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Abstract. The exact solution and heuristic solution have their own strengths and weaknesses on solving the Vehicle 
Routing Problems with Time Windows (VRPTW). This paper proposes a hybrid Column Generation Algorithm with 
Metaheuristic Optimization (CGAMO) to overcome their weaknesses. Firstly, a Modified Labelling Algorithm (MLA) 
in the sub-problem of path searching is analysed. And a search strategy in CGAMO based on the demand of sub-prob-
lem is proposed to improve the searching efficiency. While putting the paths found in the sub-problem into the main 
problems of CGAMO, the iterations may fall into endless loops. To avoid this problem and keep the main problems 
in a reasonable size, two conditions on saving the old paths in the main problem are used. These conditions enlarge 
the number of constraints considered in the iterations to strengthen the limits of dual variables. Through analysing 
the sub-problem, we can find many useless paths that have no effect on the objective function. Secondly, in order to 
reduce the number of useless paths and improve the efficiency, this paper proposes a heuristic optimization strategy 
of CGAMO for dual variables. It is supposed to accelerate the solving speed from the view of on the dual problem. Fi-
nally, extensive experiments show that CGAMO achieves a better performance than other state-of-the-art methods on 
solving VRPTW. The comparative experiments also present the parameters sensitivity analysis, including the different 
effects of MLA in the different path selection strategies, the characteristics and the applicable scopes of the two path-
keeping conditions in the main problem.
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Introduction

Nowadays, with the increasing demand of better services 
and tighter requirements for the users, the Vehicle Rout-
ing Problem (VRP) has played a very important role in 
the logistics and supply chain management and many 
other areas. The VRP is defined as a problem of mini-
mizing the total travel distance of a number of vehicles 
with some constraints, including every customer must 
be served at least once by a vehicle. Among many kinds 
of VRP, the Vehicle Routing Problem with Time Win-
dows (VRPTW) has been widely studied and occupies 
an important place in the field of operations research 
and combinatorial optimization (Hashimoto et al. 2008; 
Lau et  al. 2003; Teodorovic et  al. 1995; Vaidyanathan 
et al. 2007). The VRPTW has a wide range of applica-
tions such as supermarket distribution, expressage, bank 

deliveries, postal deliveries, school bus routing and so 
no. The VRPTW has become a subject of great interest 
in VRP fields. 

Scholars mainly concentrate on two kinds of algo-
rithms: exact and heuristic algorithms. Exact algorithms 
are solved by precise mathematical models and reason-
ing, and can get the optimal solution. But since the 
VRPTW is NP-hard, solving large-scale problems using 
the exact algorithm is very time-consuming (Achuthan 
et  al. 2003; Kohl 1995; Laporte et  al. 1992; Christian-
sen, Lysgaard 2007; Gutiérrez-Jarpa et al. 2009; Cheung, 
Hang 2003). The gradual optimization of the heuristic 
algorithm for feasible solutions is promising, but when 
the problem is of a smaller scale, the solution presents 
the large deviations (Sungur et  al. 2008; Chakroborty, 
Mandal 2005; Hiquebran et  al. 1993; Li et  al. 2010; 
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Cheng, Wang 2009; Gajpal, Abad 2009; Balseiro et  al. 
2011). Since both kinds of algorithms have their own 
strengths and weaknesses for solving VRPTW, combin-
ing these two kinds of algorithms to attain even better 
solution for VRPTW becomes a treading research di-
rection (Tavakkoli-Moghaddam et al. 2011; Hashimoto 
et al. 2008; Garcia-Najera, Bullinaria 2011; Hong 2012). 
A good combined algorithm should have the least time 
consuming and the smallest solution deviations.

Dantzig and Wolfe (1960) proposed the Column 
Generation (CG) method to solve the linear programs 
with decomposable structures. CG has been applied 
successfully to solve many optimization problems and 
becomes a leading optimization technology to solve 
VRPTW (Rousseau et al. 2007). However, original CG 
often shows a very slow convergence speed, partly be-
cause of heavy degeneracy problems. The convergence 
becomes even slower when the multiple dual solutions 
are associated with each primal solution. The dual solu-
tion is the crucial part of CG to solve VRPTW.

This paper focuses on the combination of CG and 
heuristic algorithms, and proposes a hybrid column gen-
eration algorithm based on metaheuristic optimization 
(CGAMO). It establishes a mixed-integer programming 
model. Dantzig–Wolfe (D–W) is used to divide the 
problem into a partitioning set problem and a shortest 
path problem with resource constraints (Dantzig, Wolfe 
1960). CGAMO is finally used to get the optimal solu-
tion. The main contributions are as follows: 

1) Labelling Algorithm (Desrochers, Soumis 
1988) is used to search the paths. According to 
VRPTW, a modified labelling algorithm (MLA) 
is proposed to satisfy the path total demands of 
selecting and extending policies for path exten-
sive searching. MLA can reduce the iteration 
number and memory space in solving VRPTW. 

2) A method with the conditionally retained his-
tory path of the main problem is proposed. It 
can effectively avoid endless loops because of the 
height degradation of VRPTW and the limita-
tions of the sub-problem. 

3) The metaheuristic optimization policy of the 
dual variables is employed in order to upgrade 
the CGAMO’s solving ability. It selects an ap-
propriate optimization step and a local optimal 
value to search the optimal value of the dual var-
iables. In this way, the phenomenon of endless 
loops in the process of CG iteration is avoided 
and the corresponding optimization speed is ob-
viously accelerated. 

The rest of this paper is organized as follows. Sec-
tion 1 describes the related works and typical solving 
algorithms on VRPTW. Section 2 describes the VRPTW 
model and the decomposition methods. Section 3 anal-
yses the VRPTW solving steps by CGAMO. It also 
analyses three key technologies in CGAMO in detail. 
Section  4 analyses the performance of CGAMO and 
compares it with other state-of-the-art algorithms. Final 
Sections draw a conclusion and show some perspectives.

1. Related Works

To solve VRPTW problems, many methods have been 
proposed, mainly divided into the exact methods and 
the heuristic methods. As for the exact methods, they 
include branch and bound method (Laporte et al. 1986), 
integer programming (Foster, Ryan 1976), tree search 
(Christofides et al. 1981), cutting plane method (Gomory 
1958), branch and cut method (Padberg, Rinaldi 1987) 
and CG algorithm (Dantzig, Wolfe 1960) and so on. The 
exact solution-based methods mathematically formulate 
VRPTW. Laporte et al. (1992) proposed a branch and 
bound algorithm for VRPTW. Christiansen and Lys-
gaard (2007) presented a branch-and-price algorithm 
for the capacitated VRPTW with stochastic demands. 
Because VRPTW is a NP-hard problem (Savelsbergh 
1985), when the size of the problem is large, it cannot 
be solved within an acceptable time. Desrochers et al. 
(1992) proposed an exact approach to solve a VRPTW, 
and found that it was inefficient on time costs. Kolen 
et al. (1987) proposed a branch and bound method to 
solve VRPTW with the node number ranging from 6 to 
15. He found that when the node number of VRPTW 
was 6, the computer (VAX11/785) took nearly one min-
ute to find the solution; and when the node number of 
VRPTW reached 12, the computer was unable to solve 
the VRPTW. Through reviewing the literature, the exact 
methods can solve the small scale VRPTW very well. 
But they are poor for solving the large scale VRPTW.

In order to solve the above problem, many scholars 
studied different heuristic algorithms to solve VRPTW. 
The typical heuristic algorithms are local searching 
(Zachariadis, Kiranoudis 2010; Hashimoto et al. 2008), 
Simulated Annealing (SA) (Tavakkoli-Moghaddam 
et al. 2011), Genetic Algorithm (GA) (Ghoseiri, Ghan-
nadpour 2010; Cheng, Wang 2009), Tabu Search (TS) 
(Li et  al. 2010; Lau et  al. 2003), ant system (Reimann 
et  al. 2004; Balseiro et  al. 2011; Vaidyanathan et  al. 
2007), Large Neighbour Searching (LNS) algorithm 
(Hong 2012), Particle Swarm Optimization Algorithm 
(PSOA) (Chen et al. 2006; Ai, Kachitvichyanukul 2009), 
etc. Heuristic-based methods are classified into the con-
structed heuristic algorithms and the smart optimization 
algorithms. The smart optimization algorithms derive 
from the simulation and the nature learning, simulation 
optimization on the existing viable solutions. But due to 
the large difference between the real problem and the 
ideal model, initial solutions are difficult to construct, 
and the convergence speed in early stage is slow with the 
local optimal solutions.

Both exact methods and heuristic methods have 
their own weaknesses. Combining these two kinds of al-
gorithms to solve VRPTW is a promising choice. Many 
researchers used the integer programming to transfer 
VRPTW into a set partition problem (Mautor, Naudin 
2007; Lorenz, Raz 2001; Dumitrescu, Boland 2003; Sell-
mann et al. 2007). But since the path space tends to be 
huge, it is difficult to find such path. The common inte-
ger programming can’t fit the problem scale. However, 
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CG algorithm has a good ability to fit the problem scale, 
so it has been widely used. After using CG to decom-
pose VRPTW, the solution is actually a subprocess to 
find the basic restrictions to the shortest path, and the 
main problem to find the optimal integer solution (Feil-
let et  al. 2004; Irnich, Villeneuve 2006; Zhu, Wilhelm 
2012; Qureshi et al. 2009; Jepsen et al. 2008). CG algo-
rithm is constructed on the exact solution of the inte-
ger programming model. It expands the solution range 
based on a guaranteed accuracy. But due to the inherent 
defects and VRPTW’s characteristics, there are still some 
non-negligible problems: 

1) when the time windows between the client nodes 
vary greatly, a distributed aggregation phenom-
enon problem in the paths of the sub-problem 
causes the objective function converge slowly;

2) since VRPTW is degenerated obviously, there 
are many invalid paths with the zero increment, 
which hardly improves the objective function; 

3) due to the tailing effect of original CG in 
VRPTW, the resulting basic variables is worse, 
so the improvement of the objective function de-
creases and the time cost sharply increases with 
the increment of the iteration times.

To solve the above defects, this article focuses on 
Vehicle Routing Problem with Hard Time Window  
(VRPHTW) that is it cannot be allowed to serve for the 
customer after the required time. A path selecting meth-
od based on the total needs is proposed. The purpose is 
to extend the path search range, and enlarge the number 
of valid paths in the results. Besides, in order to avoid 
the endless loop phenomenon, a method with condi-
tionally preserved main problem in the historic path is 
also proposed. The two different preserving conditions 
are set to compare the different effects. A dual variable of 
the heuristic optimization policy is also used to acceler-
ate the convergence speed of the dual variable, and re-
duce the number of the variable repetition endless loops.

2. VRPTW Model 

2.1. Model Formulation
In general, VRPTW mainly consists of several factors 
including client the node, the distribution centre and the 
road in the road network. It involves some constraints 
including the vehicle’s maximum carrying capacity, the 
time window of clients’ available time and the vehicle 
travelling circuit. The target of VRPTW is to make an 
overall minimum cost of the distribution; here it is the 
shortest travelling distance of the vehicles.

In VRPTW, the vehicle’s starting point and client 
nodes distribute discretely in a two-dimensional space 
and two neighbour nodes with the same vehicle’s ser-
vice tying to each other. Therefore, the VRPTW model 
can be built using a directed graph G = (V, A), where 
V represents the set { }= 1,2,3, ,C n  which is a set of 
the vehicle’s starting point and client nodes. Arc set A 
contains all of ( ),arc i j  which link each two nodes that 
are valid in the time, where i, ∈j V .

Symbols used in the model are defined as following:
di – the cargo demand of client node i;
q – the vehicle’s maximum cargo capacity, not 

considering the differences between vehicles;
sjk – the time when vehicle k reaches client node j 

and starts the service, when j = 0, it represents 
the time when vehicle k returns to the start-
ing point;

tij – the time required for the vehicle travelling 
from node i to node j, including the vehicle 
service time at node i;

cij – the consuming value of vehicles travelling 
from node i to the node j, which is propor-
tional to the travelling time;

xijk –  whether vehicle k travels through arc(i, j), 
when xijk = 1, it indicates that vehicle k travels 
through arc(i, j), otherwise xijk = 0;

        ,i ia b  –
 
the time window of client node i.

Constraints of the vehicle service process in the 
model are as following:

1) each client node only needs one vehicle to ser-
vice, namely that the in-degree and out-degree 
of any client node is 1 for the same vehicle (as 
Formula (2));

2) the vehicle’s capacity has an upper limitation (as 
Formula (3));

3) the vehicle route is a loop that contains the start-
ing point, and each client node’s in-degree and 
out-degree for the same vehicle are equal, except 
that both of them are 1 for the starting point (as 
Formula (4) to (6));

4) the constraint for a client node’s time window, 
when the vehicle arrives at the node in advance, 
it needs to wait for the client until the client 
node can accept service, and the vehicle can’t be 
late (as Formula (4) to (6)).

Based on the above constraints, the sum of all ve-
hicles’ distribution cost makes up the objective function, 
and the mixed integer programming model of VRPTW 
can be built as follows:

∈ ∈
∑ ∑

( , )
min ij ijk

k K i j A
c x ; (1)

∈ ∈
=∑ ∑ 0 1jk

k K j C
x , ∀ ∈i C ; (2)

∈ ∈
≤∑ ∑i ijk

i C j V
d x q , ∀ ∈k K ; (3)

∈
=∑ 0 1jk

j C
x , ∀ ∈k K ; (4)

∈ ∈
− =∑ ∑ 0ihk hjk

i V j V
x x , ∀ ∈h C , ∀ ∈k K ; (5)

∈
=∑ 0 1i k

i C
x , ∀ ∈k K ; (6)

( )+ − ≤ 0ijk ik ij jkx s t s ,∀ ∈( , )i j A , ∀ ∈k K ; (7)

≤ ≤i ik ia s b , ∀ ∈i V , ∀ ∈k K ; (8)

{ }∈ 0,1ijkx , ∀ ∈( , )i j A , ∀ ∈k K . (9)
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Formula (7) expresses that when vehicle k travels 
through ( )( )=, 1ijkarc i j x , the vehicle’s arrival time and 
travelling time satisfies the inequalities + ≤ik ij jks t s

 
, 

( )∀ ∈,i j A, ∀ ∈k K , which means that the vehicle trav-
elling through node i should not reach node j before 

+ik ijs t . Due to the presence of time windows, the vehi-
cle needs to wait until the client node can accept service 
when it arrives at the client node in advance. The model 
set the upper limit of the service vehicles, namely the 
size of set K. When K  is large enough ( )≥ n , the upper 
limited number of the vehicles does not exist.

2.2. Model Decomposition and Relaxation
In this paper, the constraints related with the vehicle 
route will be extracted as a sub-problem by the D–W 
decomposition method, and the constraints of the main 
problem will be made by retaining the single service 
limit of client node in the problem. Sub-problem is the 
basically shortest path problem with the resource con-
straints, and it searches the shortest vehicle travelling 
path satisfying the Formula (2) to (8), while the main 
problem is the set partition problem and it uses a feasi-
ble path founded in the sub-problem to classify the cli-
ent node set. The main problem remains linear after its 
decomposition and can be solved by the simplex method 
(Nelder, Mead 1965). The sub-problem with nonlinear 
constraints of the time window can be solved by dynam-
ic planning method. They are shown in Formula  (10) 
to (12):

∈
∑min p p
p P

c y ; (10)

∈
= ∀ ∈∑ 1,ip p

p P
a y i C ; (11)

{ }∈ ∀ ∈0,1 ,py p P , (12)

where: p represents the feasible path of the vehicle ser-
vice node; P is the set of all feasible paths; cp in the ob-
jective function represents the consuming value of path 
p; yp represents the path selection, and when yp = 1 it 
means that there is a vehicle to complete distribution, 
otherwise yp = 0; aip represents the times of path p visit-
ing to the client node i. 

In order to improve the stability of the main prob-
lem solution, Formula (13) will replace Formula (11), 
the set partition problem will be relaxed as the Set Co-
vering (SC) problem, and a non-negative constraint will 
be added to the dual variables:

∈
≥ ∀ ∈∑ 1,ip p

p P
a y i C .

  
(13)

2.3. Sub-Problem Model 
After the decomposition of the VRPTW model, the 
sub-problem uses the test number of the paths in the 
main problem as objective function, and it needs to find 
the feasible path with the smallest test number. The test 
number of the paths can be provided by subtracting the 
dual variable corresponding to the visited node from 
travelling cost cp. Since the vehicle can just serve each 

node once, the path consuming value should subtract 
the corresponding dual variable when the vehicle goes 
through each node. Therefore, the obtained travelling 
cost is the test number of the path in the main problem 
when the travelling cost is modified by the dual variable 
according to Formula (14):

= − ∀ ∈,ij ij jc c u j V , (14)

where: ijc  is the modified cost value; cij is the cost val-
ue of vehicles travelling from node i to node j, which 
is proportional to the travelling time; uj is the start-
ing point and client node set of the vehicle route is 

{ }= 1,2,3, ,C n . 
The sub-problem is simplified as the problem of 

searching the feasible path by modifying the travelling 
cost of the arc. The isolated sub-model is shown as For-
mula (15) to (22):

∈
∑

( , )
min ij ij

i j A
c x ; (15)

∈ ∈
≤∑ ∑i ij

i C j V
d x q; (16)

∈
=∑ 0 1j

j V
x ; (17)

∈ ∈
− =∑ ∑ 0ih hj

i V j V
x x , ∀ ∈h C ; (18)

∈
=∑ 0 1i

i V
x ; (19)

( )+ − ≤ −1i ij j ij ijs t s x M , ( )∀ ∈,i j A; (20)

≤ ≤i i ia s b , ∀ ∈i V ; (21)

{ }∈ 0,1ijx , ( )∀ ∈,i j A, (22)

where: Mij is the order of service when xij is 0 or 1. In or-
der to initialize it, we use the basic path that each vehicle 
serves one node as an initial solution and its consuming 
value is taken as the dual variable of the corresponding 
node. Since the initialization does not limit the number 
of the vehicles, the dual variable of the start point u0 is 0.

3. CGAMO for VRPTW

3.1. CGAMO
When the scale of VRPTW is large, we must use an ef-
ficient method to find the solution of the main problem 
after decomposition. Simplex method and Interior Point 
(IP) method (Karmarkar 1984) are all well-known to 
solve the large-scale liner programming problems. They 
are all suitably used to find the solution of the main 
problem after decomposition. When they get close to 
the local optimal solution, the ending condition of sim-
plex method is easy to be determined; IP method doesn’t 
perform well in this aspect. In the coding process, IP 
method is more complicated than simplex method. It 
has to do the matrix inversions and logarithmic calcula-
tions and it cannot guarantee the precision when cal-
culating the decimals. Although IP method has a lower 
complexity in theory, simplex method has a quicker pro-
cessing speed for most of the problems when the prob-
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lem scales are not very big. So we can use CG algorithm 
to decompose the problem and solve the sub-problems 
and the main problem by iterative solution and simplex 
method. In CG algorithm, some base intake variables 
obtained in each iteration for the sub-problem will be 
substituted into the main problem. When the problems 
degenerate, a part of variables are searched many times 
and get into base repeatedly due to the limitation of the 
sub-problem solution. While the degradation situation 
is serious or the sub-problem performance is poor, it is 
possible to fall into endless loops.

In order to avoid the endless loops, we can condi-
tionally save the historical paths of the main problem 
and strictly restrict the dual variable when adding the 
search result into the main problem. In order to reduce 
the variables repeatedly and get them into the base, we 
apply metaheuristic optimization to the dual variable in 
the iterations to accelerate the speed of converging.

Algorithm I: CGAMO for VRPTW
Input: client node information, the number of vehicles, 
the maximum cargo capacity, cost matrix.

Output: optimal travelling route set:
1) Initialization, use the route cost for one vehicle 

serving one client node as the dual variable of 
the corresponding node, the dual value of the 
starting point is 0;

2) Use the dual variable to modify the consuming 
value of the arc in the cost matrix;

3) Solve the sub-problem (see Section 3.2), and get a 
group of paths whose test numbers are negative. 
If you can’t find these paths, then go to step 7;

4) Add the paths found in the sub-problem to the 
main problem, conditionally saving the original 
paths of the main problem (see Section 3.3);

5) Solve the main problem, and update the dual 
variables;

6) Optimize the dual variables by the metaheuristic 
function (see Section 3.4), go to step 2;

7) If the current optimal solution is an integer so-
lution, then output it; otherwise, use the branch 
division to obtain the optimal integer solution 
according to the largest branch weight of the 
arcs.

3.2. Sub-Problem Solution
3.2.1. Expansion Search of the Path
In order to find the base intake path with a smaller test 
number and control the scale of the main problem and 
reduce the storage space required by the algorithm, this 
paper uses MLA to find a part or all of Pareto optimal 
paths and eliminate the poor paths. The main data struc-
tures used in the MLA are as following:

1)
 ) ( ) ( ) ( ){ }= , , , , ,Label pr L t L q L c L Label no

 
, 

used to represent the state when the vehicle ar-
rives the current client node pr, including the 
service start time t, the total demand q of cli-
ent nodes which have been served, the travelling 
cost c when reaching the current node. We mark 
the label with a unique serial number no.

2) { }= ,  ,Path vis Label list length , the vector vis re-
cords the next node which can be extended by 
the path, and it can avoid repeatedly visiting cli-
ent node in the path search, wherein 1 means 
the next node that can be extended and 0 means 
the node that can’t be reached. In the path ex-
tension, the vehicles’ expansion range is limited 
by the visiting time of the current node and the 
total demand of the path. By the path expand-
ing, the range of the extensible nodes get smaller 
and smaller , so vis doesn’t increase, but decrease 
instead. Label list is used to save the label of 
each client node’s vehicle visiting. lenght is used 
to record the number of accessible nodes. The 
information of accessible nodes is stored in the 
path instead of the label, which can avoid storing 
the visiting state of the non-current nodes’ label. 
When the poor paths are eliminated, the stor-
age space is filled with some labels which are no 
longer cited by the path, thus it can reduce the 
storing consumption.

3) Path queue Q, used to store the paths which have 
not yet been extended.

4) Path set U(v), used to store the paths which can 
reach the specified nodes and have been exten-
ded. It is used to eliminate the selected route.

MLA is an extended search algorithm for the graph 
traversal. The main steps are shown as follows.

Algorithm II: MLA
Input: client node information, the number of the ve-
hicles, the maximum cargo capacity, cost matrix.

Output: a certain number of paths with negative 
test number:

1) Initialize the path queue Q, add p0 to Q, p0 is a 
path beginning from the starting point and has 
only one label of the point 0, U(v) = Φ, Φ ex-
presses the empty set;

2) Path selection: find path p with the shortest trav-
elling time from Q, recording node v and time 
t(p) when it reaches node v;

3) Path extraction: extract the paths from Q 
which can reach node v and consume less than 

+( ) min( )ijt p t  to build the path set P(v), and 
then delete the paths in P(v) from Q;

4) Path elimination: eliminate the paths in P(v) 
using all of the paths in ( ) ( )U v P v , delete the 
poor paths in P(v) according to the elimination 
rules, add the paths to U(v) which are in P(v) 
and not eliminated;

5) Path expansion: extend each path in P(v) to all 
accessible nodes and obtain a set of paths S(v);

6) For the path in S(v), if it doesn’t return to the 
starting point, it will be added to queue Q, oth-
erwise, judging whether its cost is less than 0, if 
so, add it to U(0);

7) If the number of the paths in U(0) reaches or 
exceeds the set limit, exit; otherwise, go to step 2 
to continue to find and expand the paths.

In the expanding search of the path, every time we 
select a group of paths with the same ending point in 
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order to speed up the search and reduce the branches 
to be searched. Since the path extension involves time, 
demand and cost, each of these three resources can be 
regarded as the basis of path selecting: 

1) According to the nodes of the path whose trave-
ling time is the shortest, choose the time of the 
shortest arc in cost matrix as the selected width;

2) According to the node of the path whose current 
demand is the smallest, choose the minimum 
cargo demand as the selected width;

3) According to the nodes of the path whose cur-
rent cost is the smallest, choose the traveling 
cost of the shortest arc in cost matrix as the se-
lected width.

Since time and demand are monotonically increas-
ing in the path expansion, time and demand-based 
path selection and expansion are actually similar to 
the breadth-first search. The nodes in the found paths 
are relatively homogeneously distributed, and there are 
many effective paths getting into the base. But because 
its breadth-first feature, the length of the path found 
by the algorithm in the early stages is shorter, and the 
convergence speed of vehicles’ number is relatively slow. 
While selection and expansion based on consuming val-
ue are the depth-first search based on greedy strategy, it 
is able to find the longer and accessible paths. But the 
driving costs are not monotonic increasing, so the found 
paths are often gathered, and the similarity degree be-
tween paths is high. As a result, the number of effective 
paths which can improve the objective function may be 
relatively less than the breadth-first search.

3.2.2. Path Elimination Rule
When several different paths are selected, the pruning 
operation can be done in the expansion trees of the 
paths. Then the part of apparently poor paths and their 
extensions will be eliminated by comparing the extended 
scope and the costs of the paths. For two paths p1 and 
p2 with the same current nodes, first of all, compare 
the consuming values (Formula (23)), and to estimate 
the merits degree of the path. Then compare time (For-
mula  (24)), the total demand (Formula (25)) and the 
range of the extensible subsequent nodes of the path 
(Formula  (26)). Only when both the consuming time 
and the demand of the path are small, we can guarantee 
that it can do a longer extension. The expansion path 
of p1contains all expansion paths of p2 and the costs of 
the extended paths in p1 are smaller when both p1 and 
p2 satisfy the following requirements. Then p2 can be 
deleted to decrease the path search range:

( ) ( )≤1 2c p c p ; (23)

( ) ( )≤1 2t p t p ; (24)

( ) ( )≤1 2q p q p ; (25)

( ) ( )≤1 2vis p vis p . (26)

3.3. The Connection Between the Sub-Problem  
and the Main Problem
During the process of solving the VRPTW degradation 
problem by simplex method, there is always an item 
with the value of zero based on the feasible solution. 
The increment of the base intake variable may be 0, and 
the base intake variable does not change the objective 
function. The convergence of the algorithm stop, and 
what’s worse, the base intake variables enter the loop 
state. VRPTW is a seriously degraded problem, where 
path search in the sub-problem using CG algorithm only 
considers the size of the test number without involving 
the size of the increment getting into the base, thus it 
may find an invalid variable whose increment value is 
0 and reduce solving efficiency. When the search results 
of the sub-problem are all the invalid paths, the itera-
tive solution does not optimize the objective function; 
repeating invalid iterations may lead to an endless loop.

During the iteration, the dual variable is continu-
ously restricted by the corresponding constraints of the 
base intake variable. The algorithm will converge to the 
optimal solution at last. If all of the variables in a few 
iterations are considered at the same time, we can get 
the dual variable satisfying all the constraints and avoid 
circulating into the base. But saving all the found paths 
will increase the scale of the main problem and take up 
more storage space. This is contrary to the purpose of 
using CG. Therefore, we need to set the proper condi-
tions of saving the historical paths to control the scale 
of the main problem. Due to the trailing effect generated 
by the column, the closer the objective function is to the 
optimal solution, the smaller the increment of the found 
base intake variables is, most of which are 0. The more 
the times of the iteration is, the more the occurrence 
possibility of circulating into the base is, and the more 
the need to save the historical paths of the main problem 
is. Thus two judgment conditions of saving the historical 
paths should be constructed:

1) When the objective function comes to Conver-
gence Stagnation (CS), which means that the 
solution of the main problem does not opti-
mize the objective function, the increments of 
the base intake variable in the sub-problems are 
0. The solution of the original problem is also 
unchanged, only the dual variables are changed, 
and it is likely to be added into the iteration. At 
this time, saving the historical paths can reduce 
the delay time of the objective function.

2) When the sub-problem becomes Global Search 
(GS) in the process of searching path, the num-
ber of the found paths is less than the specified 
limit. The found paths where the nodes are rela-
tively homogeneously distributed contain the 
path with the smallest test number and the dual 
variables are strongly restricted. The upper limit 
of the found paths number in the sub-problem 
affects the algorithm greatly in determining 
whether becomes the global search or not.
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3.4. Metaheuristic of the Dual Problem
3.4.1. Heuristic Function for Optimization 
During the process of solving linear programming by 
the simplex method, the base’s feasible solution of the 
original problem will change with the base intake op-
eration. Due to the constraints of corresponding hyper 
plane restrictions and the dual variables gradually con-
verging to the optimal solution, the dual problem will 
still converge to its optimal solution even when the it-
eration convergence of original problem begins to stag-
nation. The change of the base variables is continuous 
and the dual variable smoothly converges to the optimal 
solution in the simplex method. While in the CG algo-
rithm, because the decomposition of the original prob-
lem separates the selection of the base intake variables 
from the base intake operation, only part of variables are 
considered during iteration. The invalid variables may 
repeatedly get into the base, which results in that the 
convergence of dual variable to the optimal solution is 
no longer smooth but is constantly oscillating near the 
optimal solution instead. So the convergence of the dual 
problem solution is relatively slow, and in the worst case, 
it may become an endless loop (Lübbecke, Desrosiers 
2005; Nazareth 1988).

We subjectively set the value of objective function 
*Z  for the dual problem. When the convergence of the 

original problem begins to stop, the dual variable value 
remains in the corresponding hyper plane of the objec-
tive function. It is shown in Formula (27):

∈
=∑ *

i
i V

u Z . (27)

Large-scale linear programming problems can be 
solved through a number of iterations as the CG algo-
rithm applies to the simplex method and the principle 
of locality. But the locality not only lessens the optimi-
zation range of the objective function but also reduce 
the algorithm’s speed. This phenomenon becomes more 
and more obvious as objective function is gradually ap-
proaching to the optimal value. Therefore, we can apply 
an appropriate method to optimize the dual problem to 
reduce the oscillation amplitude of the dual variables 
and to accelerate the algorithm’s convergence.

This paper adopts the function shown in Formu-
la  (28) to do metaheuristic optimization for the dual 
variable:

( ) −′ = + − 11 best
m m m m mu w u w u , (28)

where: ′mu represents the dual variables used for the next 
solving for sub-problem; um represents the dual vari-
ables obtained by the current (m-th) iteration; −1

best
mu is 

a relatively better dual variable obtained in the former 
m–1 iterations, that it is the local optimal value of the 
dual variable; wm is a parameter, and < <0 1mw . The 
above formulas can be expressed as Formula (29):

( )− −′ = + −1 1
best best

m m m m mu u w u u . (29)

After iteration, the dual variable chooses the cur-
rent local optimal value as the starting point and moves 

forward to the dual variables obtained in this iteration 
actually. Each forward step is wm. wm is an important 
parameter for metaheuristic optimization, and its value 
may be a fixed value or a dynamic value according to 
different iterations. In general, we set a lower limitation 
greater than zero for wm in order to ensure that the cur-
rent dual variables are involved in the optimization and 
avoid the local optimization convergence of the problem.

3.4.2. The Selection of the Local Optimal Solution 
During the based intake or out-take operation of the 
original problem, the dual variable is driven by the cor-
responding constraints and continuously approximate to 
the optimal solution. The optimal value of the dual vari-
able satisfies all the constraints and matches the optimal 
value of the objective function. During the solution, the 
objective function gradually decreases, the constraints 
for the dual variables gradually increases, and the dual 
variables do not get worse generally. So we can simply 
select the dual variables obtained in the latest iteration 
as the current optimal value, which is shown as For-
mula (30):

− −=1 1.best
m mu u  (30)

In the degradation problem, dual variable will os-
cillate around the optimal solution in the corresponding 
hyper plane of the objective function when the original 
problem stops the optimization with the increment of 
the base intake variable being zero. Dual variable oc-
curs to be cyclic when the original problem loops into 
the base. When the dual variable oscillates around the 
optimal solution, we can employ the average of the dual 
variables obtained in the recent several iterations to es-
timate the location of the optimal dual variables; it is 
shown as Formula (31):

−
− ==

− ∑ 1
1

1 ,mbest
m ii lou u

m lo
 (31)

where: lo (last optimized) represents iterations in the lat-
est optimization, and m is the current iterations. 

We can use the average to estimate the approximate 
location of the oscillation centre of the dual variables 
and to accelerate the convergence of the dual variables. 
Meanwhile, a simple arithmetic average can guarantee 
that the optimum value is still in the corresponding hy-
per plane of the objective function.

3.4.3. The Calculation of Heuristic Function Parameter 
Applying heuristic function to optimize the dual prob-
lem, the dual variable starts from the optimal solution, 
and the current obtained dual variable steps forward wm 
each time. In order optimize the dual problem continu-
ously; our method imposes some constraints on each 
step shown in Formula (32):

≤ ≤ 1,mconst w  (32)

where: const is a constant greater than zero, indicating 
the lower limit of step wm. It’s used to ensure that the 
dual variable obtained in the current iteration can partic-
ipate in the optimization process rather than stay at the 
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local optimal solution. The upper limit 1 avoids the dual 
variable’s variation due to the excessive optimization.

Since the dual problem is oscillating near the opti-
mal solution and continuously approximates to the op-
timal solution in iterations, the form of the oscillation is 
attenuated, and the obtained dual variable will be better 
each time. When um and −1

best
mu  are in different sides of 

the optimal solution, the optimized step less than 1 can 
obtain an optimized value ′mu , which is closer to the 
optimal solution, and it can accelerate the convergence 
of the dual variable. When the step size is larger than 1, 

′mu  is much farer away from the optimal solution and its 
value may be worse than um, which may make the dual 
variable degrade. Therefore, wm has the upper limit 1. 
Considering the different oscillations of the dual vari-
ables, the specific values of wm can be divided into the 
following situations:

1) The constant const is fixed on the lower limit, in 
the case of continuous damp oscillation. A fixed 
reduction of the step can accelerate the oscil-
lation’s attenuation and make the dual variable 
reach the optimal solution faster;

2) The function with the lower limit of const, such 

as  =  
 

max ,m
low const
m

. When the objective 

function is convergent, the optimized dual vari-
able should be close to the iteration’s result. The 
convergence is in stagnation. The longer the 
stagnation is, the worse the qualities of local op-
timal results are.

4. Experimental Results and Analysis

This section is devoted to the performance evaluation 
of CGAMO for VRPTW. The adopted benchmarks and 
experimental conditions will be described in Section 4.1. 
Section 4.2 describes the comparison results of CGAMO 
with other state-of-the-art methods. Section 4.3 details 
the performance of CGAMO for path searching in 
VRPTW. Section 4.4 presents the performance of CGA-
MO for avoiding endless loops in resolving the VRPTW. 
Section 4.5 analyses the performance of CGAMO for 
metaheuristic of dual problem in VRPTW. 

4.1. Benchmark Description and  
Experimental Conditions
In order to compare our algorithms with other ap-
proaches on VRPTW, the basic data of our testing 
problems adopt Solomon’s benchmark (Vehicle Routing 
Problems… 2012). The Solomon’s benchmark contains 
56 instance each with a size of N = 100. These instances 
are categorised as C1 and C2, where customers are lo-
cated in geographical clusters, R1 and R2, and the cus-
tomers are randomly distributed, and RC1 and RC2, 
which have a mix of random locations and clusters. Dif-
ferent types of problems differ in the distribution of the 
nodes, the service time of each node, and the width of 
time windows. The Solomon’s benchmark did not define 
the computing method of travelling cost and time for 
VRPTW. We defines the travelling cost of VRPTW as 

Formula  (33), and set (xi, yi), (xj, yj) as coordinates of 
node i and j:

( 
− + − 

  =

2 2
10

10

i j i j

ij

x x y y
c , (33)

where:   .  expresses the integer part of real number a. 
The travelling time can be computed by = +ij ij it c st . ist  
expresses the service time of customer node i, and can 
be obtain from the Solomon’s benchmark problems. 

Experiments are carried out under the configura-
tion of Windows Vista TM Home Premium, with AMD 
Turion (tm) 64 X2 Mobile Technology TL-62 2.10 GHz 
and 2GB RAM. We realize the CGAMO on platform 
MyEclipse 6.6. The solution of main problem invokes 
the linprog function of Matlab 7.0. The initial solution 
of VRPTW is that each vehicle services a node. The up-
per bound routing searching number of R1 is set as 500, 
and RC1 and C1 are both set as 1000. The connection 
of sub-problem and main-problem reserves the history 
route of main-problem in the condition of CS. 

4.2. Comparison Results and Analysis
Our comparison experiment consists of two parts. First, 
the computational efficiency of the proposed approach 
CGAMO was tested, and compared with other state-
of-the-art methods. Then, the path searching compu-
tational efficiency of the proposed approach MLA in 
CGAMO was tested, and compared with a powerful 
optimization software used in solving integer program-
ming problems  – CPLEX (http://www.cplex.com) and 
an Extended Label-Setting Algorithm (EMLSA) (Zhu, 
Wilhelm 2012). 

4.2.1. Computational Efficiency Analysis
Comparison Results of CGAMO with  
the Original CG and IP Method
In order to extend the range of the path search and en-
large the number of valid paths in CGAMO, so that a 
path selecting method is proposed. Besides, in order 
to avoid the endless loop phenomenon, a method with 
conditionally preserved main problem in the historic 
path is also proposed. A dual variable of heuristic op-
timization policy is also used to accelerate the conver-
gence of the dual variable, and reduce the number of 
variable repetitions to the base. To verify the results, 
this section carries out extensive experiments to com-
pare the CGAMO with the original CG and IP method. 
The results are shown in Table 1. Table 1 compare the 
performance produced by the proposed CGAMO, the 
original CG and IP method in the set C1, R1 and RC1. 
The Runtime in the Table 1 presents the solving time of 
problems by CGAMO, CG or IP method. The Rate in 
Table 1 shows the ration of different values of distance 
between the best known result and CGAMO, CG and 
IP method results. If the Rate value is negative, it means 
that the Distance value of CGAMO, CG or IP method 
is shorter than the best known results. If the Rate value 
is a positive number, it means that the Distance value 
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of CGAMO, CG or IP method is bigger than the best 
known results. Based on these results in Table 1, we can 
make the following conclusions on the performance of 
CGAMO, CG and IP method on solving the VRPTW:

1) CGAMO can get very promising result, and 
sometimes it gets even better result than the 
best known results, such as for problems R101, 
R102, R103, RC101, RC102, RC105, RC106, 
RC107 and RC108. Meanwhile, basic CG and IP 
method can hardly converge to the best known 
results for almost all the problems of set R1 and 
RC1. Besides, CGAMO has better performance 
than basic CG;

2) CGAMO converges to the best known results at 
nearly 2÷3 minutes for R1, one minute for C1 
and at most three minutes for RC1. CG converg-
es to its best results at least 3÷4 minutes for R1, 
2÷3 minutes for C1 and 5÷6 minutes for RC1. 
IP method needs the similar time to converge to 
the best known results with CGAMO in set RC1 
and R1, but IP method needs more time than 
CGAMO in set C. We can see that CGAMO can 
effectively accelerate the searching in solution 
space and the performance coverage speed of 
the CGAMO is higher than the original CG and 
IP method.

Table 1. Comparison of the performance of the CGAMO, CG and IP method

In
st

an
ce

Best known 
results

(Tavakkoli-
Moghaddam 
et al. 2011)

CGAMO CG IP method

Vehicle Distance Vehicle Distance CPU 
[s]

Rate 
[%] Vehicle Distance CPU 

[s]
Rate 
[%] Vehicle Distance CPU 

[s]
Rate 
[%]

R101 19 1645.79 19 1633.51 185.69 –0.75 19 1896.36 255.63 15.23 19 1689.59 184.97 2.66 

R102 17 1486.12 16 1471.96 165.39 –1.00 18 1678.64 241.68 12.96 16 1496.38 157.96 0.69 

R103 13 1292.68 12 1276.99 142.95 –1.23 12 1396.97 219.55 8.07 13 1296.31 164.35 0.28 

R104 9 1007.24 9 1007.31 138.54 0.00 10 1084.32 200.13 7.65 9 1007.31 142.68 0.01 

R105 14 1377.11 14 1377.11 165.23 0.00 14 1489.63 236.39 8.17 15 1377.11 169.68 0.00 

R106 12 1251.98 12 1251.98 151.11 0.00 12 1296.21 218.74 3.53 12 1328.97 159.61 6.15 

R107 10 1104.66 10 1104.66 135.24 0.00 10 1154.25 200.15 4.49 10 1174.54 141.01 6.33 

R108 9 960.88 9 960.88 124.17 0.00 9 996.35 185.68 3.69 10 960.88 132.10 0.00 

R109 11 1194.73 11 1194.73 138.99 0.00 11 1301.21 201.97 8.91 11 1204.36 140.14 0.81 

R110 10 1118.59 10 1118.59 134.65 0.00 10 1196.39 218.67 6.96 10 1186.96 138.74 6.11 

R111 10 1096.72 10 1096.72 138.96 0.00 10 1152.32 222.32 5.07 10 1102.94 142.03 0.57 

R112 9 982.14 9 982.14 142.32 0.00 9 1021.35 196.39 3.99 9 982.14 152.31 0.00 

C101 10 828.94 10 828.94 75.96 0.00 10 828.94 135.96 0.00 10 828.94 96.32 0.00 

C102 10 828.94 10 828.94 78.65 0.00 10 841.20 140.29 1.48 10 828.94 91.21 0.00 

C103 10 828.06 10 828.06 87.45 0.00 10 828.06 163.21 0.00 10 828.06 92.38 0.00 

C104 10 824.78 10 824.78 84.25 0.00 10 824.78 164.17 0.00 10 824.78 100.21 0.00 

C105 10 828.94 10 828.94 81.20 0.00 10 828.94 158.24 0.00 10 828.94 106.32 0.00 

C106 10 828.94 10 828.94 79.69 0.00 10 828.94 171.01 0.00 10 828.94 94.21 0.00 

C107 10 828.94 10 828.94 86.32 0.00 10 828.94 159.68 0.00 10 828.94 104.65 0.00 

C108 10 828.94 10 828.94 84.14 0.00 10 828.94 167.96 0.00 10 828.94 100.01 0.00 

C109 10 828.94 10 828.94 81.28 0.00 10 828.94 164.17 0.00 10 828.94 100.65 0.00 

RC101 14 1696.94 14 1670.98 204.36 –1.55 15 1821.39 305.14 7.33 14 1721.97 187.98 1.48 

RC102 12 1554.75 12 1446.08 186.39 –7.52 13 1596.32 296.37 2.68 12 1574.98 169.68 1.30 

RC103 11 1261.67 11 1261.67 158.65 0.00 12 1301.27 268.34 3.14 11 1287.64 165.24 2.06 

RC104 10 1135.48 10 1135.48 154.21 0.00 11 1193.97 253.19 5.15 10 1164.87 164.98 2.59 

RC105 13 1629.44 13 1549.69 197.14 –5.15 13 1963.21 319.67 20.51 13 1687.96 197.01 3.59 

RC106 11 1424.73 11 1412.39 178.65 –0.87 11 1542.12 286.39 8.24 11 1475.41 169.63 3.56 

RC107 11 1230.48 11 1226.39 149.69 –0.33 11 1354.69 268.97 10.09 11 1424.73 154.32 15.79 

RC108 10 1139.82 10 1142.97 136.55 0.28 10 1197.85 235.96 5.09 10 1139.82 142.65 0.00 
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Comparison Result of CGAMO with  
Other State-of-the-Art Methods:
In order to compare the efficiency of the different al-
gorithms on VRPTW, GPGA (Goal Programming with 
Genetic Algorithm) (Ghoseiri, Ghannadpour 2010), 
LNS (Hong 2012) and ACO (Ant Colony Optimization) 
(Balseiro et al. 2011) are used to compare with CGAMO. 
The results of comparison experiments of VRPTW are 
shown in Tables 2–4. The rate in Tables 2–4 expresses 
the ratio of the distance between CGAMO and other 
typical methods. If the Rate value is negative, it means 
that the distance value of CGAMO is shorter than the 
other typical methods. If the Rate value is positive, it 
means that the Distance value of CGAMO is bigger 
than the other typical methods. Based on these results 

of Tables 2–4, we can make the following conclusions 
on the effectiveness of the CGAMO approach for solv-
ing VRPTW:

1) The solutions quality computed by CGAMO 
can well approximate to the best known results. 
If the travel distances and the number of used 
vehicles are taken into account properly, the 
CGAMO almost can get the best results of C1, 
R1 and RC1; 

2) Compared with the results generated by GPGA, 
LNS, ACO, the results of CGAMO keeps better 
than them. The average CPU (Central Process-
ing Unit) time of CGAMO is less than 3 minu-
tes. The results are hard to systematically com-
pare with other typical methods because there 
are big differences in the run environments.

Table 2. Comparison results of different methods for VRPTW of R1

In
st

an
ce CGAMO

Best known results
(Tavakkoli-

Moghaddam et al. 2011)
GPGA LNS ACO

Vehicle Distance CPU 
[s] Vehicle Distance Rate 

[%] Vehicle Distance Rate 
[%] Vehicle Distance Rate 

[%] Vehicle Distance Rate 
[%]

R101 19 1633.51 185.69 19 1645.79 –0.75 19 1677.00 –2.66 18 1612.29 1.30 19 1650.80 –1.06

R102 16 1471.96 165.39 17 1486.12 –1.00 18 1511.80 –2.71 16 1473.41 –0.10 17 1486.12 –0.96

R103 12 1276.99 142.95 13 1292.68 –1.23 14 1287.00 –0.78 12 1279.37 –0.19 13 1292.68 –1.23

R104 9 1007.31 138.54 9 1007.24 0.00 10 974.24 3.28 10 1025.47 –1.80 9 1007.31 0.00

R105 14 1377.11 165.23 14 1377.11 0.00 15 1424.60 –3.55 14 1377.95 0.00 14 1377.11 0.00

R106 12 1251.98 151.11 12 1251.98 0.00 13 1270.30 –1.46 12 1276.48 –1.96 12 1252.03 0.00

R107 10 1104.66 135.24 10 1104.66 0.00 11 1108.80 –0.38 11 1153.86 –4.45 10 1104.66 0.00

R108 9 960.88 124.17 9 960.88 0.00 10 971.91 –1.15 10 990.82 –3.12 9 960.88 0.00

R109 11 1194.73 138.99 11 1194.73 0.00 12 1212.30 –1.47 12 1179.73 1.26 11 1194.73 0.00

R110 10 1118.59 134.65 10 1118.59 0.00 12 1156.5 –3.39 11 1113.10 0.49 10 1118.84 0.00

R111 10 1096.72 138.96 10 1096.72 0.00 11 1111.9 –1.38 11 1155.39 –5.35 10 1096.73 0.00

R112 9 982.14 142.32 9 982.14 0.00 10 1036.9 –5.58 10 981.46 0.07 9 985.28 0.32

Table 3. Comparison results of different methods for VRPTW of C1

In
st

an
ce CGAMO

Best known results
(Tavakkoli-

Moghaddam et al. 2011)
GPGA LNS ACO

Vehicle Distance CPU 
[s] Vehicle Distance Rate 

[%] Vehicle Distance Rate 
[%] Vehicle Distance Rate 

[%] Vehicle Distance Rate 
[%]

C101 10 828.94 75.96 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00

C102 10 828.94 78.65 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00

C103 10 828.06 87.45 10 828.06 0.00 10 828.06 0.00 10 839.37 –1.37 10 828.06 0.00

C104 10 824.78 84.25 10 824.78 0.00 10 824.78 0.00 10 838.98 –1.72 10 824.78 0.00

C105 10 828.94 81.20 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00

C106 10 828.94 79.69 10 828.94 0.00 10 828.94 0.00 10 842.10 –1.59 10 828.94 0.00

C107 10 828.94 86.32 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00

C108 10 828.94 84.14 10 828.94 0.00 10 828.94 0.00 10 832.74 –0.46 10 828.94 0.00

C109 10 828.94 81.28 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00 10 828.94 0.00
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4.2.2. Path Searching Computational  
Efficiency Analysis 
In order to compare the efficiency of the different meth-
ods to path searching for VRPTW solution, CPLEX and 
a Three-Stage Approach (TSA) (Zhu, Wilhelm 2012) 
are used to compare with MLA proposed in this paper. 
The results of comparison experiments of VRPTW are 
shown in Table 5. Table 5 reveals the average, minimal 
and maximum runtime time of path searching of MLA 
and other typical methods. The rate in Table 5 expresses 
the ratio of runtime time between CGAMO and other 
typical methods. If the Rate value is negative, it means 
that the average runtime times of MLA in CGAMO are 
less than the other typical methods. Based on these re-
sults in Table 5, we can make the following conclusions 
on the effectiveness of the MLA approach in CGAMO 
for solving path searching of VRPTW:

1) The path searching speed of MLA in CGAMO is 
similar to TSA method for R1. In C1 and RC1, 
the average Rates of TSA is almost 20%, which 
proves that the MLA has obviously better per-
formance than TSA for path searching in C1 and 
RC1; 

2) Compared with CPLEX, the path searching 
speed of MLA in CGAMO is far better than the 
other methods for R1, C1 and RC1, and the av-
erage rates of CPLEX is more than 80%. 

4.3. Performance of CGAMO for Path Searching 
In Section 3.2.2, we presented three kinds of path select-
ing methods based on resources. In order to compare 
the efficiency of MLA for these three selecting methods, 
we use R1 as experiment case. The experiment compares 
the total number of searching path and iteration of MLA 

Table 4. Comparison results of different methods for VRPTW of RC1

In
st

an
ce CGAMO

Best known results
(Tavakkoli-

Moghaddam et al. 2011)
GPGA LNS ACO

Vehicle Distance CPU 
[s] Vehicle Distance Rate 

[%] Vehicle Distance Rate 
[%] Vehicle Distance Rate 

[%] Vehicle Distance Rate 
[%]

RC101 14 1670.98 204.36 14 1696.94 –1.55 15 1690.60 –1.17 15 1671.54 –0.03 14 1696.94 –1.55
RC102 12 1446.08 186.39 12 1554.75 –7.52 14 1509.40 –4.38 13 1447.14 –0.07 12 1554.75 –7.52
RC103 11 1261.67 158.65 11 1261.67 0.00 12 1331.80 –5.56 11 1313.79 –4.13 11 1262.02 –0.03
RC104 10 1135.48 154.21 10 1135.48 0.00 11 1177.20 –3.67 11 1163.54 –2.47 10 1135.48 0.00
RC105 13 1549.69 197.14 13 1629.44 –5.15 15 1611.50 –3.99 13 1502.48 3.05 13 1629.44 –5.15
RC106 11 1412.39 178.65 11 1424.73 –0.87 13 1437.60 –1.79 12 1406.25 0.44 11 1424.73 –0.87
RC107 11 1226.39 149.69 11 1230.48 –0.33 11 1222.10 0.35 11 1278.96 –4.29 11 1230.48 –0.33
RC108 10 1142.97 136.55 10 1139.82 0.28 11 1156.50 –1.18 11 1172.83 –2.61 10 1139.82 0.28

Table 5. Comparison results of different methods for path searching in VRPTW (runtime [s])

Instance
MLA TSA CPLEX

Average Min Max Average Min Max Rate [%] Average Min Max Rate [%]
R101 0.41 0.29 0.65 0.44 0.25 0.74 –7.32 0.84 0.76 0.98 –104.88
R102 0.37 0.25 0.61 0.35 0.21 0.59 5.41 0.76 0.68 0.89 –78.38
R103 0.31 0.21 0.57 0.32 0.22 0.39 –3.23 0.64 0.59 0.75 –106.45
R104 0.29 0.21 0.51 0.33 0.19 0.45 –13.79 0.56 0.48 0.68 –93.10
R105 0.35 0.23 0.59 0.41 0.29 0.77 17.14 0.67 0.57 0.72 –91.43
R106 0.30 0.20 0.61 0.34 0.25 0.65 –16.67 0.59 0.44 0.66 –96.67
C101 0.15 0.09 0.24 0.19 0.12 0.29 –20.00 0.24 0.17 0.31 –60.00
C102 0.16 0.09 0.23 0.22 0.12 0.33 –37.50 0.33 0.24 0.43 –106.25
C103 0.19 0.11 0.31 0.18 0.08 0.28 5.26 0.35 0.24 0.45 –84.21
C104 0.22 0.12 0.38 0.25 0.14 0.49 –14.29 0.39 0.29 0.51 –77.27
C105 0.21 0.10 0.34 0.25 0.12 0.39 –19.05 0.37 0.26 0.49 –76.19
RC101 0.51 0.44 0.79 0.66 0.55 0.87 –29.41 0.92 0.79 1.11 –80.39
RC102 0.49 0.41 0.72 0.64 0.54 0.84 –30.61 0.87 0.75 1.02 –77.55
RC103 0.32 0.19 0.43 0.45 0.23 0.76 –40.63 0.57 0.49 0.71 –78.13
RC104 0.30 0.14 0.45 0.36 0.18 0.57 –20.00 0.52 0.43 0.68 –73.33
RC105 0.45 0.34 0.65 0.55 0.36 0.69 –22.22 0.83 0.72 0.99 –84.44
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in the condition of these three selecting methods. To 
avoid the interference of the other factors, we set the 
upper number bound of the searching path in the sub-
problems to 500 and keep the main problem in the con-
dition of CS (Lübbecke, Desrosiers 2005). As the sizes 
of different problems are different, we use the minimum 
time as the reference to compare the relative number 
on different conditions. The results are shown in Fig. 1.

Based on the results of Fig. 1, we can make the fol-
lowing conclusions on the effectiveness of three kinds of 
path searching methods:

1) The methods based on the minimum demand 
perform better than the methods based on the 
minimum time in path searching and itera-
tion. The reason is that the range of the total 
demand in the path extension is unified, and 
the extension based on the demands is closer 
to the breadth-first strategy. Because there are 
time windows in client notes, the notes selected 
in the extended search and the starting time of 
the time windows are all different. The results 
of the methods based on the minimum time are 
relatively worse;

2) When we use the methods based on the mini-
mum cost, the paths that are not Pareto optimal 
paths are relatively less than other two methods, 
because the costs are not monotonically varying. 

When the negative cost arcs become a little more 
after the price is set, the method based on the 
minimum cost is like the depth-first strategy, so 
the total number of path searching and iteration 
are bigger than the other two methods.

4.4. Performance of CGAMO for  
Avoiding Endless Loops
When the paths found in sub-problems are includ-
ed into the main problem, to avoid the endless loops 
caused by the problematic degenerate and the lack of 
path searched, we keep the paths in the former iteration 
conditionally to accelerate the iteration. In Section 3.3, 
we present two judgment conditions of preserving the 
historical path. This section we analyse the impact on 
the optimization of the CS and GS when the numbers 
of paths searching procedures are different in the sub-
problems by comparing the total path searching, the 
number of iterations and the maximum number of 
paths in the main problem. At the same time, we com-
pare the optimization performance of CS and GS on the 
same condition. The less the number of path searching 
procedures in sub-problems is, the more effective the 
solution is. The less the iterations are, the quicker the 
calculating speed is. The decreasing maximum vehicles 
in main-problem cause the less resource needed to solve 
main-problem. And the size of the solvable algorithm 
becomes bigger. We also use 500 as the search number 
to analyse the relative number of path searching (Lüb-
becke, Desrosiers 2005) with ours. The comparison of 
total path searching number under CS and GS with dif-
ferent searching number is shown in Fig. 2. Based on 
these results of Fig. 2, we can draw the following con-
clusions on the effectiveness of path searching under CS 
and GS with different searching number:

1) Under the CS condition, the impacts on the dif-
ferent problems caused by the different number 
of path searching procedures are different, be-
cause the state of road network and path dis-
tribution are different in different problems, 
and the proportion of the total number of path 
searching changes within the range of 0.4 to 2.2.

2) Under the GS condition, the smaller the number 
of path searching is, the larger the number of 
path searching would be. And the less the upper 
number of global search is, the larger the actual 
number of path searching would be. When the 
upper number of path searching is too small, 
the actual total number of path searching may 
have an explosive growth. For example, when 
the number of path searching is 300, the total 
number of path searching will be expanded 
more than 8 times. And when the number of 
path searching is much smaller, there may be a 
iteration endless loops.

3) Overall, the GS is more easily to be affected by 
the upper bound of the number of path search-
ing set by the sub-problems. In the comparison 
of CS and GS that the history information will 
be kept, the GS performs better when the size 

Fig. 1. Total number of searching path and iteration number 
in the condition of different path selecting methods:  

a – the total number of searching number;  
b – the number of iteration
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of sub-problems is bigger. But GS is sensitive 
to the data when the number of searching be-
comes smaller. The total numbers of paths are 
all slightly different.

The comparison of the iteration number under CS 
and GS with different searching number is shown in 
Fig. 3. Based on these results of Fig. 3, we can make the 
conclusion that CS is not affected so much by the search-

ing number, yet GS is affected sharply. When the upper 
number of path searching is big, the actual number of 
iterations will be relative small, but when the number 
of path searching becomes smaller, the difference of the 
number of iteration under CS and GS is smaller.

The comparison of the main-problem scale under 
CS and GS with different searching numbers is shown in 
Fig. 4. Based on these results of Fig. 4, we can make the 

Fig. 2. Comparison of total number of path searching under 
different condition and searching number: a – total number 
of vehicle under CS; b – total number of vehicle under GS; 
c – vehicle number under searching time 500; d – vehicle 

number under searching time 300

Fig. 3. Comparison of iteration number under different 
condition and searching number: a – iteration number 
under CS; b – iteration number under GS; c – iteration 
number under searching time 500; d – iteration number 

under searching time 300

a)

b)

c)

d)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 000

R
a
ti

o
o

f
C

o
lu

m
n

s

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Columns Generated in First Optimizing

300
400
500

300
400
500

CS
GS

CS
GS

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

R
a
ti

o
o

f
C

o
lu

m
n

s

0

2000

4000

6000

8000

10 000

12 000

14 000

16 000

18 000
Columns Generated in First Optimizing

0

1

2

3

4

5

6

7

8

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

R
a
ti

o
o

f
C

o
lu

m
n

s

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

0

0.5

1.0

1.5

2.0

2.5
R

a
ti

o
o

f
C

o
lu

m
n

s

Columns Generated in First Optimizing

Columns Generated in First Optimizing a)

b)

c)

d)

300
400
500

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Iterations in First Optimizing

0

10

20

30

40

50

60

70

80

Ite
ra
tio
ns

300
400
500

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Iterations in First Optimizing

0

10

20

30

40

50

60

Ite
ra
tio
ns

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Iterations in First Optimizing

0

10

20

30

40

50

60

Ite
ra
tio
ns

CS
GS

R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112

Problems

Iterations in First Optimizing

0

10

20

30

40

50

60

Ite
ra
tio
ns

CS
GS70

80



402 W. Hu et al. A hybrid column generation algorithm based on metaheuristic optimization

following conclusions on the effectiveness of the main-
problem scale under CS and GS with different searching 
numbers:

1) Under the CS condition, the size of the main-
problem will be smaller when the upper bound 
of the path searching number is smaller. When 
the upper bound is too small, the size of main-
problem may increase. The size of main-problem 
will be larger and larger under GS condition. 
Similarly, under the GS condition, the size of 
main-problem is not big when the size of path 

searching is large. The difference between GS 
and CS is not big when the size of path search-
ing is small, and the CS performs better;

2) GS performs better on the number of path 
searching procedure and the number of itera-
tion than CS when the size of path searching 
defined as a large number (500). GS and CS 
perform analogously when the size of search is 
small (300), while the main-problem scale under 
GS is larger. In the experiment, an iteration end-
less loop occurs in most of the problems under 
GS condition, but the convergence and optimal 
solution under CS condition can be obtained.

Then, we come to the conclusions as following by 
the comparing the total number of path searching pro-
cedures, the number of iterations and the main-problem 
scale under the CS and GS with different upper bounds 
of searching path number:

1) The CS is steadier when the upper bound of path 
searched in sub-problems changes;

2) The GS performs better on the speed of cal-
culating, the efficiency and the main-problem 
scale when the number of path searching is big 
enough;

3) The CS can guarantee an optimal solution when 
the number of path searching is very small, 
while the GS may raise an iteration endless loop.

According to the conclusions above, if we can set 
the number of path searching procedures to be large in 
the sub-problems in the solving VRPTW, the history 
path can be kept in the global searching, the iteration 
cycling can be avoided effectively, the speed and the ef-
ficiency of calculating will be higher, and the resource 
consumed by solving of the main problem will be less. 
If the proper number of path searching cannot be esti-
mated, or the resource for solving the main-problem is 
not enough, the CS method is steadier and can guaran-
tee an optimal solution.

4.5. Performance of CGAMO for Metaheuristic  
of Dual Problem
In Section 3.4, we have presented the metaheuristic opti-
mization of dual problem of VRPTW as Formula (28) to 
(32). In order to evaluate the performance of CGAMO 
for metaheuristic of dual problem, we adapt four dif-
ferent kinds of heuristic methods to optimize the solu-
tion of VRPTW. The four kinds of heuristic methods are 
listed in the Table 6. 

In the process of VRPTW, the constant const can 
be set as 0.4, 0.5, 0.6, 0.7 and 0.8. We make 20 kinds 
of heuristic functions by different combination with 4 
kinds of heuristic methods in the Table 5. According to 
the experiments, we get the best and the worst optimiza-
tion methods and their parameters, which are showed in 
Table 7. The first two columns of Table 7 represent the 
serial number of problems and the number of iterations 
without optimization, columns 3÷5 represent the mini-
mum number of iteration and its heuristic function, col-
umns 6÷8 represent the worst optimization, the column 
9 represents the average number of iterations needed by 

 Fig. 4. Comparison of main-problem scale under different 
condition and searching number: a – main-problem scale 

under CS; b – main-problem scale under GS;  
c – main-problem scale under searching time 500;  
d – main-problem scale under searching time 300
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the 20 heuristic functions, the column 10 represents the 
number of schemes for reducing the iterations. Based 
on these results of Table 6, we can make the following 
conclusions on the effectiveness of different heuristic 
methods for the dual problem in VRPTW:

1) The optimization effects of one heuristic func-
tion are different in different problems. The 
proper heuristic methods and the correspond-
ing parameters can make a large decrease of the 
iterations;

2) On the contrary, the improper parameters for a 
problem may make a low convergence speed of 
the problem and an increase of the iterations. In 
the 12 problems of Table 7, most of the problems 
have a half or nearly a half of optimization by 
the 20 heuristic optimization functions, except 
a few ones.

In order to compare the performances of different 
heuristic methods for dual problem in VRPTW, we car-
ry out the experiments to compare the total numbers of 
path searching by different heuristic methods in Table 6. 
The experiments results are shown in Fig. 5. Based on 
these results of Fig. 5, we can make the following conclu-

sions on the effectiveness of different heuristic methods 
for the dual problem in VRPTW:

1) In R101, the efficiency of the problem solu-
tion decreases when the const is a little bigger. 
In R102, the efficiency of 3rd optimization is 
low when the const is a little smaller. Among 
R103~R106 and R110~R112, the optimization 
method with the fixed step size is better, and the 
method of vibrational step size performs worse. 
But the effects in R107 and R109 are opposite, 
and the method with varying step sizes in this 
situation is better. In R07, the optimization is ef-
fected easily by a constant parameter, which may 
be too large or too small. In R08, the optimiza-
tions of all functions are effected much by the 
change of parameter;

2) On the aspect of optimization functions, there 
are respectively 13, 9, 18, 16 kinds of situation 
for the 4 kinds of heuristic functions with a total 
of 12 problem and 5 kinds of parameter values. 
Then we can say that the functions with a fixed 
step size is better than the functions with a vary-
ing step size, and the way with the average dual 
variable value at the stop of convergence for the 
estimate of the local optimal solution is better 
than the way of recording the last solution;

3) Considering the optimization of all the problems 
in Fig. 5, the solution process of the problem is 
improved with the most functions and param-
eter, and the optimization performance of the 
different problems in different ways are different. 
A decrease of efficiency and speed also exit for a 
part of the ways of optimization. So the heuristic 
function with a 0.6 or 0.7 step size and using the 
methods of using the average dual variable value 
at the stop of convergence as the local optimal 
solution can increase the efficiency of the prob-
lem solution.

Table 6. Parameter combinations of four type’s  
heuristic optimization 

Optimal method wk −1
best
ku

1 const uk–1

2 const
−

=− ∑
11 k

i
i lo

u
k lo

3
 
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 

max , loconst
k

uk–1 

4
 
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 

max , loconst
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Table 7. Results of different heuristic optimization 

Instance Its.
Best optimal solutions Worst optimal solutions Average 

its.
Better 

solutionsIts. Const. Method Its. Const. Method

R101 14 10 0.6 2 24 0.6 3 14.8 11

R102 28 14 0.8 2 34 0.6 1 22.05 15

R103 27 16 0.4 1 47 0.6 3 32.85 4

R104 34 18 0.4 1 44 0.8 1 34.1 8

R105 33 18 0.8 1 56 0.4, 0.5 4 33.45 12

R106 32 19 0.8 1 34 0.6 1 25.8 17

R107 23 17 0.7 2 42 0.4 1 24.35 11

R108 29 15 0.5 4 61 0.4 2 32.6 9

R109 31 13 0.6 4 41 0.5 2 23.65 17

R110 69 23 0.8 1 79 0.4 2 40.65 19

R111 40 15 0.4 2 51 0.7 3 32.55 18

R112 41 18 0.7 2 42 0.6 1 30.75 15
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Fig. 5. Comparison of path searching number for R1: a – R101; b – R102; c – R103; d – R104; e – R105; f – R106; g – R107;  
h – R108; i – R109; j – R110; k – R111; l – R112
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Conclusions

State-of-the-art VRPTW algorithms are usually suscep-
tible to the scale of the VRPTW problem. They would 
present a high computation burden and the local opti-
mal solutions on a large dataset. In order to alleviate the 
above problems, this paper proposes a hybrid method by 
combining exact and heuristic algorithms. It constructs 
a hybrid CGAMO algorithm to solve VRPTW. CGAMO 
uses a MLA to search the sub-problem. In order to im-
prove the path searching efficiency, it uses a new search 
strategy based on the sub-problem demand. CGAMO 
adopts two conditions on reserving the old paths in the 
main problem to avoid iterations endless loops and keep 
the main problems in a reasonable size, and it also uses 
a new heuristic optimization strategy for dual variable.

The experiments mainly analyse the comparison of 
CGAMO with the original CG and other state-of-the-art 
methods, including the performance of MLA of CGA-
MO for path searching in VRPTW, the performance of 
CS and GS condition and metaheuristic optimization in 
CGAMO for dual problem. From the extensive experi-
ments, it concludes that: 

1) CGAMO can effectively accelerate the searching 
in solution space and the CGAMO has a better 
performance coverage speed than the original 
CG and other state-of-the-art methods; 

2) MLA in CGAMO shows an approximate path 
searching speed with TSA method, and it is far 
better than CPLEX method. The method based 
on the minimum demand in MLA performs 
better than the method based on the minimum 
time in path searching and iteration. When we 
use the method based on the minimum cost, the 
paths that are not Pareto optimal paths are rela-
tively less than other two methods, because the 
cost is not monotonic changing; 

3) The CS is steadier than GS, but GS performs 
better on the speed of calculating, the efficiency 
and the main-problem scale than CS does. The 
GS may raise an iteration endless loop with the 
increment of path searching number; 

4) The solution process of VRPTW is improved 
with the four types of metaheuristic optimiza-
tion methods, and the optimization perfor-
mances of different problems in different ways 
are different. A decrease of efficiency and speed 
also exits for a part of the way of optimization. 
Different VRPTW problems should choose dif-
ferent heuristic optimization methods and pa-
rameters.

Although CGAMO for VRPTW obtains satisfac-
tory achievements, there are still some room for im-
provement: 

1) How to keep convergence speed steady of CGA-
MO for the distribution of path is different and 
the number of iteration is different; 

2) How to choose the different metaheuristic op-
timization functions and the parameters. These 
would be the focus of our future work.
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