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Abstract. Approximately one third of all traffic fatal crashes are alcohol-related in the US according to the National 
Highway Traffic Safety Administration (NHTSA), alcohol-related crashes cost more than $37 billion annually. Con-
siderable research efforts are needed to understand better significant causal factors for alcohol-related crash risks and 
driver’s injury severities in order to develop effective countermeasures and proper policies for system-wide traffic safe-
ty performance improvements. Furthermore, since two thirds of urban Vehicle Miles Traveled (VMT) is on signal-
controlled roadways, it is of practical importance to investigate injury severities of all drivers who are involved in 
intersection-related crashes and their corresponding significant causal factors due to control and geometric impacts on 
flow progression interruptions. This study aims to identify and quantify the impacts of alcohol/non-alcohol-influenced 
driver’s behavior and demographic features as well as geometric and environmental characteristics on driver’s injury 
severities around intersections in New Mexico. The econometric models, multinomial Logit models, were developed 
to analyze injury severities for regular sober drivers and alcohol-influenced drivers, respectively, using the crash data 
collected in New Mexico from 2010 to 2011. Elasticity analyzes were conducted in order to understand better the 
quantitative impacts of these contributing factors on driver’s injury outcomes. The research findings provide a better 
understanding of contributing factors and their impacts on driver injury severities in crashes around intersections. For 
example, the probability of having severe injuries is higher for non-alcohol-influenced drivers when the drivers are 65 
years old or older. Drivers’ left-turning action will increase non-alcohol-influenced driver injury severities in crash oc-
curring around intersections. However, different characteristics are captured for alcohol-influenced drivers involved in 
intersection-related crashes. For example, more severe injuries of alcohol-influenced drivers can be observed around 
intersections with three or more lanes on each approach. The model specifications and estimation results are also help-
ful for transportation agencies and decision makers to develop cost-effective solutions to reduce alcohol-involved crash 
severities and improve traffic system safety performance.
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Introduction

Statistical data indicate that traffic crashes are the lead-
ing cause of death for the age group of 4–34 years in the 
US (Williams et  al. 2012). Alcohol-influenced driving 
considerably increases crash risks and severities. Nearly 
one third of all vehicle crash fatalities are related to al-
cohol-influenced drivers and 10839 people were killed 
in alcohol related crashes in the US in 2009 according 
to the National Highway Traffic Safety Administration 
(NHTSA 2009). Correspondingly, alcohol-related vehi-
cle crashes cost more than $37 billion annually (NHTSA 
2009). Due to the continuous, substantial efforts under-
taken by transportation agencies, the number of traffic 
fatalities and serious injuries has declined during the 

past decade. For example, in the State of New Mexico, 
the overall fatality rate reduced from 2.18 to 1.37 per 
100 million Vehicle Miles Traveled (VMT) during the 
time period from 2004 to 2009, although its crash death 
rate (defined as the total number of crash deaths per 
100,000 population) was still 63% higher than the na-
tional average rate and ranked 12th worst among the 
50 states in the US in 2009 (NMDOT 2010). Among 
these total fatalities, about 41% are related to alcohol-
influenced drivers (NMDOT 2010). The New Mexico 
2009 rate of alcohol-involved crash deaths per 100000 
population was 5.67, which is 61% higher than the na-
tional rate, 3.53, 71% higher than the Arizona rate, 3.32, 
80% higher than the Colorado rate, 3.14, and 294% 
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higher than the Utah rate, 1.44, in the peer regions of 
southwest in the US (NMDOT 2010). In 2009, a total of 
361 people were killed in traffic crashes and 114 fatali-
ties associated at least one driver had a Blood Alcohol 
Concentration (BAC) of 0.08% or above in New Mexico 
(NHTSA 2009). These data suggest that considerable re-
search efforts are needed to understand better significant 
causal factors for alcohol-involved traffic crash risks and 
severities in order to develop effective countermeasures 
and proper policies for system-wide traffic safety perfor-
mance improvements.

Furthermore, two-thirds of urban VMTs are on 
signal-controlled roadways (FHA 2011, 2012), and in 
urban areas, motorists are more likely to be involved 
and injured in head-on collisions and red light running 
crashes (FHA 2009). Based on the Fatality Analysis Re-
porting System (FARS) and National Automotive Sam-
pling System General Estimates System (NASS-GES) 
data, about 40% of the estimated 5505000 crashes that 
occurred in the US in 2009 were intersection-related 
crashes (NHTSA 2009). Therefore, intersections are 
particularly crash-prone areas, and it is of practical im-
portance to investigate the significant causal factors for 
intersection-related crashes and study their impact on 
driver injury severities. Although previous studies have 
investigated contributing factors for alcohol-involved 
crashes (Maistros et  al. 2014; Traynor 2005), few of 
them emphasized on alcohol-involved crashes occurring 
around intersection. In order to address this gap, the 
present study aims to identify and quantify the impacts 
of alcohol/non-alcohol-influenced driver’s behavior and 
demographic features as well as geometric and environ-
mental characteristics on driver injury severities around 
intersections in the State of New Mexico. The transporta-
tion econometric models, multinomial Logit regression 
models(which are mostly used discrete choice models 
that are able to identify contributing factors affecting 
driver injuries), were developed to analyze injury se-
verities for regular sober drivers and alcohol-influenced 
drivers, respectively, using the crash data collected in the 
State of New Mexico from 2010 to 2011. Elasticity ana-
lyzes, which illustrate the magnitude of factors impacts 
on severity outcomes if the values of factors are changed 
by one unit, were conducted in order to understand bet-
ter the quantitative impacts of these contributing factors 
on driver injury outcomes. The research findings pro-
vide a better understanding of contributing factors and 
their significant impacts on driver injury severities in 
crashes around intersections. The model specifications 
and estimation results are also helpful for transportation 
agencies and decision makers to develop cost-effective 
solutions to reduce alcohol-involved crash severities and 
improve traffic system safety performance.

1. Literature Review

Numerous studies have been conducted to investigate 
alcohol-influenced driver’s behavior and characteristics 
as well as their impacts on crash severities. Traynor’s 

(2005) analyzed the impact of alcohol on average crash 
severities and concluded that crashes in which alcohol-
influenced drivers are more likely to get involved in a 
severe injury or fatality than sober drivers. Demetriades 
et al. (2004) analyzed alcohol and illicit drug intoxica-
tion in trauma fatalities and their association with the 
nature and severity of injuries, and found that 256 out 
of 600 victims (e.g. about 42.7%) tested positive for al-
cohol and illicit drug usages. On the other hand, Smink 
et al. (2005) investigated the relationship between drug 
use and traffic crash severity in the Netherlands and 
showed no clear associations to verify the impacts of 
alcohol and illicit drug, on crash severities. An analysis 
of roadside surveys and crash data conducted by Zador 
(1991) showed that at a BAC of 0.05 or greater, the risk 
of involvement in an alcohol-related fatal crash increases 
significantly. Bédard et al. (2002) found a positive rela-
tionship between ages and fatal injuries, after control-
ling for other variables like gender and BAC. Around 
intersections where two or more roadways cross each 
other, vehicle turning and crossing movements have the 
potential for conflicts leading to severe crashes. Persaud 
et al. (2002) estimated crash prediction models for three 
and four-legged intersections in Toronto. Sayed and 
Rodriguez (1999) used the generalized linear models to 
estimate crash occurrence risks at urban unsignalized 
intersections and the model parameters were estimated 
using the Poisson error structure. Poch and Mannering 
(1996) developed a negative binomial model to identify 
rear-end crash risks at signalized and unsignalized in-
tersections, and they found negative binomial regression 
models are suitable to model isolated intersection traffic 
and geometric factors. Retting et al. (2003) investigated 
vehicle crashes at stop sign-controlled intersections. Lau 
and May (1989) used data classification and regression 
tree techniques analysis to predict crashes at unsignal-
ized intersections. Therefore, a broad range of variables 
were found to have impacts on crash severities either in 
alcohol-involved crashes or intersection-related crashes, 
including environmental and geometric features as well 
as driver characteristics. 

In terms of statistical analysis techniques and mod-
eling methodologies, researchers have proposed and de-
veloped various discrete choice models to analyze the 
significant factors for crash severity. Both ordered and 
unordered models have been developed to investigate 
injury severities in crashes. For instance, Neyens and 
Boyle (2007) used an ordered Logit model to predict 
the likelihood of severe injuries for distracted teenage 
drivers and their passengers (IIHS & NHTSA 2006). 
Gray et al. (2008) analyzed injury severities of crashes 
involving young male drivers in Great Britain based on 
ordered Probit models. They identified specific crash 
characteristics that increase the likelihood of one of 
three categorical outcomes of crash severity: slight, seri-
ous, or fatal. Some other researchers, such as Duncan 
et  al. (1998), Khattak (2001), Kockelman and Kweon 
(2002), O’Donnell and Connor (1996), Renski et  al. 
(1999), and Yamamoto and Shankar (2004) also used 
ordered probability models to investigate crash severi-
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ties and the corresponding causal factors. However, vari-
ous studies applied unordered models without account-
ing for the ordinal nature of injury data. For example, 
Ulfarsson and Mannering (2004) used the multinomial 
Logit model to predict the probability of four injury 
severity outcomes: no injury (property damage only), 
possible injury, evident injury, and fatal/disabling injury. 
Wang and Zhang (2011) established three multivariate 
binary Logit models of crash severities for the entire 
driver group, the teenage driver group (IIHS & NHTSA 
2006), and the adult driver group. Chang and Manner-
ing (1999) accounted for the effects of large trucks and 
indicated its significant impact on the most severely in-
jured occupants, by separately estimating nested Logit 
models for truck-involved crashes and for non-truck-
involved crashes. Islam and Mannering (2006) chose an 
unordered discrete outcome model to formulate crash 
severities in their study of driver aging and its effects 
on male and female single-vehicle crash injuries, stat-
ing that there is an inherent tradeoff made between 
recognizing the ordering of responses, potential biases 
in coefficient estimates, and losing flexibility in specifi-
cation offered by unordered probability models. In this 
study, three multinomial Logit models are developed to 
identify significant causal factors in intersection-related 
traffic crashes for all drivers, alcohol-influenced drivers, 
and non-alcohol-influenced drivers. The data descrip-
tions and model specifications and results are detailed 
subsequently as follows.

2. Data Description

Two-year New Mexico intersection-related traffic crash 
data were obtained from the New Mexico Depart-
ment of Transportation (NMDOT) Traffic Safety Divi-
sion (TSD) and the Division of Government Research 
(DGR) at the University of New Mexico (UNM) from 
2010 to 2011. Three major datasets are included in this 
study: crash data, vehicle data, and driver data, which 
detail all the information regarding crash types, loca-
tions, severities, occurrence times, roadway geometric 
characteristics, weather conditions, vehicle characteris-
tics, and driver demographic and behavior information. 
Special care was taken to screen out the incomplete and 
outlier data to enhance the data quality. For example, 
the records with incomplete or obviously incorrect in-
formation, such as driver ages entered as 0 or 5, were 
removed from this study dataset. Eventually, a total of 
49073 vehicle records are used for model development 
and estimation. The descriptive statistics for the vari-
ables are provided in Table 1. The data are divided into 
two groups based on the influence of alcohol indicated 
by the variable, Alcohol-influenced, shown in Table 1: 
alcohol-influenced drivers and non-alcohol-influenced 
drivers. In this study, drivers are classified as alcohol-
influenced if their BACs were greater than 0.0% for fatal 
crashes or they were evaluated by the reporting police 
officers onsite for injurious and no injurious crashes.  

Table 1. Variable definitions and descriptions

Variable description No injury Possible injury Visible injury Incapacitating 
injury/fatality All

Crash characteristics
Severity 39947 81.4% 7240 14.8% 1283 2.6% 603 1.2% 49073
Day
Sunday 3031 80.2% 568 15.0% 129 3.4% 49 1.3% 3777
Monday 6126 81.6% 1111 14.8% 190 2.5% 76 1.0% 7503
Tuesday 6377 81.1% 1196 15.2% 193 2.5% 101 1.3% 7867
Wednesday 6363 81.2% 1181 15.1% 197 2.5% 95 1.2% 7836
Thursday 6435 82.3% 1113 14.2% 174 2.2% 94 1.2% 7816
Friday 7289 81.8% 1289 14.5% 223 2.5% 108 1.2% 8909
Saturday 4326 80.6% 782 14.6% 177 3.3% 80 1.5% 5365

Time Period
Morning 14655 81.3% 2666 14.8% 436 2.4% 259 1.4% 18016
Afternoon 13927 81.6% 2482 14.5% 464 2.7% 197 1.2% 17070
Evening 9276 81.7% 1669 14.7% 292 2.6% 112 1.0% 11349
Night 2089 79.2% 423 16.0% 91 3.4% 35 1.3% 2638
Crash Analysis
Motorcycle involved 481 90.2% 29 5.4% 15 2.8% 8 1.5% 533
Truck involved 835 87.9% 74 7.8% 23 2.4% 18 1.9% 950

Environment characteristics
Weather
Clear 37226 81.2% 6792 14.8% 1219 2.7% 580 1.3% 45817
Rain 1382 81.8% 256 15.2% 40 2.4% 11 0.7% 1689
Snow 756 89.4% 84 9.9% 5 0.6% 1 0.1% 846
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Variable description No injury Possible injury Visible injury Incapacitating 
injury/fatality All

Fog 45 75.0% 11 18.3% 2 3.3% 2 3.3% 60
Dust 36 81.8% 7 15.9% 0 0.0% 1 2.3% 44
Wind 317 80.5% 60 15.2% 11 2.8% 6 1.5% 394
Other 185 83.0% 30 13.5% 6 2.7% 2 0.9% 223
Light
Dark 5300 80.4% 1024 15.5% 181 2.7% 84 1.3% 6589
Dawn or dust 1301 81.4% 228 14.5% 49 2.9% 17 1.1% 1595
Daylight 33346 81.6% 5988 14.6% 1053 2.6% 502 1.2% 40889

Geometry characteristics
Rural 1810 75.2% 363 15.1% 142 5.9% 91 3.8% 2406
Population group
Population group 1 (<25000) 9671 81.3% 1661 14.0% 378 3.2% 190 1.6% 11900

Population group 2 (25000–50000) 13001 82.6% 2216 14.1% 372  2.4% 156 1.0% 15745

Population group 3 (>50000) 17275 80.6% 3363 15.7% 533 2.5% 257 1.2% 21428
Road characteristics

Curve 2051 84.7% 292 12.1% 66 2.7% 13 0.5% 2422
Grade
Level 35253 81.4% 6373 14.7% 1142 2.6% 525 1.2% 43293
Hillcrest 924 84.2% 147 13.4% 18 1.6% 8 0.7% 1097
On grade 3584 80.3% 690 15.5% 120 2.7% 67 1.5% 4461
Dip 95 81.9% 18 15.5% 2 1.7% 1 0.9% 116
Other 91 85.8% 12 11.3% 1 0.9% 2 1.9% 106

Road surface condition
Dry 36856 81.2% 6743 14.9% 1210 2.7% 572 1.3% 45381
Wet 2087 81.1% 405 15.7% 56 2.2% 26 1.0% 2574
Snow 426 90.6% 39 8.3% 4 0.9% 1 0.2% 470
Ice 389 92.6% 26 6.2% 3 0.7% 2 0.5% 420
Other 189 82.9% 27 11.8% 10 4.4% 2 0.9% 228
Road surface paving 151 86.8% 16 9.2% 4 2.3% 3 1.7% 174

Traffic control
No control 7246 78.9% 1487 16.2% 316 3.4% 145 1.5% 9194
Stop sign 8558 85.1% 1135 11.3% 250 2.5% 111 1.1% 10054
Signal control 24094 80.9% 4614 15.5% 716 2.4% 346 1.2% 29770
Railroad gate 49 89.1% 4 7.3% 1 1.8% 1 1.8% 55
Number of lanes
One lane 10541 82.6% 1703 13.3% 357 2.8% 161 1.3% 12762
Two lanes 15821 81.4% 2875 14.8% 512 2.6% 236 1.2% 19444
Multi lanes 13585 80.5% 2662 15.8% 414 2.5% 206 1.2% 16867

Vehicle characteristics
Number of vehicle
Single vehicle 87 73.1% 12 10.1% 14 11.8% 6 5.0% 119
Two vehicles 35607 82.4% 6041 14.0% 1082 2.5% 498 1.2% 43228
Multiple vehicles 4253 74.3% 1187 20.7% 187 3.3% 99 1.7% 5726

Vehicle type
Passenger car 21232 79.0% 4510 16.8% 773 2.9% 368 1.4% 26883
Pick-up 9817 85.8% 1267 11.1% 254 2.2% 106 0.9% 11444
Tractor 463 96.9% 12 2.5% 2 0.4% 1 0.2% 478
Bus 222 94.1% 14 5.9% 0 0.0% 0 0.0% 236
Van 8213 81.9% 1437 14.3% 254 2.5% 128 1.3% 10032

Continue of Table 1
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Each record is detailed at vehicle levels, which contain 
all information about individual vehicles and drivers in 
crashes. The variable, Severity, is used to classify driver’s 
injury severities into four categories: No injury, Possible 
injury, Visible injury, and Incapacitating injury/fatality. 
Table 1 shows the percentage distribution across driver 
injury severity categories.

Basic statistical analyzes and graphic visualizations 
are conducted to interpret the characteristics for driv-
ers under the influence of alcohol and provide a gen-
eral overview of alcohol related driver injury severities 
around intersections in New Mexico. Figure shows the 
driver’s injury severity classification tree in intersection-
related crashes. After screening out uncompleted and 
obviously uncorrected records, the data records used 
in this study contain 49073 drivers involved in crashes 
occurring around intersections in New Mexico from 
2010 to 2011. Although only 1.3% of the total drivers 
are found to be influenced by alcohol in these crashes, 

more severe driver injury outcomes are observed in this 
category. Thirty alcohol-influenced drivers are identi-
fied with incapacitating or fatal injury in the intersec-
tion-related crashes accounting for 4.7% of the total 
alcohol-influenced drivers involved in crashes, which is 
significantly higher than 1.2%, the proportion of driver 
incapacitating or fatal injuries to the total non-alcohol-
influenced drivers. The driver visible injury data dem-
onstrate the similar pattern. The proportion of alco-
hol-influenced drivers suffering visible injury is about 
9.6%, which is also much higher than its equivalent of 
non-alcohol-influenced drivers, 2.5%. These data indi-
cate although the number of alcohol-influenced drivers 
accounts for a small proportion of the total number of 
drivers in intersection-related crashes, they suffer more 
severe injuries and fatalities, which verified the necessity 
to investigate the unique characteristics, associated with 
alcohol-influenced drivers and significant contributing 
factors to driver injury severities. 

Variable description No injury Possible injury Visible injury Incapacitating 
injury/fatality All

Driver characteristics
Seatbelt 39819 81.6% 7203 14.8% 1226 2.5% 563 1.2% 48811
Alcohol-influenced 474 74.3% 73 11.4% 61 9.6% 30 4.7% 638
Female 18502 77.0% 4523 18.8% 657 2.7% 345 1.4% 24027

Driver actions
Slow 1060 85.8% 158 12.8% 13 1.1% 4 0.3% 1235
Left turn 6398 81.5% 1072 13.7% 256 3.3% 121 1.5% 7847
Right turn 2961 91.3% 236 7.3% 32 1.0% 15 0.5% 3244
Overtaking 178 88.1% 16 7.9% 6 3.0% 2 1.0% 202
Straight 28913 80.1% 5748 15.9% 971 2.7% 460 1.3% 36092
U-turn 79 88.8% 5 5.6% 4 4.5% 1 1.1% 89
Backing 358 98.4% 5 1.4% 1 0.3% 0 0.0% 364

Driver age
16 to 20 years 5878 83.3% 885 12.5% 219 3.1% 74 1.0% 7056
21 to 34 years 12950 82.4% 2203 14.0% 408 2.6% 158 1.0% 15719
35 to 44 years 6352 80.9% 1242 15.8% 156 2.0% 102 1.3% 7852
45 to 54 years 6076 80.3% 1254 16.6% 154 2.0% 82 1.1% 7566
55 to 64 years 4546 78.8% 967 16.8% 161 2.8% 93 1.6% 5767
65 years or older 4145 81.1% 689 13.5% 185 3.6% 94 1.8% 5113

End of Table 1

Fig. Intersection-related driver injury severity classification tree
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3. Methodology

In this study, according to data sample size, data attrib-
utes, and NMDOT standards, four injury severity cat-
egories are used: No injury, Possible injury, Visible injury 
and Incapacitating injury/fatality. Considering that four 
discrete severity outcomes are specified, many statistical 
modeling approaches can be used, such as ordered dis-
crete probability models, which can explicitly recognize 
the monotonic change pattern in crash severities. Many 
previous studies were conducted using such modeling 
approaches for crash severity investigations (Abdel-Aty, 
Radwan 2000; Kockelman, Kweon 2002). However, or-
dered probability models may not be suitable for non-
monotonic-changing severity data due to their strong 
restrictions on the linear relationship between explana-
tory variables and independent outcomes. For example, 
the steep roadway grade may increase crash severities 
when its absolute value is small or moderate. When its 
absolute value continuously increases beyond a certain 
range, crash severities tend to decrease due to the facts 
that drivers will travel much slower and pay more at-
tention to handle abrupt grade changes in these situa-
tions. The other illustrative example could be the usage 
of airbag. If an airbag is deployed, the probability of se-
vere injury and fatality could decline but it may increase 
the likelihood of minor injury of drivers resulting from 
airbag activation. The application restriction of ordered 
probability models indicates that changing explanatory 
variables shall either increase or decrease crash severi-
ties in a monotonic manner across all the possible out-
comes, which is not always supported by the severity 
data. Therefore, a more commonly used unordered dis-
crete modeling approach, multinomial Logit model, is 
adopted in this study.

3.1. Driver’s Injury Severity Modeling
To formulate the probability relationship between driver 
injury severity and its causal factors, the discrete choice 
model, multinomial Logit model, is used in this study. 
Assume Sin, the utility function that determines the 
probability of driver n suffering severity outcome i in a 
crash, is defined as follows: 

= + e  in i in inS b X ,  (1)

where: Xin is a vector of exogenous explanatory variables 
associated with driver n to determine injury severity i; 
ib  is a vector of estimated coefficients; ein is the random 

utility component and represents these unobservable in-
fluences on severity outcomes. If ein is assumed to be 
Generalized Extreme Value (GEV) distributed, then a 
multinomial Logit model can be derived as (Train 2009):
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where: Pin is the probability of driver n suffering injury 
outcome i in a crash, and I is the choice set of possi-
ble injury severity outcomes. In this study, driver injury 
severity outcomes are classified into four categories: no 

injury, possible injury, visible injury and incapacitating 
injury/fatality. Three multinomial Logit models were 
established for the entire driver group, the alcohol-in-
fluenced driver group, and the non-alcohol-influenced 
driver group, respectively. 

3.2. Elasticity Analysis
Due to the limitation of estimated coefficients in mea-
suring the magnitude of the impacts of significant vari-
ables on driver injury severity probabilities, elasticity 
analysis is conducted for three models in this study. 
The elasticities of variables for each injury category are 
calculated in this study in order to assess the effect of 
variables on driver injury outcomes when the values of 
variables change one unit. The direct elasticity of the 
variable Xink can be calculated as follows to quantify its 
corresponding percent effect on severity outcome prob-
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where: Xink is the value of the kth variable associated 
with driver n in the utility function of injury outcome i. 
For the indicator variables which take the values of 0 or 
1 only, pseudo-elasticity is used instead of direct elastic-
ity as follows (Kim et al. 2007):
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where: bink is the estimated coefficient of the variable 
Xink, ( )in′∆ ⋅bi X  is the value of the function determin-
ing injury severity with Xink set to 0, and in′ ⋅bi X  is the 
value with Xink set to 1. in

ink

P
XE measures the percentage 

change in the severity outcome probability for driver n, 
Pin, when the kth indicator variable, Xink, switches from 
0 to 1 (Washington et  al. 2003). In this study, the av-
erage pseudo elasticity for a specific variable across all 
observations is calculated in order to quantify the mag-
nitude of its impacts on specific severity outcomes. The 
detailed model specifications and estimation results are 
described in next section. 

4. Model Estimation Results

In order to identify and analyze the significant contrib-
uting factors influencing driver injury severities, three 
multinomial Logit models were developed for different 
driver groups: all drivers, alcohol-influenced drivers, 
and non-alcohol-influenced drivers, respectively. Elas-
ticity analysis is conducted to quantitatively interpret the 
coefficients estimated in those models and their impacts 
on severity outcomes. These models were estimated us-
ing the maximum likelihood estimation method, and the 
statistical software package, Python BIOGEME (Python 
BIerlaire Optimization toolbox for GEV Model Estima-
tion) was used for model parameter estimation and elas-
ticity analysis. Driver injury severities are classified into 
four categories: No Injury, Possible Injury, Visible Injury 
and Incapacitating Injury/Fatality. The coefficients of the 
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significant variables specified in these models are shown 
in Tables 2, 4, and 6, respectively, including coefficient 
estimates (Coef.), standard errors (Std.) t-statistics (T-
ratio), and significance levels for the test of significant 
difference of a coefficient from zero (P-value). The av-
erage pseudo elasticities of every variable captured in 
these models across injury severity categories are shown 
in Tables 3, 5 and 7. The model estimation results and 
discussions are provided as follows.

4.1. All Driver’s Model
In order to illustrate the overall impacts of significant 
contributing factors on driver injury severities in an 
intersection-related crash, a multinomial Logit model 
is developed for the entire driver group. As shown in 
Table 2, the likelihood ratio index, r2, is equal to 0.58, 
which indicates the reasonable goodness-of-fit of the 
proposed model to the data. Using the injury severity 
category, Incapacitating injury/fatality, as the estima-
tion base, the constants specific to No injury, Possible 
injury and Non-incapacitating injury, are estimated as 
2.87, 2.40 and 0.8, respectively, at the significant level 
of p = 0.01. These three constants indicate that drivers 
are more likely to get involved in a crash of no injury or 
slight injury but less likely to suffer severely or fatally 
injuries in intersection-related crashes without consid-
ering any other factor given a crash occurrence. In the 
proposed model, the constant specific to Incapacitating 
injury/fatality can be regarded as 0, and the values of the 
constants illustrate the magnitudes of the relative likeli-
hood of potential outcomes. 

The coefficients of the variable, Alcohol-influenced, 
specific to No injury and Possible injury are equal to 
–1.45 and –1.51, which are significantly different from 
0 at the p = 0.01 significant level, indicating Alcohol-
influenced is a significant variable influencing driver 
injury severities. Relative to non-alcohol-influenced 
drivers (the value of variable, Alcohol-influenced, is 
equal to 0) in intersection-related crashes, the prob-
abilities of visible injury and incapacitating injury/fatal-
ity for alcohol-influenced drivers (the value of variable, 
Alcohol-influenced, is equal to 1) increased by 284.0%. 
This result implies that alcohol-influenced drivers have 
a considerably high probability of suffering more severe 
injurious and fatal outcomes, which is consistent with 
the previous studies (Traynor 2005; Zador 1991). The 
significant impacts of the variable, Alcohol-influenced, on 
driver injury severities further underscore the necessity 
separating entire driver population into different groups: 
alcohol-influenced drivers and non-alcohol-influenced 
drivers for their specific attribute investigations.

The variable, Rural, is an indicator variable showing 
whether the crashes occurred in rural areas or not. It 
has a significant impact on driver injury severities, and 
its elasticities specific to Possible injury, Visible injury, 
and Incapacitating injury/fatality are 12.2%, 129.1% and 
227.1%, respectively. These results indicate that relative 
to driver injuries in intersection-related crashes in ur-
ban areas, the probabilities of having drivers possibly, 
visibly, and severely/fatally injured increased by 12.2%, 

129.1%, and 227.1% for rural crashes, respectively. This 
reflects the higher severity levels of driver injuries in ru-
ral crashes, which is consistent with the data provided 
by NMDOT (2010) that about 20% of the total crashes 
occurred in rural areas but they accounted for 65% of 
total driver fatalities. In terms of traffic control modes, 
two variables, Stop sign and Signal control are identified 
to be significant. Their coefficients and elasticities spe-
cific to Possible injury, Visible injury and Incapacitating 
injury/fatality, show that these two types of traffic con-
trol modes can significantly improve safety performance 
at intersections. Relative to other control modes includ-
ing no control, no passing zone, and railroad gate, stop 
sign control increases the probability of having a crash 
of property damage only by 7.5% given crash occurrence 
around intersections. The likelihoods of drivers suffer-
ing possible injuries, and visible or more severe injuries 
decrease by 4% and 27.1% at signal-controlled intersec-
tions. These findings further verify that stop sign control 
and signal control can significantly improve safety per-
formance at intersections and reduce the probability of 
drivers being severely and fatally injured

The variable, Multiple vehicles, represents that the 
number of vehicles involved in a crash is greater than 
two, and its positive elasticity specific to No injury, 
–9.7%, show that relative to single-vehicle and two-vehi-
cle crashes, there is an 9.7% decrease in the likelihood of 
drivers being no injured in multi-vehicle crashes. Since 
single-vehicle crashes only account for 0.2% of the total 
crashes, it is safe to draw a conclusion that the probabil-
ity of having injurious and fatal crashes would increase 
significantly when the number of vehicle involved in 
crashes increases to three or more. 

As can be expected, using a seat belt can signifi-
cantly decrease the probabilities of drivers suffering in-
jury and fatality. The elasticity of the variable, Seatbelt, 
specific to No injury is 69.6%, indicating that relative to 
non-seat belt usage, using a seat belt may cause a 69.6% 
increase in the probability of drivers being no injured in 
intersection-related crashes. These findings are well sup-
ported by the previous studies that unrestrained drivers 
have a higher likelihood to suffer more severe injury or 
fatality (Savolainen, Mannering 2007; Shankar, Manner-
ing 1996). 

Interestingly, the variable, Female, was found to 
have non-monotonic impacts on driver injury outcomes. 
Relative to male drivers, there is a 27.5% increase in the 
likelihood of visible, and incapacitating and fatal injury 
for female ones when getting involved in crashes around 
intersections. The probability of having them possibly 
injured increases by 75.6%, but it decreases by 10.6% 
for female drivers being no injured relative to male 
drivers. This implies that female drivers are more likely 
to get possible, minor injured in crashes but less likely 
to be severely or no injured. These interesting results 
reflect the complex impacts of female driver behavior 
and demographics on driver injury outcomes. In terms 
of driver actions, the variable, Left turn, is also found 
its non-monotonic impacts on driver injury outcomes 
with the positive elasticities specific to Visible injury 
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and Incapacitating injury/fatality and the negative elas-
ticities specific to Possible injury and No injury. When 
a crash occurs due to vehicle left-turn movements, the 
probabilities of drivers being visibly, evidently and fa-
tally injured increase by 35.3%, being possibly injured 
decrease by 3.7%, and being no injured decrease by 
0.9% compared with other driver actions, such as right 
turning, slowing, overtaking, U-turning, backing, and 
going straight. Such mixed results are attributed to the 
facts that drivers may be more cautious and prepare for 
unfavorable driving conditions when making left-turn 
movements around an intersection to reduce the poten-
tial of severe crashes from possible injury to no injury. 
However, vehicle collisions due to left-turn movements 
are normally characterized by head-on and other types 
of severe crashes which are also impacted by through 
traffic at relatively high speeds on opposing approaches. 
The driver age variable, 65 years or older, represents the 
group of drivers who are more than 65 years old. Its elas-
ticities specific to Visible injury and Incapacitating inju-
ry/fatality indicate that relative to younger driver groups, 
there is a 55.6% increase in the likelihood of being vis-

ibly, severely, and fatally injured for drivers of 65 years 
or older. The likelihood for them to experience crashes 
of property damage only decreases by 1.6%. This result 
indicates that drivers of 65 years or older are more likely 
to suffer evident and severe injury but less likely to get 
involved in intersection-related crashes of possible in-
jury. Due to lengthened perception and reaction time 
needed for aging drivers, they are more likely to get in-
volved in severe crashes. Meanwhile, they may be more 
cautious to increase the probability of being no injured. 
These findings are helpful to better understand the non-
monotonic impacts of the contributing factors, Female, 
Left turn, and 65 years or older for developing effective 
intersection-related crash safety improvement plans.

4.2. Non-Alcohol-Influenced Driver’s Model
Table 4 presents the model estimation results for non-
alcohol-influenced drivers. The likelihood ratio index, 
r2, is 0.58, showing the overall model goodness-of-fit 
is acceptable. Since non-alcohol-influenced drivers ac-
count for the majority of the crash record data used in 
this study, similar model specifications are achieved for 
the non-alcohol-influenced driver’s model. However, as 
shown in Table 4, one additional variable, Passenger car, 
is found significant for the non-alcohol-influenced driv-
ing crashes at the level of p = 0.01, which illustrates the 
impacts of vehicle types on driver injury outcome for 
non-alcohol-influenced drivers in intersection-related 
crashes. As can be expected, relative to drivers of the 
other vehicle types (the value of variable, Passenger car, 
is zero) including pickups, tractors, buses, and vans, pas-
senger car drivers are vulnerable in intersection-related 
crashes. They are more likely to suffer possible and se-
vere injury by 26.1% in crashes around intersections 
compared to others according to its pseudo elasticities 
shown in Table 5. This result is consistent with the con-
clusions of the previous studies (Huang et al. 2008; Kho-
rashadi et al. 2005). Compared with model parameter 
interpretations for the all driver’s model, similar analyzes 
can be conducted for the other variables in this non-
alcohol-influenced driver’s model. 

Table 2. Driver’s injury severity model estimation  
for all drivers

Variablea Coef.b Std.c T-ratio P-value

Constant(N) 2.87 0.14 20.47 0.00(**)
Constant(P) 2.40 0.07 36.63 0.00(**)
Constant(I) 0.80 0.05 15.06 0.00(**)
Rural(N) –1.28 0.12 –10.84 0.00(**)
Rural(P) –1.07 0.13 –8.40 0.00(**)
Rural(I) –0.36 0.14 –2.46 0.01(*)
Stop Sign(N) 0.43 0.04 11.33 0.00(**)
Signal control(N) 0.34 0.05 6.62 0.00(**)
Signal control(P) 0.28 0.05 5.17 0.00(**)
Multiple vehicles(N) –0.48 0.03 –14.16 0.00(**)
Seatbelt(N) 1.56 0.13 12.29 0.00(**)
Alcohol-influenced(N) –1.45 0.12 –11.93 0.00(**)
Alcohol-influenced(P) –1.51 0.16 –9.35 0.00(**)
Female(N) –0.36 0.05 –7.41 0.00(**)
Female(P) 0.32 0.05 6.06 0.00(**)
Left turn(N) –0.31 0.06 –5.25 0.00(**)
Left turn(P) –0.34 0.07 –5.11 0.00(**)
65 years or older(N) –0.46 0.07 –6.76 0.00(**)
65 years or older(P) –0.49 0.08 –6.39 0.00(**)
Log likelihood with constants only –68030
Log likelihood at convergence –28628
Likelihood ratio index, r2 0.58

Notes: aLetters in parentheses indicate that variable coefficients 
are significant specific to (N) No injury, (P) Possible injury, 
(V) Visible injury and (I/F) Incapacitating injury/fatality; The 
constants specific to the incapacitating injury/fatality outcome 
has been normalized to zero; bEstimated Coefficient; cStandard 
Error; The asterisk represents the level of significance: ** for 
>99% and *for >95%.

Table 3. Average variable pseudo elasticity  
for all driver’s model (%)

Variable No 
injury

Possible 
injury

Visible 
injury

Incapacitating 
injury/fatality

Rural –9.1 12.2 129.1 227.1
Stop sign 7.5 –29.7 –29.7 –29.7
Signal control 2.3 –4.0 –27.1 –27.1
Multiple 
vehicles –9.7 45.4 45.4 45.4

Seatbelt 69.6 –64.4 –64.4 –64.4
Alcohol-
influenced –9.9 –15.2 284.0 284.0

Female –10.6 75.6 27.5 27.5
Left turn –0.9 –3.7 35.6 35.6
65 years or 
older –1.6 –4.8 55.6 55.6



Transport, 2018, 33(1): 165–176 173

Table 4. Driver’s injury severity model estimation for non-
alcohol-influenced drivers

Variablea Coef.b Std.c T-ratio P-value

Constant(N) 3.07 0.15 20.64 0.00(**)

Constant(P) 2.40 0.07 36.14 0.00(**)

Constant(I) 0.80 0.05 14.77 0.00(**)

Rural(N) –1.33 0.12 –10.87 0.00(**)

Rural(P) –1.09 0.13 –8.31 0.00(**)

Rural(I) –0.37 0.15 –2.44 0.01(*)

Stop sign(N) 0.43 0.04 11.35 0.00(**)

Signal control(N) 0.34 0.05 6.46 0.00(**)

Signal control(P) 0.27 0.05 4.96 0.00(**)

Multiple vehicles(N) –0.48 0.03 –14.10 0.00(**)

Seatbelt(N) 1.51 0.14 11.11 0.00(**)

Passenger car(N) –0.28 0.02 –11.49 0.00(**)

Female(N) –0.31 0.05 –6.27 0.00(**)

Female(P) 0.32 0.05 6.03 0.00(**)

Left turn(N) –0.32 0.06 –5.26 0.00(**)

Left turn(P) –0.36 0.07 –5.22 0.00(**)

65 years or older(N) –0.45 0.07 –6.53 0.00(**)

65 years or older(P) –0.49 0.08 –6.34 0.00(**)

Log likelihood with constants only –67145

Log likelihood at convergence –28810

Likelihood ratio index, r2 0.58

Notes: aLetters in parentheses indicate that variable coefficients 
are significant specific to (N) No injury, (P) Possible injury, 
(I) Visible injury and (I/F) Incapacitating injury/fatality; The 
constants specific to the incapacitating injury/fatality outcome 
have been normalized to zero; bEstimated Coefficient; cStandard 
Error; The asterisk represents the level of significance: **for 
>99% and *for >95%.

Table 5. Average variable pseudo elasticity for  
non-alcohol-influenced driver’s model (%)

Variable No 
injury

Possible 
injury

Visible 
injury

Incapacitating 
injury/fatality

Rural –9.6 14.9 136.8 241.8
Stop sign 7.4 –30.1 –30.1 –30.1
Signal 
control 2.3 –4.4 –27.0 –27.0

Multiple 
vehicles –9.6 45.8 45.8 45.8

Seatbelt 64.3 –63.7 –63.7 –63.7
Passenger 
car –5.0 26.1 26.1 26.1

Female –9.7 69.6 22.8 22.8
Left turn –0.8 –4.2 36.6 36.6
65 years  
or older –1.3 –5.6 54.0 54.0

4.3. Alcohol-influenced driver’s model
Table 6 shows the multinomial Logit model estimation 
results for alcohol-influenced drivers. The likelihood ra-
tio index, r2, is 0.41, indicating the acceptable model 
performance. Many significant variables for non-alco-
hol-influenced drivers become less critical for alcohol-
influenced drivers, such as Stop sign, Signal control, 
Multiple vehicles, Seatbelt, Passenger car, Female, Left 
turn and 65 years or older, etc. For instance, the vari-
able, Signal control, is found statistically insignificant to 
influence injury severities for alcohol-influenced drivers. 
It could be attributable to the facts that regulation and 
protection on vehicle movements from signal control 
become less recognizable and critical for drivers under 
the influence of alcohol passing through intersections. 
Therefore, it is insignificant to determine driver’s injury 
severity outcomes. However, since only 638 records are 
used for developing and calibrating the alcohol-influ-
enced driving crash model, additional research efforts 
are desirable to investigate further this research finding 
for its generality and transferability. 

Noticeably, two new variables, Multi lanes and 
Straight, are found to be significant in the alcohol-in-
fluenced driver’s model. The positive elasticities of the 
variable, Multi lanes, specific to Possible injury, Visible 
injury and Incapacitating injury/fatality, indicate that the 
probabilities of being possibly, evidently, and severely in-
jured for alcohol-influenced drivers increase by 39.8% at 
intersections with three or more lanes on each approach 
relative to these with the other number of lanes. This 
result may be explained partially by the fact that traffic 
control and geometric conditions are more complex for 
intersections with multi-lanes on each approach so that 
alcohol influence becomes significant to increase the 
likelihood for drivers being injured at different levels, 
which is consistent with the previous studies (Abdel-
Aty, Radwan 2000; Hu, Donnell 2011). Special counter-
measures and policies should be developed to provide 
more visible warning messages to potentially alcohol-
influenced drivers at multi-lane intersections. Similar 
analyzes can be conducted for the variable, Straight. Its 
elasticities specific to Possible injury, Visible injury and 
Incapacitating injury/fatality are 36.2%, indicating there 
are a 36.2% increase in the probabilities of being pos-
sibly and severely injured for alcohol-influenced drivers 
when they are traveling straight at intersections relative 
to the other actions, such as left turning, right turning, 
slowing, overtaking, U-turning, and backing. This could 
be because of the fact that alcohol-influenced drivers 
may be less cautious travelling straight through inter-
sections at relatively high speeds which may indirectly 
result in more severe injuries. Similar results are also 
found in previous studies (Chang, Mannering 1999; Pai 
et  al. 2009). Additionally, similar to the non-alcohol-
influenced driver’s model, the variable, Rural, is found 
significant to increase alcohol-influenced driver’s injury 
severities at intersection-related crashes as shown by its 
coefficient and elasticity in Tables 6 and 7, respectively. 
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Table 6. Driver’s injury severity model estimation  
for alcohol-influenced drivers

Variablea Coef.b Std.c T-ratio P-value

Constant(N) 3.24 0.25 13.10 0.00(**)

Constant(P) 0.89 0.22 4.10 0.00(**)

Constant(I) 0.71 0.22 3.18 0.00(**)

Rural(N) –0.93 0.28 –3.38 0.00(**)

Multi lanes(N) –0.47 0.24 –1.99 0.05(*)

Straight(N) –0.41 0.20 –2.02 0.04(*)

Log likelihood with constants only –884

Log likelihood at convergence –526

Likelihood ratio index, r2 0.41

Notes: aLetters in parentheses indicate that variable coefficients 
are significant specific to (N) No injury, (P) Possible injury, 
(I) Visible injury and (I/F) Incapacitating injury/fatality. The 
constants specific to the incapacitating injury/fatality outcome 
have been normalized to zero; bEstimated Coefficient; cStandard 
Error; The asterisk represents the level of significance: **for 
>99% and *for >95%.

Table 7. Average variable pseudo elasticity  
for alcohol-influenced driver’s model (%)

Variable No 
injury

Possible 
injury

Visible 
injury

Incapacitating 
injury/fatality

Rural –26.5 86.7 86.7 86.7
Multi lanes –12.5 39.8 39.8 39.8
Straight –9.4 36.2 36.2 36.2

5. Model Limitation Discussions 

Some discussions and elaborations are needed regarding 
data collection and model specifications in this study. 
The alcohol-related crash data were collected partially 
by reporting police officers based on their subjective 
judgments. Although testing drivers’ BAC levels is the 
most accurate method to verify their alcohol consump-
tion, it is only examined in fatal crashes in reality. For 
crashes of property damage only and injury, reporting 
police officers’ subjective judgments play critical roles 
for alcohol-related crash data inputs. A certain number 
of crashes with minor or non-injury driver’s injuries, 
which involved alcohol-influenced drivers, might not be 
reported due to less injury severities and drivers’ willing-
ness-to-pay for escaping punishment by law. Therefore, 
underreporting crashes of minor or non-injury has po-
tentially occurred during crash data collection processes, 
which may further lead to biased model specification 
and estimation results. According to Kim et al. (2007) 
study, however, this only biases the coefficients when the 
underreporting is a function of the variables included in 
multinomial Logit models, such as age or gender, other-
wise, the coefficients will remain unbiased under non-
ordered choice-based sampling processes. More accurate 
alcohol-related crash data collection is desirable to en-
sure reliable model specification and estimation results.

Conclusions

This study aims to model and examine the impacts of 
alcohol/non-alcohol-influenced driver behavior and de-
mographic features as well as geometric and environ-
mental characteristics on driver injury severities around 
intersections in the State of New Mexico from 2010 
to 2011. The drivers involved in intersection-related 
crashes are classified into three groups based on their 
soberness status: all drivers, alcohol-influenced drivers, 
and non-alcohol-influenced drivers. Three multinomial 
Logit regression models were developed and calibrated 
to identify significant causal factors for three driver 
groups and to better understand how alcohol involve-
ment impacts driver injury severities. 

The model estimation results show that with re-
spect to all drivers involved in intersection-related 
crashes, a combination of roadway geometric features, 
environmental characteristics, control modes, and driver 
attributes significantly impacted driver injury severities. 
Alcohol involvement is identified as a critical factor-de-
termining driver’s injury severities. Relative to non-al-
cohol-influenced drivers in intersection-related crashes, 
the probabilities of non-incapacitating injury and inca-
pacitating injury/fatality for alcohol-influenced drivers 
increased by 284.0%. This result implies that alcohol-
influenced drivers have a considerably high probability 
of suffering more severe injurious and fatal outcomes 
and underscores the necessity separating entire driver 
population into different groups: alcohol-influenced 
drivers and non-alcohol-influenced drivers for their 
specific attribute investigations. Interestingly, three sig-
nificant factors are found to be non-monotonic to im-
pact driver’s injury severities, female, driver left turn 
action, and driver age group of 65 years or older. Many 
significant factors identified in the non-alcohol-influ-
enced driver’s model, including signal control and seat-
belt use, become less significant for alcohol-influenced 
drivers given crash occurrences around intersections. 
However, three factors, rural, multi-lanes, and driver 
action of going straight, are still significant. Based on 
those results, appropriate countermeasures and policies 
can be proposed to mitigate driver injury severities in 
intersection-related crashes, especially for alcohol-influ-
enced drivers. For instance, when a crash occurs due to 
driver left-turn movements, the probabilities of drivers 
being visibly, evidently and fatally injured increase by 
35.3% compared with other driver actions, such as right 
turning, slowing, overtaking, U-turning, backing, and 
going straight. This result implies that due to driver left 
turn action; high fatality rates of non-alcohol-influenced 
drivers around intersections can be mitigated by adding 
appropriate traffic control restricting left turn behavior 
around intersections. For alcohol-influenced drivers, 
providing more visible warning messages to potentially 
alcohol-influenced driers at multi-lane intersections can 
effectively decrease the injury severity level of alcohol-
influenced divers. 

Overall, this study provides a better understanding 
of contributing factors and their significant impacts on 
driver injury severities in crashes around intersections. 
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The model specification and estimation results are also 
helpful for transportation agencies and decision mak-
ers to develop cost-effective solutions to reduce driver’s 
injury severities especially of alcohol-influenced drivers, 
and improve traffic system safety performance. Addi-
tional research efforts are desirable to further investiga-
tion of the research findings using more comprehensive 
and accurate alcohol-related crash data for their gener-
ality and transferability. Furthermore, future studies are 
recommended to review current policies which have 
a direct impact on alcohol related crashes. Suggested 
policies include: the allowable driver BAC limit settings; 
Driving While Intoxicated (DWI) training; law enforce-
ment strategies; and the driver license revocation policy. 
Further research is needed to estimate the effect of the 
present alcohol safety regulations and policies.
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