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Abstract. Overhead cranes are widely used at industrial enterprises for transportation of materials and products. They 
are successfully adaptable to technological processes used at an enterprise and their exploitation is inexpensive; in ad-
dition, the price of cranes is relatively low. However, extension of requirements set for technological processes results 
in shortened time for transportation and stiffened requirements for accuracy of cargo delivery and cargo safety. In the 
attempts to satisfy the latter requirements, particular attention is paid to swings of the cargo-holding rope. There is a 
number of factors that cause increased requirements for the control system of the crane drive. The slewing movement 
affects the total system of the crane and aggravates the crane movement control. In modern overhead cranes, the abili-
ties and qualification of an operator (who is assisted by a certain anti-swing system) predetermine the cargo swings 
and the accuracy of its positioning. The said circumstance latterly caused a particular attention to computerisation of 
overhead crane control. However, a nonlinearity of the mechanical system of a crane and complicated control of swings 
often cause undesirable swings, in particular in the beginning and the end of cargo transporting process, thus reduc-
ing the efficiency of usual crane control systems. In addition, it should be taken into account that the parameters of a 
crane, as a controlled mechanical system, depend on the cargo and the conditions of its transportation. Consequently, 
a development of an effective cargo swing reduction system is a currently topical engineering problem.
Keywords: overhead crane; anti-swing system; Pontryagin’s principle; dynamics; stability.

Introduction

This problem is known in the case of controlling the 
working movements of a crane, when a payload is mov-
ing with a flat motion or a motion compounded of a few 
flat movements (Auernig 1986; Lee et al. 1997; Tanaka, 
Kouno 1998; Alli, Singh 1999). It is usually realised in 
the control system of the dislocation of the cargo attach-
ment point. The speed of the cargo attachment point is 
changed ensuring that the movement of the cargo con-
sists of three (or at least two) motion phases: the first 
phase – acceleration of the payload to achieve defined 
velocity; the second phase – with constant velocity of the 
cargo; and the third phase – decreasing the velocity to 
zero. In the case there is no second phase, the movement 
control is called the bang-bang type. 

If the initial conditions are not zeroed and/or dis-
turbances appear when a movement is being realised, 
then closed control systems are used (Ridout 1989; Fliess 
et al. 1991). In the case of controlling the slewing mo-
tion in mobile cranes, the system controlling the angular 

velocity of the jib can be applied. Then on input of the 
system, the jib angular acceleration profile is assumed 
(Parker et al. 1995).

A method of controlling the mobile crane slewing 
motion is presented in the paper. The method allows us 
to transfer the cargo from one point to a selected sec-
ond (target) point, with simultaneous minimizing of the 
swings when the working motion is finished. Control is 
achieved in a close-loop control system of cargo move-
ment by controlling the transfer of the cargo attachment 
point (Kłosiński 2005). 

A nonlinear controller is proposed for the trolley 
crane systems using the Lyapunov method and a modi-
fied version of sliding-surface control is then utilised to 
achieve cart position control (Vikramaditya, Rajamani 
2000). However, the sway angle dynamics has not been 
considered for stability analysis. A simple proportion-
al derivative controller is designed to asymptotically 
regulate the overhead crane system to the desired po-
sition with natural damping of sway oscillation (Fang 
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et  al. 2001). In (Burg et  al. 1996), the crane system is 
regulated by using the variable transformation method. 
The passivity property of mechanical system is utilised 
to regulate the overhead crane system (Karkoub, Zribi 
2002). Authors of the paper (Liu et al. 2005) propose an 
adaptive sliding mode control method with fuzzy tuning 
of slope of sliding surface for a 2-dimension overhead 
crane. In the paper (Yang, J. H., Yang, K. S. 2007), a non-
linear control scheme incorporating parameter adaptive 
mechanism is devised to ensure the overall stability of a 
closed-loop system. By applying the designed controller, 
the position error will be driven to zero while the sway 
angle is rapidly damped to achieve swing stabilisation. 
Stability proof of the overall system is given in terms of 
the Lyapunov concept.

The paper (Uchiyama et al. 2013) presents a sim-
ple model of rotary crane dynamics that includes only 
significant centrifugal and Coriolis force terms. This 
simple model allows analytical solutions of differential 
equations of the model to be derived and allows residual 
vibration suppression without sensing it, using only hor-
izontal boom motion, can be generated by solving only 
algebraic equations numerically.

In the paper (Smoczek, Szpytko 2013), evolution-
ary-based algorithm for fuzzy logic-based data-driven 
predictive model of Time Between Failures (TBF) and 
adaptive crane control system design is proposed. The 
heuristic searching strategy combining the arithmetical 
crossover, uniform and non-uniform mutation and dele-
tion/insertion mutation is developed for optimizing the 
rules base and tuning the triangular-shaped member-
ship functions to increase the efficiency and accuracy of 
a fuzzy rule-based system. The evolutionary algorithm 
was employed to design a fuzzy predictive model based 
on the historical data of operational states monitored 
between the failures of the laboratory scaled overhead 
traveling crane electronic equipment. The fuzzy predic-
tive model of TBF was implemented in the supervisory 
system created for supporting decision-making process 
through forecasting upcoming failure and delivering the 
user-defined maintenance strategies.

1. Mathematical Model

In the present research, a model of an overhead crane 
developed upon using the program package MATLAB/
Simulink® (http://se.mathworks.com/products/simulink) 
is used. The research works (Kłosiński 2005) based on 
the said model showed that considerable cargo swing-
ing appears on its transportation by an overhead crane. 
The swinging causes worsening of the equipment perfor-
mance because usually reduction of the cargo swinging 
amplitude down to the permissible level in any available 
way is required. The present paper discusses an opportu-
nity of the control optimisation for increasing the accu-
racy, shortening the time of cargo delivery and reducing 
the related energy consumption. 

To reduce the cargo swinging, the following mea-
sures may be applied: 

 –  special laws related to cargo moving velocity 

changes on its acceleration and braking (Tanaka, 
Kouno 1998); 
 –  special filters of the signal that pre-sets the veloc-
ity of movement of the cargo attachment point 
(Slivinskas et al. 2010); 
 –  special adaptive controls for the crane’s drive 
(Yang, J. H., Yang, K. S. 2007) according to the 
coordinates; 
 –  equipment that in certain moments applies to 
a force to the cargo and the direction of such a 
force is opposite to the current deviation of the 
cargo. A stabilizing force may be also applied 
to the cargo attachment point by using special 
control of the crane’s engines. It is interesting to 
compare both ways of control. Such equipment 
may be realised by applying the Pontryagin’s 
Maximum Principle (Pontryagin et al. 1969). Ex-
amples of realisation of control equipment based 
on the Maximum Principle are known in the in-
dustry (Slivinskas et al. 2010).

The research uses the model of an overhead crane 
developed using the program package MATLAB/Simu-
link®. The research works based on the said model 
showed that considerable cargo swinging appears on 
its transportation by an overhead crane. The dynamic 
model of an overhead crane is presented in Fig. 1. The 
design structure of an overhead crane consists of three 
parts: a cargo lifting mechanism, a trolley and a bridge.

The dislocation of the mass MΘ may be described 
by the following coordinates:

= Θ Θsin cosm x yx L ; (1)

= Θsinm yy L , (2)

where: L – the length of the rope:

= + δ0 LL L , (3)

where: L0 – the length of the rope without a cargo pre-
determined by a position of the rope drum; δL  – the 
elongation of the rope caused by a cargo.

The angle of the vertical deflection of the rope:

+
Θ =

2 2
m mx y
L

 (4)

Fig. 1. The dynamic model of a crane
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and vertical movement of the cargo caused by swinging:

( )= − Θ Θ1 cos cosm x yz L . (5)

The expressions (1) to (5) were used for describing 
kinetic and potential energy of the mechanical system 
of the lifting mechanism and its dissipative function in 
the Lagrange equations of the second kind. Experience 
of AB ‘Vilniaus kranai’ (http://www.vk.lt) was evaluated 
and creating a mathematical model the deviation of 
rope from the vertical did not exceed 5 degrees. After 
the relevant processing in accordance with the methods 
of computerised simulation described in (Augustaitis 
et al. 2011), the expressions of the principal coordinates 
of the system were obtained that usually are expressed 
as follow:

Θ + Θ + Θ = 02
2

0 00
x x x

XH g
L LML



  ; (6)

Θ + Θ + Θ = 02
2

0 00
y y y

YH g
L LML



  ; (7)

δ + δ + δ = Θ−1 1 0cosL L LM H C Mg ML 
 ; (8)

( )+ + = + Θ0 0 0x x x xX M M H X F ML   ; (9)

( )+ + = + Θ0 0 0y y y yY M M H Y F ML   , (10)

or in the form of a transfer function of the model of the 
mechanical part (Fig. 2):

+
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+ +
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0
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F L M
Y

M M p H p



, (11)

where: =
dp
dt

 – operator of differentiation.

Modelling of the mechanical part (as well as in 
the expressions 6 to 11) was accomplished using the 
following values of the constant parameters: standard 
gravity g = 9.81 m/s2; mass of the cargo M = 1000 kg; 
mass of the trolley Mx  = 5000  kg; mass of the trolley 
and the crane My = 10000 kg; damping in the rope at-
tachment point H2 = 1 Nms/rad; damping in the rope 
H1 = 1000 Ns/m; initial tension stiffness of the rope C1 = 
1716000 N/m; damping along the axis X0 in the trolley 
Hx = 1000 Ns/m; damping along the axis Y0 in the crane 
Hy = 2000 Ns/m (the data were obtained with the help 
of tests carried out at AB ‘Vilniaus kranai’). The non-
linearity of the rope elongation dependence from load 
is evaluated in the mathematical model.

For a convenience, in description of operation of 
the crane’s mechanisms, two additional coordinates (ex-
pressed through the principal coordinates of the dynam-
ic system) and their derivatives were introduced:

= Θ0L xX L ; (12)

= Θ0L xX L  ; (13)

= +0M LX X X ; (14)

= +0M LX X X   . (15)

The obtained model describes the mechanical part 
of the crane and the changes of the dislocation of the 
cargo caused by changes of the point of rope attachment 
in two directions X and Y) and by swinging of the cargo 
on the rope at angles Θx and Θy. To the entries Fx and 
Fy of the model, the forces generated by the engines of 
the trolley and the crane are applied and the said forces 

Fig. 2. The model of the mechanical part (a); the model of 
the subsystem where the angle Θx is taken into account (b)
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predetermine the movement of the attachment point. 
The engines are controlled by controllers.

The algorithm of the controllers may be based on 
the Pontryagin’s Maximum Principle. Pontryagin et al. 
(1969) discusses examples of application of the said 
Principle. If the trolley moves at a low dissipation and in 
absence of a restoring force that cannot exceed the value 
predetermined by the power of the engine, the optimum 
phase trajectory consists of two parabolas. In the first 
segment (the acceleration), the control parameter u ≡ 1 
and the phase trajectory is described by one parabola of 
the family:

( )= +21
2

x dx s . (16)

In the second segment (deceleration), the control 
parameter u ≡  –1, i.e. on reversing of the engine, the 
phase point transfers to the parabola that crosses the 
zero point of coordinates: 

( )= − +21
2

x dx s , (17)

where: s  – arbitrary constant. The phase trajectory in 
absence of a restoring force and dissipation is presented 
in Fig. 3. 

The mechanical system of the trolley (9) accepted in 
the model differs from the one discussed in (Pontryagin 

et al. 1969), bу considerable dissipation and existence 
of a member that takes into account the variable force 
of response applied to the case of the trolley from the 
rope. For exploring the mechanical system of the trolley, 
a special model presented below (K1) was developed.

The model operates as follows: after starting of 
movement, force from the engine of the trolley is applied 
to the entry Fx of the model and movement of the trolley 
along the axis X0 toward the zero point of coordinates 
starts. In the segments of acceleration and deceleration, 
the phase trajectory is described by the expressions (16) 
and (17) upon inconsiderable dissipative forces. If dis-
sipation is considerable, the curves of acceleration and 
deceleration differ from parabolic shape. 

Because of this, in the control subsystem (Fig. 4b), 
the value of the velocity when reversing of the force gen-
erated by the engine takes place was chosen in experi-
mental way upon striving to ensure it to be close to zero 
on passing the origin of coordinates and switching-off 
the engine.

The cycle of movement of the trolley with a cargo 
is shown in Fig. 5. 

As it may be seen from Fig. 5d, the phase trajec-
tory of free vibrations of the cargo in respect of the at-
tachment point is a set of spiral curves. It is shown in 
(Pontryagin et al. 1969) that the optimum phase trajec-
tory (including a case of pendulum) may be formed of 
semicircles that cross the zero point of coordinates. Such 
a trajectory is presented in Fig.  6. If the initial phase 
point is located below the shown trajectory, the phase 
point under the impact of the control parameter u ≡ 1 
gets onto the arc marked as a top down triangle, then 
the value of the control becomes u ≡ –1 and deceleration 
starts and continues until the phase point achieves the 
zero point of coordinates. If the initial phase point is 
located over the shown trajectory, the phase point under 
the impact of the control parameter u ≡  –1 gets onto 
the arc marked as a top up triangle, then the value of 
the control becomes u ≡ 1 and acceleration starts and 
continues until the phase point achieves the zero point 
of coordinates.Fig. 3. The optimum phase trajectory in absence  

of a restoring force and dissipation
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In our case, for the left segment of positive veloci-
ties with a centre in the point (–R, 0), where R is the 
radius of the arc and speed of cargo swing:

= − 22dx xR x , (18)

for the right segment of negative velocities with a centre 
in the point (R, 0):

= − − 22dx xR x . (19)

As it may be seen from Fig. 7, the phase trajectory 
of the cargo obtained on the base of the model and the 
switchover phase trajectories intercross in several points; 
the coordinates of three of them are provided in Table. 
As it is shown in (Pontryagin et al. 1969), when a cargo 
is over the switchover line for the first and subsequent 
times, the value of the control parameter becomes oppo-
site. For examining the efficiency of the expressed provi-
sion, a model of the cargo controlling system (K2) was 
developed. Its Simulink®-diagram is presented in Fig. 8 b.

Model K2 operates as follows: before starting a 
movement, a force from the engine of the trolley is ap-
plied to the entry Fx of the model and movement of the 
trolley along the axis X0 (controlled by the block RFx) 
starts. After a reverse of the engine, the signal RF from 
the block RFx activates the cargo control system Rfx that 
determines the dislocation of the cargo on the phase tra-
jectory (using blocks Point 1 to Point 3) and provides in-
structions to switchover control fx. The obtained results 
are shown in Figs 9–10. 

Fig. 5. The cycle of movement of the trolley with a cargo: a – a 
change of the force generated by the engine, dislocation and 
velocity; b – the phase trajectory of the trolley; с – the end of 
the phase trajectory; d – the phase trajectory of the cargo in 
respect of the attachment point (a circle means the start of 
reversing; a square – the moment of switching-off the engine; 

the asterisk – the end of the phase trajectory)

Fig. 6. Optimum phase trajectory when a restoring force 
presented in the mechanical system

Fig. 7. Phase trajectory of the cargo in respect of the attachment 
point on the model and switchover phase trajectories
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As it may be seen from the provided data, three 
switching actions result in intensive reduction of the 
amplitude of the cargo swinging from about 0.5  m to 
about 0.0005 m  = 0.5  mm (the amplitude of damped 
vibrations). By the way, it was found that the amplitude 
of such residual vibrations increases considerably if the 
moments of the control switching actions are not chosen 
precisely.

In a more convenient method for cargo swing re-
duction, the control parameters in the both channels are 
summarised and then are transferred to the drive of the 
trolley. 

Conclusions

1. The research of the model showed that application of 
the Pontryagin’s Maximum Principle enables to re-
duce considerably the amplitude of cargo swings and 
to accelerate the process of cargo stabilisation.

2. If the dissipation forces in the lifting mechanism are 
small and the cargo is moved using a trolley-pushing 
mechanism, the cargo swings during one minute. By 
reversing the engine of the said mechanism, the time 
of swinging can be reduced to 10 s. 

3. When the dissipation forces are considerable, swings 
are reduced by a system of measuring the deviation 
of the rope from the vertical position and the speed 
of such a deviation. Thus, the deviation of the factual 
phase trajectory from the optimum one that conforms 
to the Pontryagin’s Maximum Principle is assessed. 
The use of signals from the said system for controlling 
the engine of the trolley-pushing mechanism ensures 
effective damping of cargo swings.

4. On minimising the time of cargo swings over the car-
go delivery point, the engine of the trolley-pushing 
mechanism is reversed for several times. The num-
ber of reverses and the moment of the first reverse 
are interdependent. Performed investigations shown 
three switching actions that result in intensive reduc-
tion of the amplitude of cargo swinging from approxi-
mately 0.5  m to approximately 0.0005 m  = 0.5  mm 
(the amplitude of damped vibrations). The efficiency 
of swinging reduction closely depends on the moment 
of reversing start. Determination of successful revers-
ing start needs additional investigation. 

5. In reality, the number of reverses should not exceed 
three, because a larger number of them causes a re-
duction in the intervals between them; in addition, 
the deviation of the cargo becomes less than the re-
quired accuracy of delivery.

Fig. 9. The cycle of movement of the trolley with a cargo: a – a 
change of the force generated by the engine, dislocation and 
velocity; b – the phase trajectory of the trolley (a circle means 
the start of reversing; a square – the moment of switching-off 

the engine; the asterisk – the end of the phase trajectory)

Fig. 8. Model K2 and the cargo controlling system
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Table. The factual coordinates of the control  
switching points (Fig. 10)

Switching point Point 1 Point 2 Point 3
Time [s] 12.0900 15.3600 16.1000
Speed DXL [m/s] 0.1718 –0.0598 –1.4965·10–4 
Deviation XL [m] –0.5054 0.0230 –5.5820·10–4
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Fig.  10. The phase trajectory of the cargo in respect of the 
point of attachment on the model and the phase trajectories 
of changeover (a) 1, 2, 3 – the surrounding of the switching 

points (closed up): b – Point 1; с – Point 2; d – Point 3

6. If the dissipative properties of the crane’s bridge are 
assessed, an analogous control scheme may be also 
applied for the engine of the crane’s bridge-pushing 
mechanism, when the cargo is transported in the di-
rection perpendicular to the bridge.

7. The theoretical results will be used for the develop-
ment of crane control. This requires experimental 
tests carried out by AB ‘Vilniaus kranai’.
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