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Abstract. This paper proposes a new optimization model for ship’s cargo handling operations which solution gives the 
structure of cargo handling resources required, along with attaining the minimum total ‘in-port’ costs and the mini-
mum of time required for completion of cargo operations. Due to complexity of the model which consists of compos-
ite multi-objective functions together with several decision variables and constraints, the solution has been sought by 
utilization of an adapted genetic algorithm combined with a hybrid algorithm. Testing of the model on real world data 
yielded acceptable results in a short time. In the course of decision making, the ship’s operator can, on the basis of the 
proposed model and taking into consideration shipping market data, choose appropriate variation of the returned solu-
tion, which incorporates minimum costs, minimum of operational time and related cargo handling resources.
Keywords: ship; optimization; cargo handling; genetic algorithm; seaport.

Introduction

Cargo and cargo units carried on or under ship’s deck 
shall be so loaded, stowed and secured as to prevent, as 
far as, is practicable, throughout the voyage, damages 
or hazard to the ship and the persons on board, and 
loss of cargo overboard. These cargo handling opera-
tions, as well as, cargo separation are linked processes 
onboard ship during its stay in the port. Service time of 
ship’s cargo cranes, forklifts and longshoremen, as well 
as, sequence of cargo units’ arrival alongside the ship 
follow certain probability distributions (Van Asperen 
et al. 2003; Hess, S., Hess, M. 2010; Hess, M., Hess, S. 
2011). In this paper the general cargo ship is defined as 
a multichannel, multiphase mass service system, where 
the input flow of general cargo passes through the 
four phases in the process of cargo handling (Hess, S., 
Hess, M. 2009). When making business decisions related 
to these processes (Hess et al. 2007, 2008; Machuca et al. 
2007), it is essential for the ship’s operator to achieve the 
minimum transhipment costs and costs of the ship’s stay 
in port together with minimum service time. 

Due to the problem complexity, a multi-objective 
optimization model is set up which consists of two ob-
jective functions. The first one addresses the minimum 
total cost of services and waiting time and the second 
one addresses the minimum service time. Decision 
variables are: number of ship’s cargo cranes, number of 
forklifts, number of workers engaged on cargo securing, 
and workers engaged on cargo separation and marking.

The problem in developing and solving such mod-
els lies in their complexity and steep procedure of find-
ing the space of optimal solutions for both functions 
simultaneously (Tijms 1995). Furthermore, there is 
the complexity of the objective functions’ forms con-
taining several unknown variables (decision variables) 
along with constraints in the space of possible solutions. 
Therefore, in this paper process of solving is based on 
adapted genetic optimization algorithm that is com-
bined, for purpose of achieving more precise solutions 
(Deb 2009; Koza 1992; Liu et al. 2008), with hybrid op-
timization algorithm. It should be emphasized here that 
the process starts with completely different assumptions 
in optimization modelling than the classical mathemati-
cal procedures that can be found in operating research 
literature (Kleinrock 1975; Jensen, Bard 2002). 

In the next part description of the problem is given, 
after which follows the mathematical model and the pro-
cess of solution search. Model has been tested on the real 
world example with general cargo ship with five holds 
and five cargo cranes that loads 700 cargo units by ship’s 
cranes.

1. The Problem

Organization of cargo handling operations and optimal 
utilization of the existing port and shipboard resources, 
i.e. ship’s cranes, forklifts and workers, with the objec-
tive of minimizing the total operational costs (Hess, S., 
Hess, M. 2009) may prove to be a hard task.
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Furthermore, the added complexity arises if the 
ship’s operator considers such costs confronted to total 
earnings in the broader context of business making, in 
time period that extends ship’s stay at port. 

An example is related to costs and gain through 
complete ship’s voyage, from the first loading port to 
the last discharging port according to concerning char-
tering agreement. Minimizing total operating costs re-
lated to cargo handling in port doesn’t necessarily lead 
to the maximal gain on the observed voyage. In reality, 
the minimum of mentioned costs can be achieved by 
slower operations of cargo handling, especially in ports 
with lower port dues and high tariffs for overtime work. 
Effect of longer ship’s stay at a port, on the other hand, 
leads to postponed signing of the next chartering agree-
ment and in turn fewer earnings in longer period of 
time. Hence, apart from finding the solution for minimal 
total operating costs of cargo handling in the port, it is 
essential at the same time to determine minimal time of 
ship’s stay at port (Van Asperen et al. 2003). 

The goal of this paper is to determine simultane-
ously minimal costs and minimal ship’s service time, 
as well as, quantifying resources needed for cargo op-
erations (ship’s cargo cranes, forklifts, workers). Here, 
for the sake of problem simplicity, the process of cargo 
handling is limited to loading operations only. However, 
analogically, process of cargo discharging or combina-
tion of loading/discharging can be observed.

To acquire the solution of the problem thus formu-
lated, it is essential to define two objective functions, one 
for the minimum costs and the second for the minimum 
service time, with constraints regarding the resources 
for loading operations. For that reason, a mathematical 
model of multi-objective optimization with constraints 
in the space of input variables is set up (Tijms 1995; 
Zimmermann et al. 2002).

2. Mathematical Dependences

As highlighted in the paper by Hess, S. and Hess, M. 
(2009) ship can be defined as a mass servicing system 
where the arrival rate of units, parameter λ, represents 
the average number of general cargo units arrived along-
side the ship during an observed time unit (e.g. during 
a year, month or day). The average number of general 
cargo units that can be served at the ship in a time unit 
is service rate µ. According to the queuing systems’ clas-
sification (Kleinrock 1975; Jensen, Bard 2002), cargo 
handling operations on the ship can be observed as the 
queuing system with more than one service place and 
unlimited number of cargo entities in queue.

Onboard cargo handling process consists of four 
main operations that can be represented as a multi-
phase queuing system. Each of the phases corresponds 
to a separate queuing system with different service plac-
es. In the first phase the arrival rate is total cargo units 
that is to be loaded on the ship, and service places are 
ship’s cranes. In the second phase, arrival rate is the same 
as in the former phase, while service places are fork-

lifts manipulating cargo units in ship’s holds. Once the 
cargo is stowed in the holds as per cargo plan, the third 
phase – cargo securing – may begin. In the fourth phase 
the secured cargo is separated and marked for differ-
ent recipients, where the service places are represented 
with another groups of workers. Output from the for-
mer phase is input to the consecutive phase of the multi-
phase queuing system, i.e. all four phases have equal ar-
rival rate λ (‘equivalence property’ of multi-phase queu-
ing system). Furthermore, valid assumption for all the 
four phases of queuing system is that the arrival rate has 
Poisson and the service time exponential distribution, 
where µi is the service rate of the phase i; i = 1, 2, 3, 4. 
Service rates for all service places of the same phase are 
assumed to be equal.

The model set up in the paper by Hess, S. and 
Hess, M. (2009) for estimation of the optimal number 
of service places in each phase consists of one objective 
function minimizing sum of expected total costs:

( )min min s WC C C= + ,  (1)

where Cs is expected total service cost:
4

1 1 2 2 3 3 4 4
1

,s i i
i

C S C S C S C S C C S
=

= ⋅ + ⋅ + ⋅ + ⋅ = ⋅∑
 
(2)

while CW is expected total waiting cost:
4

1 0

iS

W wi i ni
i n

C C L n p
= =

 
 = ⋅ − ⋅ −
 
 

∑ ∑
14

0
1 ( 1)! 1

ii SS
i i

wi i
i ii

S
C p

S

+

=

 ψ ⋅ ⋅ ⋅
 − −ψ 

∑ ,

 

(3)

with notation:
 – Ci – service cost per time period for each service 
place of the phase i, i = 1, 2, 3, 4;

 – Cwi – expected waiting costs per time period for 
each cargo unit, at phases i = 1, 2, 3, 4;

 – Si – number of the service places of the phase i, 
i = 1, 2, 3, 4;
 – ρi – traffic rate of the service place of the phase i, 
i = 1, 2, 3, 4; ρi = λ/μI;
 – ψi = ρi/Si – coefficient of the system occupancy; 
condition of queuing system stability (statistical 
equilibrium) follows: ψI < 1, i = 1, 2, 3, 4;

 – p0i – probability of no units waiting on the phase 
i, i = 1, 2, 3, 4;

 – pni – probability of n units waiting on the phase 
i, i = 1, 2, 3, 4;

 – Lqi – average number of units waiting in the line 
on service in the phase i, i = 1, 2, 3, 4;

 – L – average number of units in the queuing sys-
tem in the phase i, i = 1, 2, 3, 4.

However, considering the problem extension in 
this paper, another objective function is introduced that 
minimizes total service time Wser in all four phases. 
Thus, the model becomes multi-objective optimization 
model in the form:
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with constraints:

i uiS s≤ ; sui – integer; i = 1, 2, 3, 4,  (6)

where:
 – Wser – total time duration of handling given car-
go units;

 – wseri – time duration of the cargo operations in 
phase i;
 – β  – coefficient of the phase overlapping in the 
multiphase mass servicing system;

 – Q – total number of units in the cargo handling 
process;

 – sli – lower limit of Si; 
 – sui – upper limit of Si.

Input variables in the model are:
1 4 1 4 1 4, , , , , , , , ,w wC C C Cλ µ µ   , and decision vari-

ables: S1, …, S4.
Due to the complexity of computational procedure 

(Powell 1983; Censor 1977), the approach taken here to 
find the solution, in the first part applies genetic optimi-
zation algorithm (GA) adapted to the problem structure 
in order to reach solution area close to the optimum in a 
fewer number of iterations, followed by the application 
of hybrid optimization algorithm (GHA) that leads to 
the final solution area.

3. Problem Solution

In order to attain a practical solutions for the given 
model (Hess, M., Hess, S. 2011) we have formulated the 
problem as multi-objective, since a single objective one 
with several constraints would not adequately represent 
the problem. Hence, there is a vector of minimization 
objectives, F(x) = [F1(x), F2(x)] that is subject of a num-
ber of constraints:
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Note that because F(x) is a vector, if any of the 
components of F(x) are competing, there is no unique 
solution to this problem. Instead, the concept of nonin-
feriority (Pareto optimality) is used to characterize the 
objectives (Censor 1977). A noninferior solution is one 
in which an improvement in one objective requires a 
degradation of another. We started from a feasible re-
gion Ω in the parameter space, x is an element of the 
n-dimensional real numbers Rnx∈  that satisfies all the 
constraints, i.e., { }RnxΩ = ∈ . This allows definition of 

the corresponding feasible region for the objective func-
tion space Λ:

( ){ }R : ,my y F x xΛ = ∈ = ∈Ω .
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The vector F(x) maps parameter space into objec-
tive function space. A noninferior solution point can 
now be defined as follows: Point *x ∈Ω  is a noninfe-
rior solution if for some neighbourhood of x* there does 
not exist a Δx such that ( )*x x+ ∆ ∈Ω  and
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On Fig. 1, the set of noninferior solutions lies on 
the curve between C and D. Points A and B represent 
specific noninferior points. A and B are clearly nonin-
ferior solution points because an improvement in one 
objective, F1(x), requires a degradation in the other ob-
jective, F2(x), i.e., F1(B) < F1(A), F2(B) > F2(A).

Multi-objective optimization generates and selects 
noninferior solution points since any point in Ω that is an 
inferior point represents a point in which improvement 
can be attained in all the objectives. The goal in this op-
timization is constructing the Pareto optima and the al-
gorithm used in process calculation is described in (Deb 
2009). The relative importance of these objectives and 
the system’s best capabilities are determined and trad-
eoffs between the objectives fully traced. Thus, set up of 
the multi-objective design strategy here enabled a natural 
problem formulation to be expressed. For the purpose of 
finding practical solutions Matlab has been used.

Our approach finds a local Pareto front for multiple 
objective functions, each of four decision variables, us-
ing the genetic algorithm followed by hybrid function. 
We also impose bound constraints on the decision vari-
ables as noted in model formulation. We have provided 
a fitness function, the number of variables, and bound 
constraints in the problem. The initial assignment of val-
ues to the decision variables is generated randomly. The 
next generation of the population is computed using the 
non-dominated rank and a distance measure of the each 
individual decision variable (individuals) in the current 

Fig. 1. Set of noninferior solutions
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generation. A non-dominated rank is assigned to each 
individual using the relative fitness. Individual p domi-
nates q (p has a lower rank than q) if p is strictly better 
than q in at least one objective and p is no worse than q 
in all objectives. Two individuals p and q are considered 
to have equal ranks if neither dominates the other. The 
distance measure of an individual is used to compare 
individuals with equal rank. 

The multi-objective GA function employed here 
uses a controlled elitist genetic algorithm, which always 
favours individuals with better fitness rank and favours 
individuals that can help increase the diversity of the 
population even if they have a lower fitness value. It is 
very important to maintain the diversity of population 
to achieve convergence to an optimal Pareto front. This 
is done by controlling the elite members of the popula-
tion as the algorithm progresses by specifying the frac-
tion of the population on the best Pareto frontier to be 
kept during the optimization and computation of dis-
tance measures of individuals. The crowding distance 
measure function calculates distance in design space. In 
the first stage we set the Pareto fraction to value of 0.4, 
so the current population size on Pareto front shrunk to 
40% of the population size. 

At this stage the number of points on the Pareto 
front was 23. The average distance measure of the solu-
tions on the Pareto front was 0.1002. The spread mea-
sure of the Pareto front was 0.3805. 

A smaller average distance measure indicates that 
the solutions on the Pareto front are evenly distributed. 
The default initial population is created using a random 
number generator in a default range of [0;1]. The de-
fault population size used is 95 that will clearly identify 
the eventually disconnected Pareto front. The algorithm 
uses three different criteria to determine when to stop 
the process of calculation. It stops when the maximum 
number of generations (120) is reached. It also stops if 
the average change in the spread of the Pareto front is 
less than tolerance specified (0.02). The third criterion is 
the maximum time limit in seconds (10). 

At the second stage the number of points on the 
Pareto front was 34. The average distance measure of 
the solutions on the Pareto front was 0.0882. The spread 
measure of the Pareto front was 0.4105. 

Search for better precision of final solution employs 
multi-objective GA hybrid function. A hybrid scheme 
is used to find an optimal Pareto front for our multi-
objective problem. GA can reach the region near an 
optimal Pareto front relatively quickly, but it can take 
many function evaluations to achieve convergence, so 
GA is run for a small number of generations to get near 
an optimum front. Then the solution from GA is used 
as an initial point for another optimization method 
that is faster and more efficient for a local search. The 
Fgoalattain-algorithm from Matlab is used as the hybrid 
method to spot the goal attainment problem. 

In multi-objective GA the hybrid algorithm starts 
at all the points on the Pareto front returned by GA. 
The new individuals returned by the GHA are combined 

with the existing population and a new Pareto front is 
obtained. GHA provides a vector specifying the goal for 
each objective as the extreme points from the Pareto 
front found so far. 

At the third stage the number of points on the Pa-
reto front was 30. The average distance measure of the 
solutions on the Pareto front was 0.0702. The spread 
measure of the Pareto front was 0.4769. 

Furthermore, the random number generators are 
also reset so that the results with the previous run (with-
out the hybrid function) can be compared.

At the fourth stage, on initial iteration the num-
ber of points on the Pareto front was 31. The average 
distance measure of the solutions on the Pareto front 
was 0.0921. The spread measure of the Pareto front was 
0.5017.

If the Pareto fronts obtained by GA alone and by 
using the hybrid function were close, they are compared 
using the spread and the average distance measures. The 
average distance of the solutions on the Pareto front has 
now been improved by using the hybrid function. The 
spread here is a measure of the change in two fronts and 
was higher when hybrid function was used. This indi-
cates that the front has changed considerably from that 
obtained by GA with no hybrid function. In this stage, 
the indices showed higher value of the average distance 
measure and the spread of the front, meaning the diver-
sity of the solution has been partially lost. 

To preserve the diversity, at the fifth stage, the 
GA was run again with the final population returned 
in the last run. Here, the hybrid function is removed. 
The number of points on the Pareto front was 31. The 
average distance measure of the solutions on the Pareto 
front was 0.0396. The spread measure of the Pareto front 
was 0.2932.

Processing time required to reach the final results 
(Table 1) was less than 2 seconds on processor Intel Core 
Duo 3600 MHz. Since, this approach in multi-objective 
optimization generates and selects noninferior solution 
points in which improvements are attained in all the ob-
jectives, the method proved suitable for solving a practi-
cal problem and is tested in the following part.

Table 1. GA and GHA input controls and output parameters

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

tolerance 0.02 0.02 0.02 0.01 0.02
time limit (s) 10 10 10 10 10
max number  
of generations 202 136 148 20 2

number of 
points on  
Pareto front

23 34 30 31 31

average dist. 
measure of 
solutions  
Pareto front

0.1002 0.0882 0.0702 0.0921 0.0396

spread measure 
of Pareto front 0.3805 0.4105 0.4769 0.5017 0.2932
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4. Practical Example and Results Analysis

The model has been tested on the real world example, 
using hold’s capacity and cargo handling data for gen-
eral cargo ship ‘Hever Castle’, with five holds and fitted 
with five cargo cranes, which loads 700 cargo units in 
port of Trieste. The cargo to be loaded is handled from 
wharf and/or trucks alongside the ship into ship’s cargo 
holds by ship’s cranes. After selection and validation of 
collected historical data for the port all variables have 
been made available for entering into the model. The 
selection and validation of port’s data have been made 
in consultation with port’s experts and ships’ agents and 
after discussion with the domain experts.

Therefore, input variables in the model are: 
Q  =  700  units, λ  =  40  units/h, µ1  =  14  units/h, 
µ2  =  21  units/h, µ3  =  8  units/h, µ4  = 14  units/h, 
C1  =  582  m.u./h, C2  =  270  m.u./h, C3  =  3.95 m.u./h, 
C4 = 3.54 m.u./h, Cwi = 4.99 m.u./h. Coefficient of the 
phase overlapping in the multiphase mass servicing sys-
tem, β is in range of [0.33;0.46], subject to the number 
of service places engaged in each phase. The number of 
service places of phase i are decision variables S1, …, S4, 
which, in this example, have the following constraints:

S1 ≤ 5;  S2 ≤ 6;  S3 ≤ 18;  S4 ≤ 12.  (10)

The final results for loading of 700 cargo units of 
general cargo are obtained in form of points on Pareto 
front, Fig.  2, which coordinates are positioned in the 
space of optimal results that satisfy minimum of objec-
tive functions. That means each point represents mini-
mum of costs and associated minimum of the opera-
tional time, reached along with specific combination of 
Si, number of service places by phase. 

Since there is no unique optimal result, ship’s op-
erator will be able, taking into consideration the real 
case, take decision on how long the cargo operations 
will last and get the amount of the associated costs, and 
vice versa.

Port dues, port operating costs and costs of the port 
in idle state, contained in the total cost C, vary from 
port to port. Similar applies to the ship’s operating costs 
related to the transhipment of cargo in the port, which 
vary from ship to ship, affected for example, by type, size 
and age of the ship, the ship’s transhipment equipment, 
and the operational policy of ship’s operator. 

If the operating costs per hour are high, ship’s oper-
ator tries to reduce them in a way to reduce the number 
of service places per phase, thus extending the service 
time and stay of ship in the port. This is true in the case 
when the cost of the ship’s stay in port is relatively low 
and the situation on the shipping market is unfavourable 
so it is worth to keep the ship for an extended period 
in port, resulting in higher realized gain in longer pe-
riod. In the case when the cost of the ship’s stay in port 
is high or in the case when the freight rates are high, 
ship’s operator may opt for a shorter service time in the 
port, which entails a greater number of service places 
and higher operating costs per hour (Hess, S., Hess, M. 
2010; Juan et al. 2012). 

The lesser service places per phase the longer ser-
vice time and ship’s stay in port. In this case operating 
costs per hour are smaller; however, total costs of the 
ship in port may be higher depending on total service 
time. Ship’s operator may select such operational option 
if the port dues are low or state of the shipping mar-
ket is unfavourable. It is important to emphasize here, 
that in some ports ship’s operator is not in position to 
make such selection or he is bounded by offered options 
(Chang et al. 2012).

Fig. 2 shows that in the first part (up to 16 h) curve 
quickly descend which may be explained by the fact that 
the ship’s service time grows inversely proportional to 
the number of service places per phase, resulting in al-
most linear decrease of costs per hour. The second part 
of curve falls considerably slower and asymptotically 
approaches specific cost value. Extreme right points on 
the Pareto front mark minimal savings in costs per hour 
considering the extension of the duration of the service 
time. This can be interpreted through the introduction 
of increased certain port taxes and increased port/ser-
vice-places operational costs after a certain time the ship 
spends in port. By such measures, ports often tries to 
discourage retention of the ship in port beyond a speci-
fied time limit in order to free up berth and port capaci-
ties to accept new ships. Such a port policy is expected 
particularly in the ports with higher volume of ships’ 
traffic.

Rows of the Table 2 show some of the iterations of 
costs and service time calculations on Pareto front along 
with numbers of service places in each phase.

Fig. 2. Pareto front of costs C and service time Wser
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The results match the perception and expected ex-
perience in performing loading operations on board. 
For example, if ship’s operator, in the area of optimal 
solutions, decides for a solution obtained in the iteration 
14, the operational cost will amount to 2988.06 m.u./h, 
while the time required for their execution will be 
16.93 h. In this case, in the first phase three cranes work 
on four cargo holds, in the second phase four forklifts 
are distributed in four holds. Furthermore, nine workers 
are needed for cargo securing and two workers for cargo 
marking and separation. 

Ship’s operator, on the basis of data from the  
Table 2, can accurately determine the total costs related 
to the transhipment in the port, and duration of tran-
shipment along with the resources needed per phase. 
Moreover, taking into consideration the current state of 
the shipping market and the rates and terms of ports, 
ship’s operator takes optimal business decision.

Table 2. Values of objective functions and decision variables 
for some points on Pareto front

Iteration C [m.u./h] Wser [h] S1 S2 S3 S4

11 3031.42 16.15 4 4 12 7
28 3011.57 16.54 4 3 10 5
14 2988.06 16.93 3 4 9 2
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

31 2895.52 21.61 3 2 8 3
23 2896.98 25.00 2 2 6 3

Conclusions

Cargo loading by ship’s cranes, cargo stowing, securing 
and separation onboard a general cargo ship should be 
well planned and coordinated throughout the opera-
tional plans in order to achieve minimum total opera-
tional costs along with minimal service time. Because 
of a multiphase service system with two objective func-
tions, to find a solution of the problem multi-objective 
optimization model has been suggested which is able to 
quantify necessary resources in each operational phase 
along with satisfaction of target functions given certain 
limitations. Analogy could be drawn to observe the pro-
cess of unloading, or a combination of cargo loading/
unloading, in which case phases would be arranged dif-
ferently, which, may be the subject of further research. 

Given the complexity of the model with multi-
objective functions, several decision variables and con-
strained solution space, the approach taken here to 
search for solution is based upon an adapted genetic 
optimization algorithm in combination with a hybrid 
optimization algorithm for the purpose of achieving im-
proved results. In the space of possible solutions (Pareto 
front) computational process with variations of different 
methods of crossover and mutation for GA and optimi-
zation options for GHA produces results that match the 
experiences from practice when performing cargo load-
ing operations on general cargo ship.

The advantage of suggested process of solution 
search manifests itself in obtaining the space of optimal 
solutions, which provides ship’s operator with possibility 
of selecting one of them in a broader consideration of 
business making on the shipping market.
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