
TRANSPORT
ISSN 1648-4142 / eISSN 1648-3480

2016 Volume 31(4): 389–407
doi:10.3846/16484142.2013.819814

A HYBRID COLUMN GENERATION ALGORITHM BASED
ON METAHEURISTIC OPTIMIZATION

Wenbin Hu, Bo Du, Ye Wu, Huangle Liang, Chao Peng, Qi Hu
School of Computer, Wuhan University, Wuhan City, Hubei Province, China

Submitted 15 October 2012; accepted 3 April 2013;
first published online 25 October 2013

Abstract. The exact solution and heuristic solution have their own strengths and weaknesses on solving the Vehicle
Routing Problems with Time Windows (VRPTW). This paper proposes a hybrid Column Generation Algorithm with
Metaheuristic Optimization (CGAMO) to overcome their weaknesses. Firstly, a Modified Labelling Algorithm (MLA)
in the sub-problem of path searching is analysed. And a search strategy in CGAMO based on the demand of sub-prob-
lem is proposed to improve the searching efficiency. While putting the paths found in the sub-problem into the main
problems of CGAMO, the iterations may fall into endless loops. To avoid this problem and keep the main problems
in a reasonable size, two conditions on saving the old paths in the main problem are used. These conditions enlarge
the number of constraints considered in the iterations to strengthen the limits of dual variables. Through analysing
the sub-problem, we can find many useless paths that have no effect on the objective function. Secondly, in order to
reduce the number of useless paths and improve the efficiency, this paper proposes a heuristic optimization strategy
of CGAMO for dual variables. It is supposed to accelerate the solving speed from the view of on the dual problem. Fi-
nally, extensive experiments show that CGAMO achieves a better performance than other state-of-the-art methods on
solving VRPTW. The comparative experiments also present the parameters sensitivity analysis, including the different
effects of MLA in the different path selection strategies, the characteristics and the applicable scopes of the two path-
keeping conditions in the main problem.
Keywords: vehicle routing problems with time windows; column generation algorithm; labelling algorithm; sub-prob-
lem; simplex method; dual problem.

Corresponding author: Wenbin Hu
E-mail: hwb@whu.edu.cn
Copyright © 2013 Vilnius Gediminas Technical University (VGTU) Press
http://www.tandfonline.com/TRAN

Introduction

Nowadays, with the increasing demand of better services
and tighter requirements for the users, the Vehicle Rout-
ing Problem (VRP) has played a very important role in
the logistics and supply chain management and many
other areas. The VRP is defined as a problem of mini-
mizing the total travel distance of a number of vehicles
with some constraints, including every customer must
be served at least once by a vehicle. Among many kinds
of VRP, the Vehicle Routing Problem with Time Win-
dows (VRPTW) has been widely studied and occupies
an important place in the field of operations research
and combinatorial optimization (Hashimoto et al. 2008;
Lau et al. 2003; Teodorovic et al. 1995; Vaidyanathan
et al. 2007). The VRPTW has a wide range of applica-
tions such as supermarket distribution, expressage, bank

deliveries, postal deliveries, school bus routing and so
no. The VRPTW has become a subject of great interest
in VRP fields.

Scholars mainly concentrate on two kinds of algo-
rithms: exact and heuristic algorithms. Exact algorithms
are solved by precise mathematical models and reason-
ing, and can get the optimal solution. But since the
VRPTW is NP-hard, solving large-scale problems using
the exact algorithm is very time-consuming (Achuthan
et al. 2003; Kohl 1995; Laporte et al. 1992; Christian-
sen, Lysgaard 2007; Gutiérrez-Jarpa et al. 2009; Cheung,
Hang 2003). The gradual optimization of the heuristic
algorithm for feasible solutions is promising, but when
the problem is of a smaller scale, the solution presents
the large deviations (Sungur et al. 2008; Chakroborty,
Mandal 2005; Hiquebran et al. 1993; Li et al. 2010;

390 W. Hu et al. A hybrid column generation algorithm based on metaheuristic optimization

Cheng, Wang 2009; Gajpal, Abad 2009; Balseiro et al.
2011). Since both kinds of algorithms have their own
strengths and weaknesses for solving VRPTW, combin-
ing these two kinds of algorithms to attain even better
solution for VRPTW becomes a treading research di-
rection (Tavakkoli-Moghaddam et al. 2011; Hashimoto
et al. 2008; Garcia-Najera, Bullinaria 2011; Hong 2012).
A good combined algorithm should have the least time
consuming and the smallest solution deviations.

Dantzig and Wolfe (1960) proposed the Column
Generation (CG) method to solve the linear programs
with decomposable structures. CG has been applied
successfully to solve many optimization problems and
becomes a leading optimization technology to solve
VRPTW (Rousseau et al. 2007). However, original CG
often shows a very slow convergence speed, partly be-
cause of heavy degeneracy problems. The convergence
becomes even slower when the multiple dual solutions
are associated with each primal solution. The dual solu-
tion is the crucial part of CG to solve VRPTW.

This paper focuses on the combination of CG and
heuristic algorithms, and proposes a hybrid column gen-
eration algorithm based on metaheuristic optimization
(CGAMO). It establishes a mixed-integer programming
model. Dantzig–Wolfe (D–W) is used to divide the
problem into a partitioning set problem and a shortest
path problem with resource constraints (Dantzig, Wolfe
1960). CGAMO is finally used to get the optimal solu-
tion. The main contributions are as follows:

1) Labelling Algorithm (Desrochers, Soumis
1988) is used to search the paths. According to
VRPTW, a modified labelling algorithm (MLA)
is proposed to satisfy the path total demands of
selecting and extending policies for path exten-
sive searching. MLA can reduce the iteration
number and memory space in solving VRPTW.

2) A method with the conditionally retained his-
tory path of the main problem is proposed. It
can effectively avoid endless loops because of the
height degradation of VRPTW and the limita-
tions of the sub-problem.

3) The metaheuristic optimization policy of the
dual variables is employed in order to upgrade
the CGAMO’s solving ability. It selects an ap-
propriate optimization step and a local optimal
value to search the optimal value of the dual var-
iables. In this way, the phenomenon of endless
loops in the process of CG iteration is avoided
and the corresponding optimization speed is ob-
viously accelerated.

The rest of this paper is organized as follows. Sec-
tion 1 describes the related works and typical solving
algorithms on VRPTW. Section 2 describes the VRPTW
model and the decomposition methods. Section 3 anal-
yses the VRPTW solving steps by CGAMO. It also
analyses three key technologies in CGAMO in detail.
Section 4 analyses the performance of CGAMO and
compares it with other state-of-the-art algorithms. Final
Sections draw a conclusion and show some perspectives.

1. Related Works

To solve VRPTW problems, many methods have been
proposed, mainly divided into the exact methods and
the heuristic methods. As for the exact methods, they
include branch and bound method (Laporte et al. 1986),
integer programming (Foster, Ryan 1976), tree search
(Christofides et al. 1981), cutting plane method (Gomory
1958), branch and cut method (Padberg, Rinaldi 1987)
and CG algorithm (Dantzig, Wolfe 1960) and so on. The
exact solution-based methods mathematically formulate
VRPTW. Laporte et al. (1992) proposed a branch and
bound algorithm for VRPTW. Christiansen and Lys-
gaard (2007) presented a branch-and-price algorithm
for the capacitated VRPTW with stochastic demands.
Because VRPTW is a NP-hard problem (Savelsbergh
1985), when the size of the problem is large, it cannot
be solved within an acceptable time. Desrochers et al.
(1992) proposed an exact approach to solve a VRPTW,
and found that it was inefficient on time costs. Kolen
et al. (1987) proposed a branch and bound method to
solve VRPTW with the node number ranging from 6 to
15. He found that when the node number of VRPTW
was 6, the computer (VAX11/785) took nearly one min-
ute to find the solution; and when the node number of
VRPTW reached 12, the computer was unable to solve
the VRPTW. Through reviewing the literature, the exact
methods can solve the small scale VRPTW very well.
But they are poor for solving the large scale VRPTW.

In order to solve the above problem, many scholars
studied different heuristic algorithms to solve VRPTW.
The typical heuristic algorithms are local searching
(Zachariadis, Kiranoudis 2010; Hashimoto et al. 2008),
Simulated Annealing (SA) (Tavakkoli-Moghaddam
et al. 2011), Genetic Algorithm (GA) (Ghoseiri, Ghan-
nadpour 2010; Cheng, Wang 2009), Tabu Search (TS)
(Li et al. 2010; Lau et al. 2003), ant system (Reimann
et al. 2004; Balseiro et al. 2011; Vaidyanathan et al.
2007), Large Neighbour Searching (LNS) algorithm
(Hong 2012), Particle Swarm Optimization Algorithm
(PSOA) (Chen et al. 2006; Ai, Kachitvichyanukul 2009),
etc. Heuristic-based methods are classified into the con-
structed heuristic algorithms and the smart optimization
algorithms. The smart optimization algorithms derive
from the simulation and the nature learning, simulation
optimization on the existing viable solutions. But due to
the large difference between the real problem and the
ideal model, initial solutions are difficult to construct,
and the convergence speed in early stage is slow with the
local optimal solutions.

Both exact methods and heuristic methods have
their own weaknesses. Combining these two kinds of al-
gorithms to solve VRPTW is a promising choice. Many
researchers used the integer programming to transfer
VRPTW into a set partition problem (Mautor, Naudin
2007; Lorenz, Raz 2001; Dumitrescu, Boland 2003; Sell-
mann et al. 2007). But since the path space tends to be
huge, it is difficult to find such path. The common inte-
ger programming can’t fit the problem scale. However,

Transport, 2016, 31(4): 389–407 391

CG algorithm has a good ability to fit the problem scale,
so it has been widely used. After using CG to decom-
pose VRPTW, the solution is actually a subprocess to
find the basic restrictions to the shortest path, and the
main problem to find the optimal integer solution (Feil-
let et al. 2004; Irnich, Villeneuve 2006; Zhu, Wilhelm
2012; Qureshi et al. 2009; Jepsen et al. 2008). CG algo-
rithm is constructed on the exact solution of the inte-
ger programming model. It expands the solution range
based on a guaranteed accuracy. But due to the inherent
defects and VRPTW’s characteristics, there are still some
non-negligible problems:

1) when the time windows between the client nodes
vary greatly, a distributed aggregation phenom-
enon problem in the paths of the sub-problem
causes the objective function converge slowly;

2) since VRPTW is degenerated obviously, there
are many invalid paths with the zero increment,
which hardly improves the objective function;

3) due to the tailing effect of original CG in
VRPTW, the resulting basic variables is worse,
so the improvement of the objective function de-
creases and the time cost sharply increases with
the increment of the iteration times.

To solve the above defects, this article focuses on
Vehicle Routing Problem with Hard Time Window
(VRPHTW) that is it cannot be allowed to serve for the
customer after the required time. A path selecting meth-
od based on the total needs is proposed. The purpose is
to extend the path search range, and enlarge the number
of valid paths in the results. Besides, in order to avoid
the endless loop phenomenon, a method with condi-
tionally preserved main problem in the historic path is
also proposed. The two different preserving conditions
are set to compare the different effects. A dual variable of
the heuristic optimization policy is also used to acceler-
ate the convergence speed of the dual variable, and re-
duce the number of the variable repetition endless loops.

2. VRPTW Model

2.1. Model Formulation
In general, VRPTW mainly consists of several factors
including client the node, the distribution centre and the
road in the road network. It involves some constraints
including the vehicle’s maximum carrying capacity, the
time window of clients’ available time and the vehicle
travelling circuit. The target of VRPTW is to make an
overall minimum cost of the distribution; here it is the
shortest travelling distance of the vehicles.

In VRPTW, the vehicle’s starting point and client
nodes distribute discretely in a two-dimensional space
and two neighbour nodes with the same vehicle’s ser-
vice tying to each other. Therefore, the VRPTW model
can be built using a directed graph G = (V, A), where
V represents the set { }= 1,2,3, ,C n which is a set of
the vehicle’s starting point and client nodes. Arc set A
contains all of (),arc i j which link each two nodes that
are valid in the time, where i, ∈j V .

Symbols used in the model are defined as following:
di – the cargo demand of client node i;
q – the vehicle’s maximum cargo capacity, not

considering the differences between vehicles;
sjk – the time when vehicle k reaches client node j

and starts the service, when j = 0, it represents
the time when vehicle k returns to the start-
ing point;

tij – the time required for the vehicle travelling
from node i to node j, including the vehicle
service time at node i;

cij – the consuming value of vehicles travelling
from node i to the node j, which is propor-
tional to the travelling time;

xijk – whether vehicle k travels through arc(i, j),
when xijk = 1, it indicates that vehicle k travels
through arc(i, j), otherwise xijk = 0;

   ,i ia b –

the time window of client node i.

Constraints of the vehicle service process in the
model are as following:

1) each client node only needs one vehicle to ser-
vice, namely that the in-degree and out-degree
of any client node is 1 for the same vehicle (as
Formula (2));

2) the vehicle’s capacity has an upper limitation (as
Formula (3));

3) the vehicle route is a loop that contains the start-
ing point, and each client node’s in-degree and
out-degree for the same vehicle are equal, except
that both of them are 1 for the starting point (as
Formula (4) to (6));

4) the constraint for a client node’s time window,
when the vehicle arrives at the node in advance,
it needs to wait for the client until the client
node can accept service, and the vehicle can’t be
late (as Formula (4) to (6)).

Based on the above constraints, the sum of all ve-
hicles’ distribution cost makes up the objective function,
and the mixed integer programming model of VRPTW
can be built as follows:

∈ ∈
∑ ∑

(,)
min ij ijk

k K i j A
c x ; (1)

∈ ∈
=∑ ∑ 0 1jk

k K j C
x , ∀ ∈i C ; (2)

∈ ∈
≤∑ ∑i ijk

i C j V
d x q , ∀ ∈k K ; (3)

∈
=∑ 0 1jk

j C
x , ∀ ∈k K ; (4)

∈ ∈
− =∑ ∑ 0ihk hjk

i V j V
x x , ∀ ∈h C , ∀ ∈k K ; (5)

∈
=∑ 0 1i k

i C
x , ∀ ∈k K ; (6)

()+ − ≤ 0ijk ik ij jkx s t s ,∀ ∈(,)i j A , ∀ ∈k K ; (7)

≤ ≤i ik ia s b , ∀ ∈i V , ∀ ∈k K ; (8)

{ }∈ 0,1ijkx , ∀ ∈(,)i j A , ∀ ∈k K . (9)

392 W. Hu et al. A hybrid column generation algorithm based on metaheuristic optimization

Formula (7) expresses that when vehicle k travels
through ()()=, 1ijkarc i j x , the vehicle’s arrival time and
travelling time satisfies the inequalities + ≤ik ij jks t s

,

()∀ ∈,i j A, ∀ ∈k K , which means that the vehicle trav-
elling through node i should not reach node j before

+ik ijs t . Due to the presence of time windows, the vehi-
cle needs to wait until the client node can accept service
when it arrives at the client node in advance. The model
set the upper limit of the service vehicles, namely the
size of set K. When K is large enough ()≥ n , the upper
limited number of the vehicles does not exist.

2.2. Model Decomposition and Relaxation
In this paper, the constraints related with the vehicle
route will be extracted as a sub-problem by the D–W
decomposition method, and the constraints of the main
problem will be made by retaining the single service
limit of client node in the problem. Sub-problem is the
basically shortest path problem with the resource con-
straints, and it searches the shortest vehicle travelling
path satisfying the Formula (2) to (8), while the main
problem is the set partition problem and it uses a feasi-
ble path founded in the sub-problem to classify the cli-
ent node set. The main problem remains linear after its
decomposition and can be solved by the simplex method
(Nelder, Mead 1965). The sub-problem with nonlinear
constraints of the time window can be solved by dynam-
ic planning method. They are shown in Formula (10)
to (12):

∈
∑min p p
p P

c y ; (10)

∈
= ∀ ∈∑ 1,ip p

p P
a y i C ; (11)

{ }∈ ∀ ∈0,1 ,py p P , (12)

where: p represents the feasible path of the vehicle ser-
vice node; P is the set of all feasible paths; cp in the ob-
jective function represents the consuming value of path
p; yp represents the path selection, and when yp = 1 it
means that there is a vehicle to complete distribution,
otherwise yp = 0; aip represents the times of path p visit-
ing to the client node i.

In order to improve the stability of the main prob-
lem solution, Formula (13) will replace Formula (11),
the set partition problem will be relaxed as the Set Co-
vering (SC) problem, and a non-negative constraint will
be added to the dual variables:

∈
≥ ∀ ∈∑ 1,ip p

p P
a y i C .

(13)

2.3. Sub-Problem Model
After the decomposition of the VRPTW model, the
sub-problem uses the test number of the paths in the
main problem as objective function, and it needs to find
the feasible path with the smallest test number. The test
number of the paths can be provided by subtracting the
dual variable corresponding to the visited node from
travelling cost cp. Since the vehicle can just serve each

node once, the path consuming value should subtract
the corresponding dual variable when the vehicle goes
through each node. Therefore, the obtained travelling
cost is the test number of the path in the main problem
when the travelling cost is modified by the dual variable
according to Formula (14):

= − ∀ ∈,ij ij jc c u j V , (14)

where: ijc is the modified cost value; cij is the cost val-
ue of vehicles travelling from node i to node j, which
is proportional to the travelling time; uj is the start-
ing point and client node set of the vehicle route is

{ }= 1,2,3, ,C n .
The sub-problem is simplified as the problem of

searching the feasible path by modifying the travelling
cost of the arc. The isolated sub-model is shown as For-
mula (15) to (22):

∈
∑

(,)
min ij ij

i j A
c x ; (15)

∈ ∈
≤∑ ∑i ij

i C j V
d x q; (16)

∈
=∑ 0 1j

j V
x ; (17)

∈ ∈
− =∑ ∑ 0ih hj

i V j V
x x , ∀ ∈h C ; (18)

∈
=∑ 0 1i

i V
x ; (19)

()+ − ≤ −1i ij j ij ijs t s x M , ()∀ ∈,i j A; (20)

≤ ≤i i ia s b , ∀ ∈i V ; (21)

{ }∈ 0,1ijx , ()∀ ∈,i j A, (22)

where: Mij is the order of service when xij is 0 or 1. In or-
der to initialize it, we use the basic path that each vehicle
serves one node as an initial solution and its consuming
value is taken as the dual variable of the corresponding
node. Since the initialization does not limit the number
of the vehicles, the dual variable of the start point u0 is 0.

3. CGAMO for VRPTW

3.1. CGAMO
When the scale of VRPTW is large, we must use an ef-
ficient method to find the solution of the main problem
after decomposition. Simplex method and Interior Point
(IP) method (Karmarkar 1984) are all well-known to
solve the large-scale liner programming problems. They
are all suitably used to find the solution of the main
problem after decomposition. When they get close to
the local optimal solution, the ending condition of sim-
plex method is easy to be determined; IP method doesn’t
perform well in this aspect. In the coding process, IP
method is more complicated than simplex method. It
has to do the matrix inversions and logarithmic calcula-
tions and it cannot guarantee the precision when cal-
culating the decimals. Although IP method has a lower
complexity in theory, simplex method has a quicker pro-
cessing speed for most of the problems when the prob-

Transport, 2016, 31(4): 389–407 393

lem scales are not very big. So we can use CG algorithm
to decompose the problem and solve the sub-problems
and the main problem by iterative solution and simplex
method. In CG algorithm, some base intake variables
obtained in each iteration for the sub-problem will be
substituted into the main problem. When the problems
degenerate, a part of variables are searched many times
and get into base repeatedly due to the limitation of the
sub-problem solution. While the degradation situation
is serious or the sub-problem performance is poor, it is
possible to fall into endless loops.

In order to avoid the endless loops, we can condi-
tionally save the historical paths of the main problem
and strictly restrict the dual variable when adding the
search result into the main problem. In order to reduce
the variables repeatedly and get them into the base, we
apply metaheuristic optimization to the dual variable in
the iterations to accelerate the speed of converging.

Algorithm I: CGAMO for VRPTW
Input: client node information, the number of vehicles,
the maximum cargo capacity, cost matrix.

Output: optimal travelling route set:
1) Initialization, use the route cost for one vehicle

serving one client node as the dual variable of
the corresponding node, the dual value of the
starting point is 0;

2) Use the dual variable to modify the consuming
value of the arc in the cost matrix;

3) Solve the sub-problem (see Section 3.2), and get a
group of paths whose test numbers are negative.
If you can’t find these paths, then go to step 7;

4) Add the paths found in the sub-problem to the
main problem, conditionally saving the original
paths of the main problem (see Section 3.3);

5) Solve the main problem, and update the dual
variables;

6) Optimize the dual variables by the metaheuristic
function (see Section 3.4), go to step 2;

7) If the current optimal solution is an integer so-
lution, then output it; otherwise, use the branch
division to obtain the optimal integer solution
according to the largest branch weight of the
arcs.

3.2. Sub-Problem Solution
3.2.1. Expansion Search of the Path
In order to find the base intake path with a smaller test
number and control the scale of the main problem and
reduce the storage space required by the algorithm, this
paper uses MLA to find a part or all of Pareto optimal
paths and eliminate the poor paths. The main data struc-
tures used in the MLA are as following:

1)
) () () (){ }= , , , , ,Label pr L t L q L c L Label no

,

used to represent the state when the vehicle ar-
rives the current client node pr, including the
service start time t, the total demand q of cli-
ent nodes which have been served, the travelling
cost c when reaching the current node. We mark
the label with a unique serial number no.

2) { }= , ,Path vis Label list length , the vector vis re-
cords the next node which can be extended by
the path, and it can avoid repeatedly visiting cli-
ent node in the path search, wherein 1 means
the next node that can be extended and 0 means
the node that can’t be reached. In the path ex-
tension, the vehicles’ expansion range is limited
by the visiting time of the current node and the
total demand of the path. By the path expand-
ing, the range of the extensible nodes get smaller
and smaller , so vis doesn’t increase, but decrease
instead. Label list is used to save the label of
each client node’s vehicle visiting. lenght is used
to record the number of accessible nodes. The
information of accessible nodes is stored in the
path instead of the label, which can avoid storing
the visiting state of the non-current nodes’ label.
When the poor paths are eliminated, the stor-
age space is filled with some labels which are no
longer cited by the path, thus it can reduce the
storing consumption.

3) Path queue Q, used to store the paths which have
not yet been extended.

4) Path set U(v), used to store the paths which can
reach the specified nodes and have been exten-
ded. It is used to eliminate the selected route.

MLA is an extended search algorithm for the graph
traversal. The main steps are shown as follows.

Algorithm II: MLA
Input: client node information, the number of the ve-
hicles, the maximum cargo capacity, cost matrix.

Output: a certain number of paths with negative
test number:

1) Initialize the path queue Q, add p0 to Q, p0 is a
path beginning from the starting point and has
only one label of the point 0, U(v) = Φ, Φ ex-
presses the empty set;

2) Path selection: find path p with the shortest trav-
elling time from Q, recording node v and time
t(p) when it reaches node v;

3) Path extraction: extract the paths from Q
which can reach node v and consume less than

+() min()ijt p t to build the path set P(v), and
then delete the paths in P(v) from Q;

4) Path elimination: eliminate the paths in P(v)
using all of the paths in () ()U v P v , delete the
poor paths in P(v) according to the elimination
rules, add the paths to U(v) which are in P(v)
and not eliminated;

5) Path expansion: extend each path in P(v) to all
accessible nodes and obtain a set of paths S(v);

6) For the path in S(v), if it doesn’t return to the
starting point, it will be added to queue Q, oth-
erwise, judging whether its cost is less than 0, if
so, add it to U(0);

7) If the number of the paths in U(0) reaches or
exceeds the set limit, exit; otherwise, go to step 2
to continue to find and expand the paths.

In the expanding search of the path, every time we
select a group of paths with the same ending point in

394 W. Hu et al. A hybrid column generation algorithm based on metaheuristic optimization

order to speed up the search and reduce the branches
to be searched. Since the path extension involves time,
demand and cost, each of these three resources can be
regarded as the basis of path selecting:

1) According to the nodes of the path whose trave-
ling time is the shortest, choose the time of the
shortest arc in cost matrix as the selected width;

2) According to the node of the path whose current
demand is the smallest, choose the minimum
cargo demand as the selected width;

3) According to the nodes of the path whose cur-
rent cost is the smallest, choose the traveling
cost of the shortest arc in cost matrix as the se-
lected width.

Since time and demand are monotonically increas-
ing in the path expansion, time and demand-based
path selection and expansion are actually similar to
the breadth-first search. The nodes in the found paths
are relatively homogeneously distributed, and there are
many effective paths getting into the base. But because
its breadth-first feature, the length of the path found
by the algorithm in the early stages is shorter, and the
convergence speed of vehicles’ number is relatively slow.
While selection and expansion based on consuming val-
ue are the depth-first search based on greedy strategy, it
is able to find the longer and accessible paths. But the
driving costs are not monotonic increasing, so the found
paths are often gathered, and the similarity degree be-
tween paths is high. As a result, the number of effective
paths which can improve the objective function may be
relatively less than the breadth-first search.

3.2.2. Path Elimination Rule
When several different paths are selected, the pruning
operation can be done in the expansion trees of the
paths. Then the part of apparently poor paths and their
extensions will be eliminated by comparing the extended
scope and the costs of the paths. For two paths p1 and
p2 with the same current nodes, first of all, compare
the consuming values (Formula (23)), and to estimate
the merits degree of the path. Then compare time (For-
mula (24)), the total demand (Formula (25)) and the
range of the extensible subsequent nodes of the path
(Formula (26)). Only when both the consuming time
and the demand of the path are small, we can guarantee
that it can do a longer extension. The expansion path
of p1contains all expansion paths of p2 and the costs of
the extended paths in p1 are smaller when both p1 and
p2 satisfy the following requirements. Then p2 can be
deleted to decrease the path search range:

() ()≤1 2c p c p ; (23)

() ()≤1 2t p t p ; (24)

() ()≤1 2q p q p ; (25)

() ()≤1 2vis p vis p . (26)

3.3. The Connection Between the Sub-Problem
and the Main Problem
During the process of solving the VRPTW degradation
problem by simplex method, there is always an item
with the value of zero based on the feasible solution.
The increment of the base intake variable may be 0, and
the base intake variable does not change the objective
function. The convergence of the algorithm stop, and
what’s worse, the base intake variables enter the loop
state. VRPTW is a seriously degraded problem, where
path search in the sub-problem using CG algorithm only
considers the size of the test number without involving
the size of the increment getting into the base, thus it
may find an invalid variable whose increment value is
0 and reduce solving efficiency. When the search results
of the sub-problem are all the invalid paths, the itera-
tive solution does not optimize the objective function;
repeating invalid iterations may lead to an endless loop.

During the iteration, the dual variable is continu-
ously restricted by the corresponding constraints of the
base intake variable. The algorithm will converge to the
optimal solution at last. If all of the variables in a few
iterations are considered at the same time, we can get
the dual variable satisfying all the constraints and avoid
circulating into the base. But saving all the found paths
will increase the scale of the main problem and take up
more storage space. This is contrary to the purpose of
using CG. Therefore, we need to set the proper condi-
tions of saving the historical paths to control the scale
of the main problem. Due to the trailing effect generated
by the column, the closer the objective function is to the
optimal solution, the smaller the increment of the found
base intake variables is, most of which are 0. The more
the times of the iteration is, the more the occurrence
possibility of circulating into the base is, and the more
the need to save the historical paths of the main problem
is. Thus two judgment conditions of saving the historical
paths should be constructed:

1) When the objective function comes to Conver-
gence Stagnation (CS), which means that the
solution of the main problem does not opti-
mize the objective function, the increments of
the base intake variable in the sub-problems are
0. The solution of the original problem is also
unchanged, only the dual variables are changed,
and it is likely to be added into the iteration. At
this time, saving the historical paths can reduce
the delay time of the objective function.

2) When the sub-problem becomes Global Search
(GS) in the process of searching path, the num-
ber of the found paths is less than the specified
limit. The found paths where the nodes are rela-
tively homogeneously distributed contain the
path with the smallest test number and the dual
variables are strongly restricted. The upper limit
of the found paths number in the sub-problem
affects the algorithm greatly in determining
whether becomes the global search or not.

Transport, 2016, 31(4): 389–407 395

3.4. Metaheuristic of the Dual Problem
3.4.1. Heuristic Function for Optimization
During the process of solving linear programming by
the simplex method, the base’s feasible solution of the
original problem will change with the base intake op-
eration. Due to the constraints of corresponding hyper
plane restrictions and the dual variables gradually con-
verging to the optimal solution, the dual problem will
still converge to its optimal solution even when the it-
eration convergence of original problem begins to stag-
nation. The change of the base variables is continuous
and the dual variable smoothly converges to the optimal
solution in the simplex method. While in the CG algo-
rithm, because the decomposition of the original prob-
lem separates the selection of the base intake variables
from the base intake operation, only part of variables are
considered during iteration. The invalid variables may
repeatedly get into the base, which results in that the
convergence of dual variable to the optimal solution is
no longer smooth but is constantly oscillating near the
optimal solution instead. So the convergence of the dual
problem solution is relatively slow, and in the worst case,
it may become an endless loop (Lübbecke, Desrosiers
2005; Nazareth 1988).

We subjectively set the value of objective function
*Z for the dual problem. When the convergence of the

original problem begins to stop, the dual variable value
remains in the corresponding hyper plane of the objec-
tive function. It is shown in Formula (27):

∈
=∑ *

i
i V

u Z . (27)

Large-scale linear programming problems can be
solved through a number of iterations as the CG algo-
rithm applies to the simplex method and the principle
of locality. But the locality not only lessens the optimi-
zation range of the objective function but also reduce
the algorithm’s speed. This phenomenon becomes more
and more obvious as objective function is gradually ap-
proaching to the optimal value. Therefore, we can apply
an appropriate method to optimize the dual problem to
reduce the oscillation amplitude of the dual variables
and to accelerate the algorithm’s convergence.

This paper adopts the function shown in Formu-
la (28) to do metaheuristic optimization for the dual
variable:

() −′ = + − 11 best
m m m m mu w u w u , (28)

where: ′mu represents the dual variables used for the next
solving for sub-problem; um represents the dual vari-
ables obtained by the current (m-th) iteration; −1

best
mu is

a relatively better dual variable obtained in the former
m–1 iterations, that it is the local optimal value of the
dual variable; wm is a parameter, and < <0 1mw . The
above formulas can be expressed as Formula (29):

()− −′ = + −1 1
best best

m m m m mu u w u u . (29)

After iteration, the dual variable chooses the cur-
rent local optimal value as the starting point and moves

forward to the dual variables obtained in this iteration
actually. Each forward step is wm. wm is an important
parameter for metaheuristic optimization, and its value
may be a fixed value or a dynamic value according to
different iterations. In general, we set a lower limitation
greater than zero for wm in order to ensure that the cur-
rent dual variables are involved in the optimization and
avoid the local optimization convergence of the problem.

3.4.2. The Selection of the Local Optimal Solution
During the based intake or out-take operation of the
original problem, the dual variable is driven by the cor-
responding constraints and continuously approximate to
the optimal solution. The optimal value of the dual vari-
able satisfies all the constraints and matches the optimal
value of the objective function. During the solution, the
objective function gradually decreases, the constraints
for the dual variables gradually increases, and the dual
variables do not get worse generally. So we can simply
select the dual variables obtained in the latest iteration
as the current optimal value, which is shown as For-
mula (30):

− −=1 1.best
m mu u (30)

In the degradation problem, dual variable will os-
cillate around the optimal solution in the corresponding
hyper plane of the objective function when the original
problem stops the optimization with the increment of
the base intake variable being zero. Dual variable oc-
curs to be cyclic when the original problem loops into
the base. When the dual variable oscillates around the
optimal solution, we can employ the average of the dual
variables obtained in the recent several iterations to es-
timate the location of the optimal dual variables; it is
shown as Formula (31):

−
− ==

− ∑ 1
1

1 ,mbest
m ii lou u

m lo
 (31)

where: lo (last optimized) represents iterations in the lat-
est optimization, and m is the current iterations.

We can use the average to estimate the approximate
location of the oscillation centre of the dual variables
and to accelerate the convergence of the dual variables.
Meanwhile, a simple arithmetic average can guarantee
that the optimum value is still in the corresponding hy-
per plane of the objective function.

3.4.3. The Calculation of Heuristic Function Parameter
Applying heuristic function to optimize the dual prob-
lem, the dual variable starts from the optimal solution,
and the current obtained dual variable steps forward wm
each time. In order optimize the dual problem continu-
ously; our method imposes some constraints on each
step shown in Formula (32):

≤ ≤ 1,mconst w (32)

where: const is a constant greater than zero, indicating
the lower limit of step wm. It’s used to ensure that the
dual variable obtained in the current iteration can partic-
ipate in the optimization process rather than stay at the

396 W. Hu et al. A hybrid column generation algorithm based on metaheuristic optimization

local optimal solution. The upper limit 1 avoids the dual
variable’s variation due to the excessive optimization.

Since the dual problem is oscillating near the opti-
mal solution and continuously approximates to the op-
timal solution in iterations, the form of the oscillation is
attenuated, and the obtained dual variable will be better
each time. When um and −1

best
mu are in different sides of

the optimal solution, the optimized step less than 1 can
obtain an optimized value ′mu , which is closer to the
optimal solution, and it can accelerate the convergence
of the dual variable. When the step size is larger than 1,

′mu is much farer away from the optimal solution and its
value may be worse than um, which may make the dual
variable degrade. Therefore, wm has the upper limit 1.
Considering the different oscillations of the dual vari-
ables, the specific values of wm can be divided into the
following situations:

1) The constant const is fixed on the lower limit, in
the case of continuous damp oscillation. A fixed
reduction of the step can accelerate the oscil-
lation’s attenuation and make the dual variable
reach the optimal solution faster;

2) The function with the lower limit of const, such

as  =  
 

max ,m
low const
m

. When the objective

function is convergent, the optimized dual vari-
able should be close to the iteration’s result. The
convergence is in stagnation. The longer the
stagnation is, the worse the qualities of local op-
timal results are.

4. Experimental Results and Analysis

This section is devoted to the performance evaluation
of CGAMO for VRPTW. The adopted benchmarks and
experimental conditions will be described in Section 4.1.
Section 4.2 describes the comparison results of CGAMO
with other state-of-the-art methods. Section 4.3 details
the performance of CGAMO for path searching in
VRPTW. Section 4.4 presents the performance of CGA-
MO for avoiding endless loops in resolving the VRPTW.
Section 4.5 analyses the performance of CGAMO for
metaheuristic of dual problem in VRPTW.

4.1. Benchmark Description and
Experimental Conditions
In order to compare our algorithms with other ap-
proaches on VRPTW, the basic data of our testing
problems adopt Solomon’s benchmark (Vehicle Routing
Problems… 2012). The Solomon’s benchmark contains
56 instance each with a size of N = 100. These instances
are categorised as C1 and C2, where customers are lo-
cated in geographical clusters, R1 and R2, and the cus-
tomers are randomly distributed, and RC1 and RC2,
which have a mix of random locations and clusters. Dif-
ferent types of problems differ in the distribution of the
nodes, the service time of each node, and the width of
time windows. The Solomon’s benchmark did not define
the computing method of travelling cost and time for
VRPTW. We defines the travelling cost of VRPTW as

Formula (33), and set (xi, yi), (xj, yj) as coordinates of
node i and j:

( 
− + − 

  =

2 2
10

10

i j i j

ij

x x y y
c , (33)

where:   . expresses the integer part of real number a.
The travelling time can be computed by = +ij ij it c st . ist
expresses the service time of customer node i, and can
be obtain from the Solomon’s benchmark problems.

Experiments are carried out under the configura-
tion of Windows Vista TM Home Premium, with AMD
Turion (tm) 64 X2 Mobile Technology TL-62 2.10 GHz
and 2GB RAM. We realize the CGAMO on platform
MyEclipse 6.6. The solution of main problem invokes
the linprog function of Matlab 7.0. The initial solution
of VRPTW is that each vehicle services a node. The up-
per bound routing searching number of R1 is set as 500,
and RC1 and C1 are both set as 1000. The connection
of sub-problem and main-problem reserves the history
route of main-problem in the condition of CS.

4.2. Comparison Results and Analysis
Our comparison experiment consists of two parts. First,
the computational efficiency of the proposed approach
CGAMO was tested, and compared with other state-
of-the-art methods. Then, the path searching compu-
tational efficiency of the proposed approach MLA in
CGAMO was tested, and compared with a powerful
optimization software used in solving integer program-
ming problems – CPLEX (http://www.cplex.com) and
an Extended Label-Setting Algorithm (EMLSA) (Zhu,
Wilhelm 2012).

4.2.1. Computational Efficiency Analysis
Comparison Results of CGAMO with
the Original CG and IP Method
In order to extend the range of the path search and en-
large the number of valid paths in CGAMO, so that a
path selecting method is proposed. Besides, in order
to avoid the endless loop phenomenon, a method with
conditionally preserved main problem in the historic
path is also proposed. A dual variable of heuristic op-
timization policy is also used to accelerate the conver-
gence of the dual variable, and reduce the number of
variable repetitions to the base. To verify the results,
this section carries out extensive experiments to com-
pare the CGAMO with the original CG and IP method.
The results are shown in Table 1. Table 1 compare the
performance produced by the proposed CGAMO, the
original CG and IP method in the set C1, R1 and RC1.
The Runtime in the Table 1 presents the solving time of
problems by CGAMO, CG or IP method. The Rate in
Table 1 shows the ration of different values of distance
between the best known result and CGAMO, CG and
IP method results. If the Rate value is negative, it means
that the Distance value of CGAMO, CG or IP method
is shorter than the best known results. If the Rate value
is a positive number, it means that the Distance value

Transport, 2016, 31(4): 389–407 397

of CGAMO, CG or IP method is bigger than the best
known results. Based on these results in Table 1, we can
make the following conclusions on the performance of
CGAMO, CG and IP method on solving the VRPTW:

1) CGAMO can get very promising result, and
sometimes it gets even better result than the
best known results, such as for problems R101,
R102, R103, RC101, RC102, RC105, RC106,
RC107 and RC108. Meanwhile, basic CG and IP
method can hardly converge to the best known
results for almost all the problems of set R1 and
RC1. Besides, CGAMO has better performance
than basic CG;

2) CGAMO converges to the best known results at
nearly 2÷3 minutes for R1, one minute for C1
and at most three minutes for RC1. CG converg-
es to its best results at least 3÷4 minutes for R1,
2÷3 minutes for C1 and 5÷6 minutes for RC1.
IP method needs the similar time to converge to
the best known results with CGAMO in set RC1
and R1, but IP method needs more time than
CGAMO in set C. We can see that CGAMO can
effectively accelerate the searching in solution
space and the performance coverage speed of
the CGAMO is higher than the original CG and
IP method.

Table 1. Comparison of the performance of the CGAMO, CG and IP method

In
st

an
ce

Best known
results

(Tavakkoli-
Moghaddam
et al. 2011)

CGAMO CG IP method

Vehicle Distance Vehicle Distance CPU
[s]

Rate
[%] Vehicle Distance CPU

[s]
Rate
[%] Vehicle Distance CPU

[s]
Rate
[%]

R101 19 1645.79 19 1633.51 185.69 –0.75 19 1896.36 255.63 15.23 19 1689.59 184.97 2.66

R102 17 1486.12 16 1471.96 165.39 –1.00 18 1678.64 241.68 12.96 16 1496.38 157.96 0.69

R103 13 1292.68 12 1276.99 142.95 –1.23 12 1396.97 219.55 8.07 13 1296.31 164.35 0.28

R104 9 1007.24 9 1007.31 138.54 0.00 10 1084.32 200.13 7.65 9 1007.31 142.68 0.01

R105 14 1377.11 14 1377.11 165.23 0.00 14 1489.63 236.39 8.17 15 1377.11 169.68 0.00

R106 12 1251.98 12 1251.98 151.11 0.00 12 1296.21 218.74 3.53 12 1328.97 159.61 6.15

R107 10 1104.66 10 1104.66 135.24 0.00 10 1154.25 200.15 4.49 10 1174.54 141.01 6.33

R108 9 960.88 9 960.88 124.17 0.00 9 996.35 185.68 3.69 10 960.88 132.10 0.00

R109 11 1194.73 11 1194.73 138.99 0.00 11 1301.21 201.97 8.91 11 1204.36 140.14 0.81

R110 10 1118.59 10 1118.59 134.65 0.00 10 1196.39 218.67 6.96 10 1186.96 138.74 6.11

R111 10 1096.72 10 1096.72 138.96 0.00 10 1152.32 222.32 5.07 10 1102.94 142.03 0.57

R112 9 982.14 9 982.14 142.32 0.00 9 1021.35 196.39 3.99 9 982.14 152.31 0.00

C101 10 828.94 10 828.94 75.96 0.00 10 828.94 135.96 0.00 10 828.94 96.32 0.00

C102 10 828.94 10 828.94 78.65 0.00 10 841.20 140.29 1.48 10 828.94 91.21 0.00

C103 10 828.06 10 828.06 87.45 0.00 10 828.06 163.21 0.00 10 828.06 92.38 0.00

C104 10 824.78 10 824.78 84.25 0.00 10 824.78 164.17 0.00 10 824.78 100.21 0.00

C105 10 828.94 10 828.94 81.20 0.00 10 828.94 158.24 0.00 10 828.94 106.32 0.00

C106 10 828.94 10 828.94 79.69 0.00 10 828.94 171.01 0.00 10 828.94 94.21 0.00

C107 10 828.94 10 828.94 86.32 0.00 10 828.94 159.68 0.00 10 828.94 104.65 0.00

C108 10 828.94 10 828.94 84.14 0.00 10 828.94 167.96 0.00 10 828.94 100.01 0.00

C109 10 828.94 10 828.94 81.28 0.00 10 828.94 164.17 0.00 10 828.94 100.65 0.00

RC101 14 1696.94 14 1670.98 204.36 –1.55 15 1821.39 305.14 7.33 14 1721.97 187.98 1.48

RC102 12 1554.75 12 1446.08 186.39 –7.52 13 1596.32 296.37 2.68 12 1574.98 169.68 1.30

RC103 11 1261.67 11 1261.67 158.65 0.00 12 1301.27 268.34 3.14 11 1287.64 165.24 2.06

RC104 10 1135.48 10 1135.48 154.21 0.00 11 1193.97 253.19 5.15 10 1164.87 164.98 2.59

RC105 13 1629.44 13 1549.69 197.14 –5.15 13 1963.21 319.67 20.51 13 1687.96 197.01 3.59

RC106 11 1424.73 11 1412.39 178.65 –0.87 11 1542.12 286.39 8.24 11 1475.41 169.63 3.56

RC107 11 1230.48 11 1226.39 149.69 –0.33 11 1354.69 268.97 10.09 11 1424.73 154.32 15.79

RC108 10 1139.82 10 1142.97 136.55 0.28 10 1197.85 235.96 5.09 10 1139.82 142.65 0.00

398 W. Hu et al. A hybrid column generation algorithm based on metaheuristic optimization

Comparison Result of CGAMO with
Other State-of-the-Art Methods:
In order to compare the efficiency of the different al-
gorithms on VRPTW, GPGA (Goal Programming with
Genetic Algorithm) (Ghoseiri, Ghannadpour 2010),
LNS (Hong 2012) and ACO (Ant Colony Optimization)
(Balseiro et al. 2011) are used to compare with CGAMO.
The results of comparison experiments of VRPTW are
shown in Tables 2–4. The rate in Tables 2–4 expresses
the ratio of the distance between CGAMO and other
typical methods. If the Rate value is negative, it means
that the distance value of CGAMO is shorter than the
other typical methods. If the Rate value is positive, it
means that the Distance value of CGAMO is bigger
than the other typical methods. Based on these results

of Tables 2–4, we can make the following conclusions
on the effectiveness of the CGAMO approach for solv-
ing VRPTW:

1) The solutions quality computed by CGAMO
can well approximate to the best known results.
If the travel distances and the number of used
vehicles are taken into account properly, the
CGAMO almost can get the best results of C1,
R1 and RC1;

2) Compared with the results generated by GPGA,
LNS, ACO, the results of CGAMO keeps better
than them. The average CPU (Central Process-
ing Unit) time of CGAMO is less than 3 minu-
tes. The results are hard to systematically com-
pare with other typical methods because there
are big differences in the run environments.

Table 2. Comparison results of different methods for VRPTW of R1

In
st

an
ce CGAMO

Best known results
(Tavakkoli-

Moghaddam et al. 2011)
GPGA LNS ACO

Vehicle Distance CPU
[s] Vehicle Distance Rate

[%] Vehicle Distance Rate
[%] Vehicle Distance Rate

[%] Vehicle Distance Rate
[%]

R101 19 1633.51 185.69 19 1645.79 –0.75 19 1677.00 –2.66 18 1612.29 1.30 19 1650.80 –1.06

R102 16 1471.96 165.39 17 1486.12 –1.00 18 1511.80 –2.71 16 1473.41 –0.10 17 1486.12 –0.96

R103 12 1276.99 142.95 13 1292.68 –1.23 14 1287.00 –0.78 12 1279.37 –0.19 13 1292.68 –1.23

R104 9 1007.31 138.54 9 1007.24 0.00 10 974.24 3.28 10 1025.47 –1.80 9 1007.31 0.00

R105 14 1377.11 165.23 14 1377.11 0.00 15 1424.60 –3.55 14 1377.95 0.00 14 1377.11 0.00

R106 12 1251.98 151.11 12 1251.98 0.00 13 1270.30 –1.46 12 1276.48 –1.96 12 1252.03 0.00

R107 10 1104.66 135.24 10 1104.66 0.00 11 1108.80 –0.38 11 1153.86 –4.45 10 1104.66 0.00

R108 9 960.88 124.17 9 960.88 0.00 10 971.91 –1.15 10 990.82 –3.12 9 960.88 0.00

R109 11 1194.73 138.99 11 1194.73 0.00 12 1212.30 –1.47 12 1179.73 1.26 11 1194.73 0.00

R110 10 1118.59 134.65 10 1118.59 0.00 12 1156.5 –3.39 11 1113.10 0.49 10 1118.84 0.00

R111 10 1096.72 138.96 10 1096.72 0.00 11 1111.9 –1.38 11 1155.39 –5.35 10 1096.73 0.00

R112 9 982.14 142.32 9 982.14 0.00 10 1036.9 –5.58 10 981.46 0.07 9 985.28 0.32

Table 3. Comparison results of different methods for VRPTW of C1

In
st

an
ce CGAMO

Best known results
(Tavakkoli-

Moghaddam et al. 2011)
GPGA LNS ACO

Vehicle Distance CPU
[s] Vehicle Distance Rate

[%] Vehicle Distance Rate
[%] Vehicle Distance Rate

[%] Vehicle Distance Rate
[%]

C101 10 828.94 75.96 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00

C102 10 828.94 78.65 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00

C103 10 828.06 87.45 10 828.06 0.00 10 828.06 0.00 10 839.37 –1.37 10 828.06 0.00

C104 10 824.78 84.25 10 824.78 0.00 10 824.78 0.00 10 838.98 –1.72 10 824.78 0.00

C105 10 828.94 81.20 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00

C106 10 828.94 79.69 10 828.94 0.00 10 828.94 0.00 10 842.10 –1.59 10 828.94 0.00

C107 10 828.94 86.32 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00

C108 10 828.94 84.14 10 828.94 0.00 10 828.94 0.00 10 832.74 –0.46 10 828.94 0.00

C109 10 828.94 81.28 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00

Transport, 2016, 31(4): 389–407 399

4.2.2. Path Searching Computational
Efficiency Analysis
In order to compare the efficiency of the different meth-
ods to path searching for VRPTW solution, CPLEX and
a Three-Stage Approach (TSA) (Zhu, Wilhelm 2012)
are used to compare with MLA proposed in this paper.
The results of comparison experiments of VRPTW are
shown in Table 5. Table 5 reveals the average, minimal
and maximum runtime time of path searching of MLA
and other typical methods. The rate in Table 5 expresses
the ratio of runtime time between CGAMO and other
typical methods. If the Rate value is negative, it means
that the average runtime times of MLA in CGAMO are
less than the other typical methods. Based on these re-
sults in Table 5, we can make the following conclusions
on the effectiveness of the MLA approach in CGAMO
for solving path searching of VRPTW:

1) The path searching speed of MLA in CGAMO is
similar to TSA method for R1. In C1 and RC1,
the average Rates of TSA is almost 20%, which
proves that the MLA has obviously better per-
formance than TSA for path searching in C1 and
RC1;

2) Compared with CPLEX, the path searching
speed of MLA in CGAMO is far better than the
other methods for R1, C1 and RC1, and the av-
erage rates of CPLEX is more than 80%.

4.3. Performance of CGAMO for Path Searching
In Section 3.2.2, we presented three kinds of path select-
ing methods based on resources. In order to compare
the efficiency of MLA for these three selecting methods,
we use R1 as experiment case. The experiment compares
the total number of searching path and iteration of MLA

Table 4. Comparison results of different methods for VRPTW of RC1

In
st

an
ce CGAMO

Best known results
(Tavakkoli-

Moghaddam et al. 2011)
GPGA LNS ACO

Vehicle Distance CPU
[s] Vehicle Distance Rate

[%] Vehicle Distance Rate
[%] Vehicle Distance Rate

[%] Vehicle Distance Rate
[%]

RC101 14 1670.98 204.36 14 1696.94 –1.55 15 1690.60 –1.17 15 1671.54 –0.03 14 1696.94 –1.55
RC102 12 1446.08 186.39 12 1554.75 –7.52 14 1509.40 –4.38 13 1447.14 –0.07 12 1554.75 –7.52
RC103 11 1261.67 158.65 11 1261.67 0.00 12 1331.80 –5.56 11 1313.79 –4.13 11 1262.02 –0.03
RC104 10 1135.48 154.21 10 1135.48 0.00 11 1177.20 –3.67 11 1163.54 –2.47 10 1135.48 0.00
RC105 13 1549.69 197.14 13 1629.44 –5.15 15 1611.50 –3.99 13 1502.48 3.05 13 1629.44 –5.15
RC106 11 1412.39 178.65 11 1424.73 –0.87 13 1437.60 –1.79 12 1406.25 0.44 11 1424.73 –0.87
RC107 11 1226.39 149.69 11 1230.48 –0.33 11 1222.10 0.35 11 1278.96 –4.29 11 1230.48 –0.33
RC108 10 1142.97 136.55 10 1139.82 0.28 11 1156.50 –1.18 11 1172.83 –2.61 10 1139.82 0.28

Table 5. Comparison results of different methods for path searching in VRPTW (runtime [s])

Instance
MLA TSA CPLEX

Average Min Max Average Min Max Rate [%] Average Min Max Rate [%]
R101 0.41 0.29 0.65 0.44 0.25 0.74 –7.32 0.84 0.76 0.98 –104.88
R102 0.37 0.25 0.61 0.35 0.21 0.59 5.41 0.76 0.68 0.89 –78.38
R103 0.31 0.21 0.57 0.32 0.22 0.39 –3.23 0.64 0.59 0.75 –106.45
R104 0.29 0.21 0.51 0.33 0.19 0.45 –13.79 0.56 0.48 0.68 –93.10
R105 0.35 0.23 0.59 0.41 0.29 0.77 17.14 0.67 0.57 0.72 –91.43
R106 0.30 0.20 0.61 0.34 0.25 0.65 –16.67 0.59 0.44 0.66 –96.67
C101 0.15 0.09 0.24 0.19 0.12 0.29 –20.00 0.24 0.17 0.31 –60.00
C102 0.16 0.09 0.23 0.22 0.12 0.33 –37.50 0.33 0.24 0.43 –106.25
C103 0.19 0.11 0.31 0.18 0.08 0.28 5.26 0.35 0.24 0.45 –84.21
C104 0.22 0.12 0.38 0.25 0.14 0.49 –14.29 0.39 0.29 0.51 –77.27
C105 0.21 0.10 0.34 0.25 0.12 0.39 –19.05 0.37 0.26 0.49 –76.19
RC101 0.51 0.44 0.79 0.66 0.55 0.87 –29.41 0.92 0.79 1.11 –80.39
RC102 0.49 0.41 0.72 0.64 0.54 0.84 –30.61 0.87 0.75 1.02 –77.55
RC103 0.32 0.19 0.43 0.45 0.23 0.76 –40.63 0.57 0.49 0.71 –78.13
RC104 0.30 0.14 0.45 0.36 0.18 0.57 –20.00 0.52 0.43 0.68 –73.33
RC105 0.45 0.34 0.65 0.55 0.36 0.69 –22.22 0.83 0.72 0.99 –84.44

400 W. Hu et al. A hybrid column generation algorithm based on metaheuristic optimization

in the condition of these three selecting methods. To
avoid the interference of the other factors, we set the
upper number bound of the searching path in the sub-
problems to 500 and keep the main problem in the con-
dition of CS (Lübbecke, Desrosiers 2005). As the sizes
of different problems are different, we use the minimum
time as the reference to compare the relative number
on different conditions. The results are shown in Fig. 1.

Based on the results of Fig. 1, we can make the fol-
lowing conclusions on the effectiveness of three kinds of
path searching methods:

1) The methods based on the minimum demand
perform better than the methods based on the
minimum time in path searching and itera-
tion. The reason is that the range of the total
demand in the path extension is unified, and
the extension based on the demands is closer
to the breadth-first strategy. Because there are
time windows in client notes, the notes selected
in the extended search and the starting time of
the time windows are all different. The results
of the methods based on the minimum time are
relatively worse;

2) When we use the methods based on the mini-
mum cost, the paths that are not Pareto optimal
paths are relatively less than other two methods,
because the costs are not monotonically varying.

When the negative cost arcs become a little more
after the price is set, the method based on the
minimum cost is like the depth-first strategy, so
the total number of path searching and iteration
are bigger than the other two methods.

4.4. Performance of CGAMO for
Avoiding Endless Loops
When the paths found in sub-problems are includ-
ed into the main problem, to avoid the endless loops
caused by the problematic degenerate and the lack of
path searched, we keep the paths in the former iteration
conditionally to accelerate the iteration. In Section 3.3,
we present two judgment conditions of preserving the
historical path. This section we analyse the impact on
the optimization of the CS and GS when the numbers
of paths searching procedures are different in the sub-
problems by comparing the total path searching, the
number of iterations and the maximum number of
paths in the main problem. At the same time, we com-
pare the optimization performance of CS and GS on the
same condition. The less the number of path searching
procedures in sub-problems is, the more effective the
solution is. The less the iterations are, the quicker the
calculating speed is. The decreasing maximum vehicles
in main-problem cause the less resource needed to solve
main-problem. And the size of the solvable algorithm
becomes bigger. We also use 500 as the search number
to analyse the relative number of path searching (Lüb-
becke, Desrosiers 2005) with ours. The comparison of
total path searching number under CS and GS with dif-
ferent searching number is shown in Fig. 2. Based on
these results of Fig. 2, we can draw the following con-
clusions on the effectiveness of path searching under CS
and GS with different searching number:

1) Under the CS condition, the impacts on the dif-
ferent problems caused by the different number
of path searching procedures are different, be-
cause the state of road network and path dis-
tribution are different in different problems,
and the proportion of the total number of path
searching changes within the range of 0.4 to 2.2.

2) Under the GS condition, the smaller the number
of path searching is, the larger the number of
path searching would be. And the less the upper
number of global search is, the larger the actual
number of path searching would be. When the
upper number of path searching is too small,
the actual total number of path searching may
have an explosive growth. For example, when
the number of path searching is 300, the total
number of path searching will be expanded
more than 8 times. And when the number of
path searching is much smaller, there may be a
iteration endless loops.

3) Overall, the GS is more easily to be affected by
the upper bound of the number of path search-
ing set by the sub-problems. In the comparison
of CS and GS that the history information will
be kept, the GS performs better when the size

Fig. 1. Total number of searching path and iteration number
in the condition of different path selecting methods:

a – the total number of searching number;
b – the number of iteration

a)

b)

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Columns Generated in First Optimizing

0.5

1.0

1.5

2.0

2.5

3.0

Ra
tio

 o
f C

olu
mn

s

min Time
min Demand
min Cost

Problems

min Time

min Demand

min Cost

0

10

20

30

40

50

60

70

80

90

Ite
ra

tio
ns

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Iterations in First Optimizing

Transport, 2016, 31(4): 389–407 401

of sub-problems is bigger. But GS is sensitive
to the data when the number of searching be-
comes smaller. The total numbers of paths are
all slightly different.

The comparison of the iteration number under CS
and GS with different searching number is shown in
Fig. 3. Based on these results of Fig. 3, we can make the
conclusion that CS is not affected so much by the search-

ing number, yet GS is affected sharply. When the upper
number of path searching is big, the actual number of
iterations will be relative small, but when the number
of path searching becomes smaller, the difference of the
number of iteration under CS and GS is smaller.

The comparison of the main-problem scale under
CS and GS with different searching numbers is shown in
Fig. 4. Based on these results of Fig. 4, we can make the

Fig. 2. Comparison of total number of path searching under
different condition and searching number: a – total number
of vehicle under CS; b – total number of vehicle under GS;
c – vehicle number under searching time 500; d – vehicle

number under searching time 300

Fig. 3. Comparison of iteration number under different
condition and searching number: a – iteration number
under CS; b – iteration number under GS; c – iteration
number under searching time 500; d – iteration number

under searching time 300

a)

b)

c)

d)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 000

R
a
ti

o
o

f
C

o
lu

m
n

s

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Columns Generated in First Optimizing

300
400
500

300
400
500

CS
GS

CS
GS

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

R
a
ti

o
o

f
C

o
lu

m
n

s

0

2000

4000

6000

8000

10 000

12 000

14 000

16 000

18 000
Columns Generated in First Optimizing

0

1

2

3

4

5

6

7

8

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

R
a
ti

o
o

f
C

o
lu

m
n

s

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

0

0.5

1.0

1.5

2.0

2.5
R

a
ti

o
o

f
C

o
lu

m
n

s

Columns Generated in First Optimizing

Columns Generated in First Optimizing a)

b)

c)

d)

300
400
500

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Iterations in First Optimizing

0

10

20

30

40

50

60

70

80

Ite
ra
tio
ns

300
400
500

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Iterations in First Optimizing

0

10

20

30

40

50

60

Ite
ra
tio
ns

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Iterations in First Optimizing

0

10

20

30

40

50

60

Ite
ra
tio
ns

CS
GS

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Iterations in First Optimizing

0

10

20

30

40

50

60

Ite
ra
tio
ns

CS
GS70

80

402 W. Hu et al. A hybrid column generation algorithm based on metaheuristic optimization

following conclusions on the effectiveness of the main-
problem scale under CS and GS with different searching
numbers:

1) Under the CS condition, the size of the main-
problem will be smaller when the upper bound
of the path searching number is smaller. When
the upper bound is too small, the size of main-
problem may increase. The size of main-problem
will be larger and larger under GS condition.
Similarly, under the GS condition, the size of
main-problem is not big when the size of path

searching is large. The difference between GS
and CS is not big when the size of path search-
ing is small, and the CS performs better;

2) GS performs better on the number of path
searching procedure and the number of itera-
tion than CS when the size of path searching
defined as a large number (500). GS and CS
perform analogously when the size of search is
small (300), while the main-problem scale under
GS is larger. In the experiment, an iteration end-
less loop occurs in most of the problems under
GS condition, but the convergence and optimal
solution under CS condition can be obtained.

Then, we come to the conclusions as following by
the comparing the total number of path searching pro-
cedures, the number of iterations and the main-problem
scale under the CS and GS with different upper bounds
of searching path number:

1) The CS is steadier when the upper bound of path
searched in sub-problems changes;

2) The GS performs better on the speed of cal-
culating, the efficiency and the main-problem
scale when the number of path searching is big
enough;

3) The CS can guarantee an optimal solution when
the number of path searching is very small,
while the GS may raise an iteration endless loop.

According to the conclusions above, if we can set
the number of path searching procedures to be large in
the sub-problems in the solving VRPTW, the history
path can be kept in the global searching, the iteration
cycling can be avoided effectively, the speed and the ef-
ficiency of calculating will be higher, and the resource
consumed by solving of the main problem will be less.
If the proper number of path searching cannot be esti-
mated, or the resource for solving the main-problem is
not enough, the CS method is steadier and can guaran-
tee an optimal solution.

4.5. Performance of CGAMO for Metaheuristic
of Dual Problem
In Section 3.4, we have presented the metaheuristic opti-
mization of dual problem of VRPTW as Formula (28) to
(32). In order to evaluate the performance of CGAMO
for metaheuristic of dual problem, we adapt four dif-
ferent kinds of heuristic methods to optimize the solu-
tion of VRPTW. The four kinds of heuristic methods are
listed in the Table 6.

In the process of VRPTW, the constant const can
be set as 0.4, 0.5, 0.6, 0.7 and 0.8. We make 20 kinds
of heuristic functions by different combination with 4
kinds of heuristic methods in the Table 5. According to
the experiments, we get the best and the worst optimiza-
tion methods and their parameters, which are showed in
Table 7. The first two columns of Table 7 represent the
serial number of problems and the number of iterations
without optimization, columns 3÷5 represent the mini-
mum number of iteration and its heuristic function, col-
umns 6÷8 represent the worst optimization, the column
9 represents the average number of iterations needed by

 Fig. 4. Comparison of main-problem scale under different
condition and searching number: a – main-problem scale

under CS; b – main-problem scale under GS;
c – main-problem scale under searching time 500;
d – main-problem scale under searching time 300

a)

b)

c)

d)

Max Columns of RMP in First Optimizing

300
400
500

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

R
a
ti

o
o

f
C

o
lu

m
n

s

0.7

0.8

0.9

1

1.1

1.2

1.3

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Max Columns of RMP in First Optimizing

300
400
500

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

R
a
ti

o
o

f
C

o
lu

m
n

s

CS
GS

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Max Columns of RMP in First Optimizing

0

500

1000

1500

2000

2500

R
a
ti

o
o

f
C

o
lu

m
n

s

CS
GS

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Max Columns of RMP in First Optimizing

0

500

1000

1500

2000

2500

R
a
ti

o
o

f
C

o
lu

m
n

s

Transport, 2016, 31(4): 389–407 403

the 20 heuristic functions, the column 10 represents the
number of schemes for reducing the iterations. Based
on these results of Table 6, we can make the following
conclusions on the effectiveness of different heuristic
methods for the dual problem in VRPTW:

1) The optimization effects of one heuristic func-
tion are different in different problems. The
proper heuristic methods and the correspond-
ing parameters can make a large decrease of the
iterations;

2) On the contrary, the improper parameters for a
problem may make a low convergence speed of
the problem and an increase of the iterations. In
the 12 problems of Table 7, most of the problems
have a half or nearly a half of optimization by
the 20 heuristic optimization functions, except
a few ones.

In order to compare the performances of different
heuristic methods for dual problem in VRPTW, we car-
ry out the experiments to compare the total numbers of
path searching by different heuristic methods in Table 6.
The experiments results are shown in Fig. 5. Based on
these results of Fig. 5, we can make the following conclu-

sions on the effectiveness of different heuristic methods
for the dual problem in VRPTW:

1) In R101, the efficiency of the problem solu-
tion decreases when the const is a little bigger.
In R102, the efficiency of 3rd optimization is
low when the const is a little smaller. Among
R103~R106 and R110~R112, the optimization
method with the fixed step size is better, and the
method of vibrational step size performs worse.
But the effects in R107 and R109 are opposite,
and the method with varying step sizes in this
situation is better. In R07, the optimization is ef-
fected easily by a constant parameter, which may
be too large or too small. In R08, the optimiza-
tions of all functions are effected much by the
change of parameter;

2) On the aspect of optimization functions, there
are respectively 13, 9, 18, 16 kinds of situation
for the 4 kinds of heuristic functions with a total
of 12 problem and 5 kinds of parameter values.
Then we can say that the functions with a fixed
step size is better than the functions with a vary-
ing step size, and the way with the average dual
variable value at the stop of convergence for the
estimate of the local optimal solution is better
than the way of recording the last solution;

3) Considering the optimization of all the problems
in Fig. 5, the solution process of the problem is
improved with the most functions and param-
eter, and the optimization performance of the
different problems in different ways are different.
A decrease of efficiency and speed also exit for a
part of the ways of optimization. So the heuristic
function with a 0.6 or 0.7 step size and using the
methods of using the average dual variable value
at the stop of convergence as the local optimal
solution can increase the efficiency of the prob-
lem solution.

Table 6. Parameter combinations of four type’s
heuristic optimization

Optimal method wk −1
best
ku

1 const uk–1

2 const
−

=− ∑
11 k

i
i lo

u
k lo

3
 
 
 

max , loconst
k

uk–1

4
 
 
 

max , loconst
k

−

=− ∑
11 k

i
i lo

u
k lo

Table 7. Results of different heuristic optimization

Instance Its.
Best optimal solutions Worst optimal solutions Average

its.
Better

solutionsIts. Const. Method Its. Const. Method

R101 14 10 0.6 2 24 0.6 3 14.8 11

R102 28 14 0.8 2 34 0.6 1 22.05 15

R103 27 16 0.4 1 47 0.6 3 32.85 4

R104 34 18 0.4 1 44 0.8 1 34.1 8

R105 33 18 0.8 1 56 0.4, 0.5 4 33.45 12

R106 32 19 0.8 1 34 0.6 1 25.8 17

R107 23 17 0.7 2 42 0.4 1 24.35 11

R108 29 15 0.5 4 61 0.4 2 32.6 9

R109 31 13 0.6 4 41 0.5 2 23.65 17

R110 69 23 0.8 1 79 0.4 2 40.65 19

R111 40 15 0.4 2 51 0.7 3 32.55 18

R112 41 18 0.7 2 42 0.6 1 30.75 15

404 W. Hu et al. A hybrid column generation algorithm based on metaheuristic optimization

Fig. 5. Comparison of path searching number for R1: a – R101; b – R102; c – R103; d – R104; e – R105; f – R106; g – R107;
h – R108; i – R109; j – R110; k – R111; l – R112

a)

c)

e)

g)

i)

k)

b)

d)

f)

h)

j)

l)

Columns Generated in First Optimizing of R101

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
R

a
ti

o
o

f
C

o
lu

m
n

s

Const

0.4 0.5 0.6 0.7 0.8

1
2
3
4

Const

0.4 0.5 0.6 0.7 0.8

0.7

0.8

0.9

1

1.1

1.2

1.3

R
a
ti

o
o

f
C

o
lu

m
n

s

0.6

0.5

0.4

1
2
3
4

Columns Generated in First Optimizing of R102

Const

0.4 0.5 0.6 0.7 0.8

R
a
ti

o
o

f
C

o
lu

m
n

s

Columns Generated in First Optimizing of R103

1
2
3
4

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
a
ti

o
o

f
C

o
lu

m
n

s

Columns Generated in First Optimizing of R104

1
2
3
4

R
a
ti

o
o

f
C

o
lu

m
n

s

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Const

0.4 0.5 0.6 0.7 0.8

Const

0.4 0.5 0.6 0.7 0.8

1
2
3
4

Columns Generated in First Optimizing of R105

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

R
a
ti

o
o

f
C

o
lu

m
n

s

Columns Generated in First Optimizing of R106

Const

0.4 0.5 0.6 0.7 0.8

1
2
3
4

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R
a
ti

o
o

f
C

o
lu

m
n

s

1.6

Const

0.4 0.5 0.6 0.7 0.8

1
2
3
4

Columns Generated in First Optimizing of R107

0.7

0.8

0.9

1

1.1

1.2

1.3

0.6

0.5

1.4

R
a
ti

o
o

f
C

o
lu

m
n

s

Columns Generated in First Optimizing of R108
1
2
3
4

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R
a
ti

o
o

f
C

o
lu

m
n

s

Const

0.4 0.5 0.6 0.7 0.8

1
2
3
4

Columns Generated in First Optimizing of R109 Columns Generated in First Optimizing of R110

Const

0.4 0.5 0.6 0.7 0.8

Const

0.4 0.5 0.6 0.7 0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

R
a
ti

o
o

f
C

o
lu

m
n

s

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
a
ti

o
o

f
C

o
lu

m
n

s

1
2
3
4

Const

0.4 0.5 0.6 0.7 0.8

1
2
3
4

Columns Generated in First Optimizing of R111

0.4

0.5

0.6

0.7

0.8

0.9

1

R
a
ti

o
o

f
C

o
lu

m
n

s

Columns Generated in First Optimizing of R112

1
2
3
4

Const

0.4 0.5 0.6 0.7 0.8

Transport, 2016, 31(4): 389–407 405

Conclusions

State-of-the-art VRPTW algorithms are usually suscep-
tible to the scale of the VRPTW problem. They would
present a high computation burden and the local opti-
mal solutions on a large dataset. In order to alleviate the
above problems, this paper proposes a hybrid method by
combining exact and heuristic algorithms. It constructs
a hybrid CGAMO algorithm to solve VRPTW. CGAMO
uses a MLA to search the sub-problem. In order to im-
prove the path searching efficiency, it uses a new search
strategy based on the sub-problem demand. CGAMO
adopts two conditions on reserving the old paths in the
main problem to avoid iterations endless loops and keep
the main problems in a reasonable size, and it also uses
a new heuristic optimization strategy for dual variable.

The experiments mainly analyse the comparison of
CGAMO with the original CG and other state-of-the-art
methods, including the performance of MLA of CGA-
MO for path searching in VRPTW, the performance of
CS and GS condition and metaheuristic optimization in
CGAMO for dual problem. From the extensive experi-
ments, it concludes that:

1) CGAMO can effectively accelerate the searching
in solution space and the CGAMO has a better
performance coverage speed than the original
CG and other state-of-the-art methods;

2) MLA in CGAMO shows an approximate path
searching speed with TSA method, and it is far
better than CPLEX method. The method based
on the minimum demand in MLA performs
better than the method based on the minimum
time in path searching and iteration. When we
use the method based on the minimum cost, the
paths that are not Pareto optimal paths are rela-
tively less than other two methods, because the
cost is not monotonic changing;

3) The CS is steadier than GS, but GS performs
better on the speed of calculating, the efficiency
and the main-problem scale than CS does. The
GS may raise an iteration endless loop with the
increment of path searching number;

4) The solution process of VRPTW is improved
with the four types of metaheuristic optimiza-
tion methods, and the optimization perfor-
mances of different problems in different ways
are different. A decrease of efficiency and speed
also exits for a part of the way of optimization.
Different VRPTW problems should choose dif-
ferent heuristic optimization methods and pa-
rameters.

Although CGAMO for VRPTW obtains satisfac-
tory achievements, there are still some room for im-
provement:

1) How to keep convergence speed steady of CGA-
MO for the distribution of path is different and
the number of iteration is different;

2) How to choose the different metaheuristic op-
timization functions and the parameters. These
would be the focus of our future work.

Acknowledgements

This work is partially supported by National Natural Sci-
ence Foundation, China (No. 70901060); Hubei Prov-
ince Natural Science Foundation (No. 2011CDB461);
State Key Lab of Software Engineering Open Founda-
tion (No. SKLSE2010-08-15); Youth Plan Found of Wu-
han City (No. 201150431101) and the Fundamental Re-
search Funds for the Central Universities. The authors
also gratefully acknowledge the helpful comments and
suggestions of the reviewers, which have improved the
presentation.

References

Achuthan, N. R.; Caccetta, L.; Hill, S. P. 2003. An improved
branch-and-cut algorithm for the capacitated vehicle rout-
ing problem, Transportation Science 37(2): 153–169.
http://dx.doi.org/10.1287/trsc.37.2.153.15243

Ai, T. J.; Kachitvichyanukul, V. 2009. Particle swarm optimiza-
tion and two solution representations for solving the ca-
pacitated vehicle routing problem, Computers & Industrial
Engineering 56(1): 380–387.
http://dx.doi.org/10.1016/j.cie.2008.06.012

Balseiro, S. R.; Loiseau, I.; Ramonet, J. 2011. An ant colony
algorithm hybridized with insertion heuristics for the time
dependent vehicle routing problem with time windows,
Computers & Operations Research 38(6): 954–966.
http://dx.doi.org/10.1016/j.cor.2010.10.011

Chakroborty, P.; Mandal, A. 2005. An asexual genetic algo-
rithm for the general single vehicle routing problem, Engi-
neering Optimization 37(1): 1–27.
http://dx.doi.org/10.1080/03052150410001721468

Chen, A.-L.; Yang, G.-K.; Wu, Z.-M. 2006. Hybrid discrete par-
ticle swarm optimization algorithm for capacitated vehicle
routing problem, Journal of Zhejiang University SCIENCE A
7(4): 607–614. http://dx.doi.org/10.1631/jzus.2006.A0607

Cheng, C.-B.; Wang, K.-P. 2009. Solving a vehicle routing prob-
lem with time windows by a decomposition technique and
a genetic algorithm, Expert System with Applications 36(4):
7758–7763. http://dx.doi.org/10.1016/j.eswa.2008.09.001

Cheung, R. K.; Hang, D. D. 2003. Multi-attribute label match-
ing algorithms for vehicle routing problems with time
windows and backhauls, IIE Transacitons 35(3): 191–205.
http://dx.doi.org/10.1080/07408170304371

Christiansen, C. H.; Lysgaard, J. 2007. A branch-and-price al-
gorithm for the capacitated vehicle routing problem with
stochastic demands, Operations Research Letters 35(6):
773–781. http://dx.doi.org/10.1016/j.orl.2006.12.009

Christofides, N.; Mingozzi, A.; Toth, P. 1981. Exact algorithms
for the vehicle routing problem, based on spanning tree
and shortest path relaxations, Mathematical Programming
20(1): 255–282. http://dx.doi.org/10.1007/BF01589353

Dantzig, G. B.; Wolfe, P. 1960. Decomposition principle for
linear programs, Operations Research 8(1): 101–111.
http://dx.doi.org/10.1287/opre.8.1.101

Desrochers, M.; Desrosiers, J.; Solomon, M. 1992. A new op-
timization algorithm for the vehicle routing problem with
time windows, Operations Research 40(2): 342–354.
http://dx.doi.org/10.1287/opre.40.2.342

Desrochers, M.; Soumis, F. 1988. A generalized permanent la-
belling algorithm for the shortest path problem with time
windows, INFOR: Information Systems and Operational Re-
search 26(3): 191–212.

406 W. Hu et al. A hybrid column generation algorithm based on metaheuristic optimization

Dumitrescu, I.; Boland, N. 2003. Improved preprocessing, la-
beling and scaling algorithms for the weight-constrained
shortest path problem, Networks 42(3): 135–153.
http://dx.doi.org/10.1002/net.10090

Feillet, D.; Dejax, P.; Gendreau, M.; Gueguen, C. 2004. An
exact algorithm for the elementary shortest path problem
with resource constraints: application to some vehicle rout-
ing problems, Networks 44(3): 216–229.
http://dx.doi.org/10.1002/net.20033

Foster, B. A.; Ryan, D. M. 1976. An integer programming ap-
proach to the vehicle scheduling problem, Journal of the
Operational Research Society 27(2): 367–384.
http://dx.doi.org/10.1057/jors.1976.63

Gajpal, Y.; Abad, P. L. 2009. Multi-ant colony system (MACS)
for a vehicle routing problem with backhauls, European
Journal of Operational Research 196(1): 102–117.
http://dx.doi.org/10.1016/j.ejor.2008.02.025

Garcia-Najera, A.; Bullinaria, J. A. 2011. An improved multi-
objective evolutionary algorithm for the vehicle routing
problem with time windows, Compters & Operstions Re-
search 38(1): 287–300.
http://dx.doi.org/10.1016/j.cor.2010.05.004

Ghoseiri, K.; Ghannadpour, S. F. 2010. Multi-objective vehicle
routing problem with time windows using goal program-
ming and genetic algorithm, Applied Soft Computing 10(4):
1096–1107. http://dx.doi.org/10.1016/j.asoc.2010.04.001

Gomory, R. E. 1958. Outline of an algorithm for integer solu-
tions to linear programs, Bulletin of the American Math-
ematical Society 64(5): 275–278.
http://dx.doi.org/10.1090/S0002-9904-1958-10224-4

Gutiérrez-Jarpa, G., Marianov, V.; Obreque, C. 2009. A single
vehicle routing problem with fixed delivery and optional
collections, IIE Transacitons 41(12): 1067–1079.
http://dx.doi.org/10.1080/07408170903113771

Hashimoto, H.; Yagiura, M.; Ibaraki, T. 2008. An iterated local
search algorithm for the time-dependent vehicle routing
problem with time windows, Discrete Optimization 5(2):
434–456. http://dx.doi.org/10.1016/j.disopt.2007.05.004

Hiquebran, D. T.; Alfa, A. S.; Shapiro, J. A.; Gittoes, D. H. 1993.
A revised simulated annealing and cluster-first route-sec-
ond algorithm applied to the vehicle routing problem, En-
gineering Optimization 22(2): 77–107.
http://dx.doi.org/10.1080/03052159308941327

Hong, L. 2012. An improved LNS algorithm for real-time ve-
hicle routing problem with time windows, Computers &
Operations Research 39(2): 151–163.
http://dx.doi.org/10.1016/j.cor.2011.03.006

Irnich, S.; Villeneuve, D. 2006. The shortest-path problem with
resource constraints and k-cycle elimination for k≥3, IN-
FORMS Journal on Computing 18(3): 391–406.
http://dx.doi.org/10.1287/ijoc.1040.0117

Jepsen, M.; Petersen, B.; Spoorendonk, S.; Pisinger, D. 2008.
Subset-row inequalities applied to the vehicle-routing
problem with time windows, Operations Research 56(2):
497–511. http://dx.doi.org/10.1287/opre.1070.0449

Karmarkar, N. 1984. A new polynomial-time algorithm for lin-
ear programming, Combinatorica 4(4): 373–395.
http://dx.doi.org/10.1007/BF02579150

Kohl, N. 1995. Exact Methods for Time Constrained Routing
and Related Scheduling Problems: PhD Thesis. Technical
University of Demark. 234 p.

Kolen, A. W. J.; Kan, A. H. G. R.; Trienekens, H. W. J. M. 1987.
Vehicle routing with time windows, Operations Research
35(2): 266–273. http://dx.doi.org/10.1287/opre.35.2.266

Laporte, G.; Mercure, H.; Nobert, Y. 1992. A branch and
bound algorithm for a class of asymmetrical vehicle route-
ing problems, Journal of the Operational Research Society
43(5): 469–481. http://dx.doi.org/10.2307/2583566

Laporte, G.; Mercure, H.; Nobert, Y. 1986. An exact algorithm
for the asymmetrical capacitated vehicle routing problem,
Networks 16(1): 33–46.
http://dx.doi.org/10.1002/net.3230160104

Lau, H. C.; Sim, M.; Teo, K. M. 2003. Vehicle routing prob-
lem with time windows and a limited number of vehicles,
European Journal of Operational Research 148(3): 559–569.
http://dx.doi.org/10.1016/S0377-2217(02)00363-6

Li, X. Y.; Tian, P.; Leung, S. C. H. 2010. Vehicle routing prob-
lems with time windows and stochastic travel and service
times: models and algorithm, International Journal of Pro-
duction Economics 125(1): 137–145.
http://dx.doi.org/10.1016/j.ijpe.2010.01.013

Lorenz, D. H.; Raz, D. 2001. A simple efficient approximation
scheme for the restricted shortest path problem, Operations
Research Letters 28(5): 213–219.
http://dx.doi.org/10.1016/S0167-6377(01)00069-4

Lübbecke, M. E.; Desrosiers, J. 2005. Selected topics in column
generation, Operations Research 53(6): 1007–1023.
http://dx.doi.org/10.1287/opre.1050.0234

Mautor, T.; Naudin, E. 2007. Arcs-states models for the vehicle
routing problem with time windows and related problems,
Computers & Operations Research 34(4): 1061–1084.
http://dx.doi.org/10.1016/j.cor.2005.05.024

Nazareth, J. L. 1988. Computer Solution of Linear Programs.
Oxford University Press. 254 p.

Nelder, J. A.; Mead, R. 1965. A simplex method for function
minimization, The Computer Journal 7(4): 308–313.
http://dx.doi.org/10.1093/comjnl/7.4.308

Padberg, M.; Rinaldi, G. 1987. Optimization of a 532-city sym-
metric traveling salesman problem by branch and cut, Op-
erations Research Letters 6(1): 1–7.
http://dx.doi.org/10.1016/0167-6377(87)90002-2

Qureshi, A. G.; Taniguchi, E.; Yamada, T. 2009. An exact solu-
tion approach for vehicle routing and scheduling problems
with soft time windows, Transportation Research Part E:
Logistics and Transportation Review 45(6): 960–977.
http://dx.doi.org/10.1016/j.tre.2009.04.007

Reimann, M.; Doerner, K.; Hartl, R. F. 2004. D-ants: savings
based ants divide and conquer the vehicle routing problem,
Computers & Operations Research 31(4): 563–591.
http://dx.doi.org/10.1016/S0305-0548(03)00014-5

Rousseau, L.-M.; Gendreau, M.; Feillet, D. 2007. Interior point
stabilization for column generation, Operations Research
Letters 35(5): 660–668.
http://dx.doi.org/10.1016/j.orl.2006.11.004

Savelsbergh, M. W. P. 1985. Local search in routing problems
with time windows, Annals of Operations Research 4(1):
285–305. http://dx.doi.org/10.1007/BF02022044

Sellmann, M.; Gellermann, T.; Wright, R. 2007. Cost-based
filtering for shorter path constraints, Constraints 12(2):
207–238. http://dx.doi.org/10.1007/s10601-006-9006-4

Sungur, I.; Ordóñez, F.; Dessouky, M. 2008. A robust optimiza-
tion approach for the capacitated vehicle routing problem
with demand uncertainty, IIE Transactions 40(5): 509–523.
http://dx.doi.org/10.1080/07408170701745378

Tavakkoli-Moghaddam, R.; Gazanfari, M.; Alinaghian, M.;
Salamatbakhsh, A.; Norouzi, N. 2011. A new mathemati-
cal model for a competitive vehicle routing problem with
time windows solved by simulated annealing, Journal of

Transport, 2016, 31(4): 389–407 407

Manufacturing Systems 30(2): 83–92.
http://dx.doi.org/10.1016/j.jmsy.2011.04.005

Teodorovic, D.; Krcmar-Nozic, E.; Pavkovic, G. 1995. The
mixed fleet stochastic vehicle routing problem, Transpor-
tation Planning and Technology 19(1): 31–43.
http://dx.doi.org/10.1080/03081069508717556

Vaidyanathan, B. S.; Matson, J. O.; Miller, D. M.; Matson, J. E.
2007. A capacitated vehicle routing problem for just-in-
time delivery, IIE Transctions 31(11): 1083–1092.
http://dx.doi.org/10.1023/A:1007631726356

Vehicle Routing Problems with Time Windows (VRPTW): Solo-
mon Benchmark Problems. 2012. Available from Internet:
http://www.idsia.ch/~luca/macs-vrptw/problems/welcome.
htm

Zachariadis, E. E.; Kiranoudis, C. T. 2010. A strategy for re-
ducing the computational complexity of local search-based
methods for the vehicle routing problem, Compters & Op-
erstions Research 37(12): 2089–2105.
http://dx.doi.org/10.1016/j.cor.2010.02.009

Zhu, X.; Wilhelm, W. E. 2012. A three-stage approach for the
resource-constrained shortest path as a sub-problem in col-
umn generation, Computers & Operations Research 39(2):
164–178. http://dx.doi.org/10.1016/j.cor.2011.03.008

