added links are 
taken into consideration, the calculation amount will 
be enlarged remarkably. Therefore, only a few probably 
added links are chosen based on engineering experience 
in practice (four in this example).

The task is to provide a road network design scheme 
(improving existing links and adding new links), aiming 
to maximize the whole social benefit.

3.2. Problem Solving
Two main stages are taken to solve the problem:
Stage I: Model (15) is established and the following pa-
rameters are used:

1) Parameters in upper level: 
According to reference (Wang 2002), the param-
eters in the upper level are set as follows:

 – Unit-matching coefficients: q1= 0.2, q2 = 0.03 
(under the circumstances that the unit of 
travel demand is pcu/h, the unit of construc-
tion cost is 10000 yuan and the unit of off-gas 
emissions is g/h);

 – Upper and lower bounds of saturation level: 
Rl = 0.25, Rh = 0.95;

 – Coefficients in off-gas emissions calcula-
tion: b0 = 167.154, b1 = –5.291, b2 = 0.0662, 
b3 = –0.0003 (The unit of speed is km/h and 
the unit of off-gas emissions coefficient is  
g/pcu/ km).

2) Parameters in lower level:
 – q = 2.0, β = 0.05 (gained by the method pre-
sented in Section 1.1).

3) Parameters in GA:
According to the reference (Han 2010), the pa-
rameters in GA are set as follows:

 – Group size: N = 50, M = 25;
 – Maximum number of generations = 150;

 – Ordinary crossover and mutation probabili-
ties: pc0 = 0.5, pm0 = 0.02;

 – In niche technology, r = 3.
Stage II: As it is said in Introduction, during the 

last decade, some advanced researches have concluded 
that GA has advantages over other heuristic optimiza-
tion techniques in finding optimal solutions of RNDP. 
In order to make preparation and demonstrate the ef-
fectiveness of the modified GA proposed in this paper, 
both proposed GA and the basic GA are applied to solve 
the established bi-level programming model in this ex-
ample. Using the MATLAB 7.0 software and its GA tool-
box (Huang et al. 2005), programs are developed to solve 
the problem, through which the road network design 
schemes are obtained.

3.3. Results and Analysis
The programs are implemented on a personal com-
puter with Core V 3.2GHz, 2.0GB. Initial points for 
the optimization are produced automatically by the  
MATLAB 7.0 software (http://se.mathworks.com). Re-
sults are shown as follows.

Link attribute

Link 
num-

ber

Link 
grade

Flow 
[pcu/h]

Saturation 
level [%]

Link 
num-

ber

Link 
grade

Flow 
[pcu/h]

Satura-
tion level 

[%]
1 VI 2710 84.7 7 VI 5418 90.3
2 VI 7704 128.4 8 none none none
3 VI 5604 93.4 9 none none none
4 IV 9734 121.7 10 none none none
5 IV 9380 117.3 11 none none none
6 IV 9186 114.8

Travel demands in original network [pcu/h]
      O
D

1 2 3 4 5 6 7

1 0 1231 803 630 501 447 547
2 1231 0 1060 676 422 478 290
3 803 1060 0 400 474 420 512
4 630 676 400 0 400 534 430
5 501 422 474 400 0 420 515
6 447 478 420 534 420 0 410
7 547 290 512 430 515 410 0

Maximum potential travel demands [pcu/h]

      O
D

1 2 3 4 5 6 7

1 0 2000 1000 1000 1000 1000 1000
2 2000 0 2000 1000 500 1000 500
3 1000 2000 0 500 750 750 750
4 1000 1000 500 0 500 750 500
5 1000 500 750 500 0 750 750
6 1000 1000 750 750 750 0 500
7 1000 500 750 500 750 500 0

Fig. 4. Original network and travel demand
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Table 2 shows that when reaching optimum, ba-
sic GA needs more generations than the modified GA. 
Moreover, the modified GA proposed in this paper ob-
tains a road network design scheme with higher social 
benefit, since it overcomes the drawbacks of slow con-
vergence rate and premature convergence in the basic 
GA. In terms of social benefit, the fitness value of the 
final solution from the modified GA is 2205, which in-
dicates that the whole social benefit of reformed network 
is higher than that of original one and the difference is 
equivalent to such a benefit that can meet travel demand 
of 2205 passenger car units per hour in the network. 
The specific design scheme and situation of reformed 
network are shown in Table 3.

In the designing scheme, 109800000 yuan is spent 
in reforming the network. Comparisons between origi-
nal and reformed networks are shown in Fig. 5.

According to Fig. 5, it can be found that the aver-
age off-gas emissions per car in original and reformed 
networks are 0.132 kg/h and 0.108 kg/h respectively. It 
can be concluded that the design scheme in Table 3 not 
only brings about higher traffic benefit and environmen-
tal efficiency, but also reduces the saturation level of the 
road network markedly. As a result, the model and al-
gorithm proposed in this paper are effective and reason-
able, which shows bright prospects in the application for 
solving RNDP.

Conclusions

In this paper, RNDP has been studied. A bi-level pro-
gramming model and its algorithm have been proposed 
and applied to a specific numerical example. Main 
achievements and innovations are listed as follows:
1. Models:

 – The lower level subprogram adopts elastic-demand 
SUE model to coincide well with uncertainties in 
users’ behavior. In order to guarantee accuracy 
of flow prediction, parameter calibration method 
for the model is designed to determine parameter 
values quantitatively, not empirically as previous 
methods.

Table 2. Results of two GAs

Algorithm Generations CPU time [s] Objective function value [pcu/h] Fitness value [pcu/h]

Basic GA 111 327 6327 1563
Proposed GA 78 212 6969 2205

Table 3. Link attributes and travel demand in reformed network

Link attribute
Link  

number
Link  
grade

Flow  
[pcu/h]

Saturation 
level [%] Link number Link grade Flow  

[pcu/h]
Saturation 
level [%]

1 VI 2312 72.3 7 IV 5114 85.2
2 IV 5676 94.6 8 VI 3026 94.6
3 IV 3872 64.5 9 VI 2772 86.6
4 III 7660 94.8 10 V 3638 75.8
5 III 6956 87.0 11 VI 1134 35.4
6 III 5982 74.8

Travel demands [pcu/h]

                  O
D

1 2 3 4 5 6 7

1 0 1252 845 823 595 694 638
2 1252 0 1197 733 429 539 327
3 845 1197 0 408 504 616 541
4 823 733 408 0 411 545 441
5 595 429 504 411 0 464 563
6 694 539 616 545 464 0 412
7 638 327 541 441 563 412 0

Fig. 5. Comparison between original and reformed networks

a) off-gas emissions [kg/h] b) saturation level [%]

Link number Link number

Original network Reformed network

c) traffic benefit and environmental efficiency

Total travel demand [pcu/h] Total off-gas emissions [kg/h]
Original 
network

Reformed 
network

Growth 
rate [%]

Original
Network

Reformed 
Network

Growth 
rate [%]

23200 25954 11.9 3068.79 2800.42 –8.7
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 – The upper level subprogram establishes a nonlinear 
integer programming model with the goal of max-
imizing consumer surplus. It takes multi-factors 
into consideration, including travel demand, con-
struction cost, off-gas emissions and saturation lev-
el. Moreover, the upper level model can represent 
different importance of traffic benefit, economical 
efficiency and environmental efficiency through ad-
justing unit-matching coefficients in construction 
projects.

2. Algorithms:
 – A utility algorithm for elastic-demand SUE model 
is developed based on descent iteration method, 
Dijkstra’s algorithm and linear search technology. 
The new algorithm can resolve some limitations in 
the previous algorithms such as the restrictions in 
application range and the production of fictitious 
links.

 – A modified GA for the established RNDP model 
is developed, in which elitist selection operator, 
adaptive cross operator, adaptive mutation operator 
and niche technology are designed to overcome the 
drawbacks of slow convergence rate and premature 
convergence in basic GA.

3. Example:
 – A numerical example is conducted. With the ap-
plication of the proposed bi-level model and related 
algorithms, a design scheme with relatively higher 
social benefits is gained through less calculation. 
Results demonstrate that the proposed model and 
algorithms are effective and reasonable.
It should be mentioned that only two measures 

(adding new links and improving existing links) have 
been taken into consideration in RNDP so far. Future 
researches will also consider other measures such as re-
versible lanes and the congestion charge. On the com-
putational side, method of setting reasonable maximum 
number of generations should be further explored to 
avoid unnecessary operation in future researches.
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