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Abstract. Wheel dynamics play a substantial role in traversing and controlling the vehicle, braking, ride comfort, 
steering, and maneuvering. The transient wheel dynamics are difficult to be ascertained in tire–obstacle contact condi-
tion. To this end, a single-wheel testing rig was utilized in a soil bin facility for provision of a controlled experimental 
medium. Differently manufactured obstacles (triangular and Gaussian shaped geometries) were employed at different 
obstacle heights, wheel loads, tire slippages and forward speeds to measure the forces induced at vertical and horizontal 
directions at tire–obstacle contact interface. A new Takagi–Sugeno type neuro-fuzzy network system with a modified 
Differential Evolution (DE) method was used to model wheel dynamics caused by road irregularities. DE is a robust 
optimization technique for complex and stochastic algorithms with ever expanding applications in real-world prob-
lems. It was revealed that the new proposed model can be served as a functional alternative to classical modeling tools 
for the prediction of nonlinear wheel dynamics.
Keywords: fuzzy system; wheel dynamics; obstacle; off-road; tire–obstacle contact; modeling.

Introduction

The forces between the road and the vehicle are trans-
ferred only through pneumatic tires. Being a substan-
tial component of a vehicle, wheels are responsible for 
producing the forces for traversing and controlling the 
vehicle as well as those of braking, ride comfort, steer-
ing, maneuvering and following the road irregularities 
(Taghavifar, Mardani 2013b; Taghavifar 2015). Deter-
mination of the forces occurred during a driving wheel 
traversing over an obstacle and surface irregularity is a 
difficult task and a challenging problem due to nonlinear 
dynamics of the wheel and a complex tire–road interac-
tion process.

The road irregularities would bring about varia-
tions in the compressive and extensive forces in both 
radial and lateral directions while the tire rotates about 
its axis. Tire forces are divided into three axes: radial, 
lateral, and tangential. The radial axis runs from the tire 
center toward the tread, and is the vertical axis running 

from the traversing path toward the vehicle that sup-
ports the vehicle weight. Concerned with the tire run-
ning on an uneven road, a varying force will be exerted 
into the vehicle which is the source of various ride dis-
turbances. Generally speaking, during a traversing with 
no maneuvering, the two forces of radial and tangential 
are of greater importance. While the tangential force is 
responsible to the production of the required traction 
force for the vehicle to keep moving, obstacle traversing 
affects both of the forces. The qualitative and quantita-
tive insight into the horizontal and vertical forces in-
duced at tire–obstacle interface is substantial requisites 
of vehicle designers and manufacturers due to many 
reasons such as controlling vehicle, overturning, ride 
comfort at off-road grounds, vehicle axle damages, and 
power reduction at tire–obstacle contact time. The ve-
hicle responses during off-road operation are dependent 
on the road conditions and vehicle parameters such as 
vehicle speed, vehicle weight, and tire slippage. 
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A survey was conducted to appraise the impact of 
tire characteristics on variations of wheel load and vi-
brations transmitted from the ground to the tractor rear 
axle. Vertical wheel load of the left and right rear wheels 
were quantified by means of strain-gage-based trans-
ducers (Nguyen, Inaba 2011). The time histories and 
frequency compositions of synthesized data indicated 
that traversing irregularities excited the wheel load at 
their natural frequencies and harmonics (Nguyen, Inaba 
2011). A mathematical modeling attempt was undertak-
en for vehicle traversing over an obstacle and proposed 
an analytical tool for determining the obstacle height 
that the wheel can overcome the instability (Thomas, 
Vantsevich 2010). Collision of automobile wheels with a 
vertical obstacle was performed and the required force 
and the minimal speed of driving for disassembling of 
the tire from the wheel rim after the collision with an 
obstacle were determined (Sokolovskij et al. 2007). It 
was also reported that the values of this force and speed 
depends upon the height of the obstacle and the angle of 
collision with the obstacle. Analytical and experimental 
attempts for an off-road vehicle ride dynamics model 
was also performed while the random roughness prop-
erties of the two parallel tracks of terrain were analyzed 
in view of equivalent undeformable terrain (Pazooki 
et al. 2012). Open literature exists with some other stud-
ies given the attention to the vehicle dynamics of the 
wheels traversing over uneven surfaces (Senatore, Sandu 
2011; Mason et al. 2012) and vehicle overturn due to 
movement steep slope/obstacle as an indication of road 
irregularities (Ahmadi 2011; Gravalos et al. 2011). 

As previously mentioned, the importance of ascer-
taining the horizontal and vertical forces exerted to the 
tire while traversing over obstacles is of priority given 
that vehicle dynamics is synthesized with a detailed in-
sight into the mechanics of wheel–obstacle contact. This 
investigation explores the nonlinear wheel dynamics 
caused by road irregularities as affected wheel load, tire 
slippage, speed, obstacle height, and obstacle geometry 
with the appraisal of Takagi–Sugeno type neuro-fuzzy 
network system coupled to a modified Differential Evo-
lution (DE) method. This paper is organized as follows. 
In Section 1 a brief explanation about experimental data 
collection is given. In Section 2, we introduce the pro-
posed algorithm (i.e. Takagi–Sugeno type neuro-fuzzy 
network with modified DE System). Section 3 discusses 
the obtained results and presents the results from the 
experiments and modeling processes. Last section con-
cludes the paper.

1. Experimental Data Collection

The provision of controlled testing environment is cru-
cially significant for the reliability of the results and the 
outcomes of the study. Hence, a Single-Wheel Tester 
(SWT) inside a soil bin facility manufactured in the 
Department of Mechanical Engineering of Biosystems 
of Urmia University, Iran, was used to conduct the re-
quired experiments. The soil bin channel with the 24 m 
length, 2 m width and 1 m depth was filled with the soil 

texture of test region. The holistic system is consisted 
of soil bin channel, SWT and the carriage. The SWT 
was connected to the carriage to be enabled to traverse 
during the soil bin. The carriage was powered with a 
22 kW electromotor, which was in turn, connected to 
the inverter to manage the start/stop and velocity con-
trol procedures. The power transmission was carried out 
through the electromotor to the chain system that was 
linked to the carriage. The carriage was traversing in the 
channel by means of four ball bearings positioned on 
the sidewalls of the soil bin. The SWT was connected 
to the carriage through an L-shaped part and also four 
horizontal arms each accommodating S-shaped Bong-
shin load cell with 500 kg capacity. It is worth to note 
that the horizontal load cells were used to measure the 
horizontal forces applied to the wheel. A U-shaped 
frame was used as housing to the tire and a three-phase 
electromotor of 5 kW to power the driving wheel. An 
appropriate inverter was also used to control the rota-
tional velocity delivered to the wheel shaft and therefore; 
the linear velocity was adjustable. It is worth mentioning 
that the linear speed difference between the carriage and 
the SWT yielded different levels of adjustable slippage. 
Furthermore, the SWT was connected to the L-shaped 
frame by a power bolt rod (to adjust the applied wheel 
load) which was connected to a vertically situated S-
shaped load cell, which was responsible to measure the 
load variations while traversing over the obstacle and 
irregularities. The load cells were connected to Bongshin 
digital indicators, which were in turn in connection with 
a data logger with RS232 output signals. The data were 
subsequently sent to the laptop computer to be stored 
and processed with the frequency of 30 Hz. The general 
soil bin facility along with the SWT is shown in Fig. 1.

For all the experiments the tire inflation pressure 
was maintained at 131 kPa. Two shapes of triangular 
and Gaussian obstacles were used in the study each at 
three heights of 2, 3 and 4 cm while two wheel loads 
of 1 and 2 kN were considered. Furthermore, two levels 
of slippage were induced at 10 and 20%. Three forward 
velocities for the carriage were planned at three levels of 
1.08, 1.8 and 2.52 m/s. In order to remove the soil effect 

Fig. 1. Soil bin testing facility and the components
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on the experiment outputs due to the soil nonhomoge-
neous properties, a wooden board with 2 m width and 
3 m length was used to mount the obstacles on. The 
tests were carried out in a randomized complete block 
design with three replicates. The obstacles situated in the 
traversing direction of the wheel are depicted in Fig. 2. 

When a vehicle traverses road irregularities or ob-
stacles, it may experience highly dynamic loading, and 
the different subsystems respond with varying degrees 
of nonlinearity. It is noteworthy that the nonlinearity of 
wheel dynamics lies in the random shocks and kinetics 
of motion in longitudinal and normal directions. The 
impact force variations is a representative of nonlinear 
dynamic in time domain that can be attenuated based 
on wheel running condition. The longitudinal variations 
will be demonstrated through the tractive parameters 
such as net traction, rolling resistance, braking, etc. and 
wheel load variations, tire deflection are representatives 
of the variations in vertical direction. There are several 
important parameters, which govern tire-ground in-
teraction at longitudinal and normal direction such as 
wheel load, road profile and forward speed as well as 
their interactions. Tire slip region is an additional factor 
to the complexity of the system. The effect of all influen-
tial factors in the nonlinear dynamics of wheel-ground 
interaction will be explicitly achieved in the experimen-
tal results. The elastic tire rolling on ground to investi-
gate some operating variables such as tire normal force, 
inflation pressure and slippage that determine tire con-
tact patch longitudinal and vertical forces is the major 
factor subject that affects the dynamics of vehicle. 

Wheel as the unique linkage between the vehicle 
and ground is subject to all the forces and torques acting 
on the vehicle. Of the most important vehicle character-
istics that can drastically affect the vehicle performance 
is its weight. Wheel load represents the load that each 
of wheels support from the total weight of vehicle. Dur-

Fig. 2. An overview on the obstacles used in the experiments (a), the tester wheel traversing Gaussian obstacle (b)  
and the tester wheel traversing triangular obstacle (c)

Semicircular obstructions at different heights

Triangular obstructions at different heights

a) c)b)

ing the experiments, the wheel load can be adjusted to 
investigate the effect of total vehicle weight on its kinet-
ics. Tire slippage, also known as travel reduction, is the 
relative motion between a tire and the ground and can 
be produced by the tire’s rotational speed being greater 
or less than the free-rolling speed.

This study is free from strict theoretical formu-
lation and attempts to solve the problem by adoption 
of a promising tool of artificial intelligence (i.e. Adap-
tive Neuro-Fuzzy Inference System – ANFIS) that has 
shown an outstanding fit to deal with nonlinear prob-
lems. Hence, instead of mathematical modelling, the 
experimental data will be fed to the modeling tool and 
the results of the model will be compared and verified 
by the actual data to determine the modeling accuracy.

2. Takagi–Sugeno Type Neuro-Fuzzy Network  
with Modified Differential Evolution System

As a stochastic function minimizer, DE is a method that 
optimizes a problem by iteratively trying to improve a 
candidate solution with regard to a given measure of 
quality (Fleetwood 2004). DE is used for multidimen-
sional real-value functions with no use of the gradient 
of the problem. DE optimizes a problem by keeping a 
population of candidate solutions and creating new can-
didate solutions by combining existing ones according to 
its simple formulae, and then keeping whichever candi-
date solution has the best score or fitness on the opti-
mization problem at hand. In this way, the optimization 
problem is treated as a black box that merely provides 
a measure of quality given a candidate solution. The 
DE calculations are described as following (Fleetwood 
2004). 

For a given function to be optimized the follow-
ing problem function is described : Df X R R⊆ →  at the 
region X ≠ φ , the minimization problem is defined as 

*x X∈  hence ( ) ( )*f x f x x X≤ ∀ ∈ , where ( )*f x ≠ −∞
 
.
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For an objective function of D real parameters, the 
size of the population N is ascertained. The parameter 
vectors are therefore yielded as:

, 1, , 2, , , ,, ,...i G i G i G D i Gx x x x =    
(1)

        for 1, 2, ...,i N= ,  

where: G is the number of generation. 
The higher and lower limits for each parameter are 

described as:

, ,1
L U
j j i jx x x≤ ≤ ,

  
(2)

where the randomly selected initial parameters were 
uniformly on the intervals ,L U

j jx x 
  .

After the initialization step is finished, the param-
eter vectors goes through mutation, recombination and 
selection stages. In the mutation the search space is ex-
panded. 

For a given parameter vector xi,G randomly select 
three vectors xr1,G, xr2,G and xr3,G such that the indices 
i, r1, r2 and r3 are distinct. The weighted difference of 
two of the vectors to the third are subsequently added:

( ), 1 1, 2, 3,i G r G r G r Gv x F x x+ = + − ,
  (3)

where: vi,G+1 is the donor vector. The mutation factor F 
is a constant from [0, 2].

Recombination incorporates successful solutions 
from the previous generation:

, , 1 ,
, , 1

, , ,

if or
if and

j i G j i random
j i G

j i G j i random

v rand CR j I
u

x rand CR j I
+

+

≤ =  =  ≤ ≠    
,                    

 
(4)

where: randj,i ∼ U[0, 1]; Irandom is a random integer from 
[1, 2, ..., D].

In selection step, the target vector xi,G is compared 
with the trial vector vi,G+1 and the one with the lowest 
function value is presented to the next generation:

( ) ( ), 1 , 1 ,
, 1

,

if

otherwise
i G i G i G

i G
i G

u f u f x
x

x
+ +

+

 ≤ =  
  

, 

 

(5)

1, 2, ...,i N= .

Mutation, recombination and selection iterate until 
at least one criterion is reached.

Takagi–Sugeno neuro-fuzzy computing method is 
the combination of neural network theorem and Mam-
dani-type fuzzy logic system technique as a robust tool 
for solving various problems with high level of uncer-
tainty in science and engineering problems concerned 
with issues such as pattern recognition, identification, 
controlling.

The first-order Sugeno fuzzy model two fuzzy ‘If–
Then’ rules can be expressed as:

1 1 1 1 1 1If and then   x A y B f p x q y t= = = + + ;

2 2 2 2 2 2If and then   x A y B f p x q y t= = = + + .   (6)

Generally speaking, there are layers in the struc-
ture of Takagi–Sugeno fuzzy computation method. The 

first layer consists of input variable membership func-
tions (the fuzzification in which each node represents 
a membership function) where the nodes are equal to 
the number of input variables with node functions. A 
schematic Takagi–Sugeno fuzzy system architecture is 
depicted in Fig. 3.

( )1
i AiO x= µ , 1, 2i = ;

( )1
i B iO y−= µ , 3, 4i = ,              (7)

where: ( )A xµ , ( )B yµ  are membership functions with 
different forms such as Gaussian, bell-shaped, triangular, 
trapezoidal, etc.

The second layer (so called membership layer) 
yields the strength of the rules by means of multiplica-
tion operator in each node. It takes the input values from 
the previous layer and operates as a membership func-
tion to characterize the fuzzy sets of the corresponding 
input variables: 

( ) ( )2
i Ai AiO x y= µ µ , 1, 2i = .  (7)

Third layer as the normalization layer (or the rule 
layer), normalizes the firing strength of the rules. Each 
node in these layers computes the weights, which are 
normalized. In this layer, the ratio of the firing strength 
of a rule to the sum of the total is calculated as following:

3

1 2

i
i

w
O

w w
=

+
, 1, 2i = .

  

(8)

The fourth layer is defuzzification layer, which rep-
resents the output values obtained from the inference of 
rules. Furthermore, this layer includes adaptive nodes 
that calculate a linear function with coefficients that are 
adapted by using the error function of the feed-forward 
neural network (Karaağaç et al. 2012):

( )  i i i i i iw f w p x q y t= + + .  (9)

The last layer, which has a single node refers to the 
summation of the inputs of the nodes from previous 
layer. The output f is calculated as following:

1 1 2 2
1 1 2 2

1 2

w f w f
f w f w f

w w
+

= + =
+

.

  

(10)

A typical Takagi–Sugeno fuzzy computing ap-
proach adopts hybrid method of the gradient descent 
and the least-squares method methodology to define 
the optimal specifications for tuning the membership 

Fig. 3. A schematic Takagi–Sugeno fuzzy system architecture

Layer 1

A₁
x

A₂ TT N
w₁ w₁

x y

B₁
y

B₂

TT N
w₂ w₂

x y

S

w₁ f₁

w₂ f₂
f

Layer 2 Layer 3 Layer 4 Layer 5



Transport, 2016, 31(2): 211–220 215

functions based on the back-propagation technique that 
computes error signals repetitively from the output layer 
backward to the input nodes. However, we used a hybrid 
method of Takagi–Sugeno type neuro-fuzzy network 
system with a modified DE optimization method. 

For any developed model, a necessary step is to as-
sess the model on account of some performance criteria. 
This step ensures that the developed model has enough 
capacity for implementations. Hence, two statistical met-
rics of Root Mean Squared Error (RMSE), and coeffi-
cient of determination (R2) were applied as following:

( )2
1

n

predicted actual
i

Y Y
RMSE

n
=

−
=
∑

;  (11)

( )

( )

2

12

2

1

n

predicted mean
i

n

actual mean
i

Y Y
R

Y Y

=

=

−
=

−

∑

∑
,

  

(12)

where: Yactual, Ypredicted are measured and predicted val-
ues by the developed models.

3. Results and Discussion

It is well-recognized that wheel dynamics is of great 
complexity and nonlinearity to be assessed as a proto-
type of the measured vertical and horizontal induced 
forces during tire–triangular shaped obstacle contact is 
demonstrated in Fig. 4 concerned with the wheel load of 
2 kN, slippage of 10% and obstacle height of 2 cm, for-
ward speed of 1.08 m/s. As appreciated from Fig. 4, the 
created vertical force is greater than that of horizontal 
force. Furthermore, the vertical force is greatly affected 
by the impact force with greater range of amplitude vari-
ation (compressive/extensive loads). The load variations 
are very complex being pivotal on the natural frequency 
of the system as well as the system response to the sur-
face condition. The difference between the vertical and 
horizontal induced forces are attributable to the impact 
point position, loading condition, etc. In the interest of a 
balanced vehicle traversing, the accuracy and reliability 
of the complete vehicle model has to produce rational 
relation to the performance of the applied tire model. 
Considering the fully nonlinear and tire dynamic, the 
developed models are very complex (Lugner et al. 2005), 
thus; the models should deal with the stochastic vehicle 
vibrations happening traversing on rough road that en-
tail strength-relevant component loads (Rill 2006).

Based on the extension of the experiments, 108 
tests were conducted resulting to 108 data samples for 
the vertical induced force and 108 data samples for the 
horizontal induced force. The total data were shuffled 
into two sets of training and testing with equal portions. 
The developed network had three membership functions 
for input fuzzification. At the beginning, the developed 
system was trained with the training input followed by 
testing phase to determine the vertical and horizontal 

forces. Since straight-line functions were adopted due 
to theirs considerable simplicity where the uniformly 
triangular membership functions were selected ow-
ing to superior accuracy (Taghavifar, Mardani 2014). 
In this manner trapezoidal and triangular membership 
functions were employed. The belonging of a factor to 
a fuzzy set is accompanied with membership functions. 
A membership function is a curve defines how every 
point in the input is mapped to a membership value be-
tween 0 and 1. The input space is sometimes referred 
to the universe of discourse, a visualized name for a 
simple notion. In order to verify the merit of the new 
constructed model, the classical ANFIS was synthesized 
and the obtained results are tabulated in Table. As ap-
preciated from Table, it is obvious that Takagi–Sugeno 
Fuzzy model with DE optimization method (TSF-DE) 
produces more reliable solutions to the nonlinear wheel 
dynamics problem for both vertical and horizontal 
forces when compared to the classical ANFIS models. 
The statistical metrics in Table further confirms that the 
Takagi–Sugeno type system modified by DE model has 
ability to be utilized for solving the nonlinear vehicle dy-
namics with favorable level of reliability and preciseness. 
Fig. 5 and 6 depict Takagi–Sugeno type system modified 
by DE decision surface for the estimation of horizon-
tal and vertical induced forces of the driving wheel at 
tire–obstacle interface, respectively. These surfaces are 
nonlinear and monolithic surfaces and represent fuzzy 
decision surfaces for given inputs (Petković et al. 2015). 

Fig. 4. A prototype of the measured horizontal (a) and vertical 
(b) induced forces during tire-triangular shaped obstacle 
contact at wheel load of 2 kN, slippage of 10%, obstacle height 

of 2 cm, and forward speed of 1.08 m/s
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Table. The characteristics of the best structure of developed models

Item Type of MF RMSE for VF R2 for VF RMSE for HF R2 for HF
ANFIS Trapezoidal 0.1587 0.94 1.0229 0.93

TSF-DE Trapezoidal 0.1291 0.98 1.2313 0.94
ANFIS Triangular 0.0952 0.95 0.9857 0.94

TSF-DE Triangular 0.0691 0.97 0.3100 0.96

Notes: MF – Membership Function; VF – Vertical Force; HF – Horizontal Force; TSF-DE – Takagi–Sugeno Fuzzy model with DE 
optimization; the boldfaced values show the outperforming models.

Fig. 5. The decision surfaces of the induced horizontal force with respect to the different inputs of: a – speed vs. wheel load; b – obstacle 
height vs. speed; c – obstacle height vs. wheel load; d – slippage vs. obstacle height; e – slippage vs. wheel load; f – slippage vs. speed
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The depicted decision surfaces can contribute to the 
knowledge of an expert concerned with the influence 
of the input variables on the output signal. At the out-
performing Takagi–Sugeno type system modified by DE 
structure, the variations of error for each data sample 
are presented as well as error histogram in the train-
ing and testing phases. A comparison between Figs. 7a 
and 7b as well as those of Fig 8a and 8b indicates that 
the dispersion degree of training phase is slighter when 
compared to the testing phase. It should be divulged that 
the proposed Takagi–Sugeno type system modified by 
DE model can be embedded as a module with computa-

tionally efficiency and adaptability. Neuro-fuzzy system 
has shown a reasonable applicability for longitudinal 
control of autonomous vehicles putting this method as 
a computationally efficient approach to solve vehicle dy-
namics related fields (Pérez et al. 2010). A comparison 
was made between a non-fuzzy approach and ANFIS 
model using a very well documented study with finite 
element method approach. Based on Cho et al. (2005), 
the longitudinal and vertical error for this study are 
about 9.3 and 7%, respectively. The error for TSF-DE 
model of the present study for longitudinal and horizon-
tal are 0.0691 and 0.31% (Table 1) and Fig. 7 and 8. This 
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shows the promising ability of using the new model used 
in the present study. A rule-based Mamdani max–min 
fuzzy expert system for prediction of coefficient of mo-
tion resistance, as an important wheel kinetic product, 
that showed mean relative error about 10% (Taghavifar, 
Mardani 2013a). The suitability and applicability of the 
proposed model is further confirmed when compared 
by the studies using classical fuzzy logic based models to 
predict different vehicle dynamic products (Taghavifar, 
Mardani 2013a, 2014, 2016). This is a further confirma-
tion of the promising ability of TSF-DE to deal with the 
wheel-obstacle collision dynamics.

Conclusions

This study was aimed at prediction of wheel dynamics 
caused by road irregularities using Takagi–Sugeno type 
neuro-fuzzy network system with a modified DE meth-
od. The experimental phase to validate the developed 
model was implemented using a single-wheel testing 
rig in a soil bin facility that for provided a controlled 
experimental medium while different operating condi-
tion and tire parameters were included. Since straight-
line functions were adopted due to theirs considerable 
simplicity where the uniformly triangular membership 

functions were selected owing to superior accuracy. 
Based on the obtained results, TSF-DE yielded a mod-
el with RMSE of vertical force and horizontal force at 
0.0691, and 0.3100, respectively. Coefficient of determi-
nation values of 0.97 and 0.96 were also obtained for 
vertical and horizontal forces, respectively. The out-
come of this study indicated that TSF-DE is a promis-
ing tool for the prediction of different phenomena of 
wheel-ground kinetics and kinematics. It can also be 
used as an approach to yield a model that can be used 
in any future research framework without any need to 
repeat the experiments to find the behavior of wheel 
when collided by obstacles and cleats. Based on the ob-
tained results, it is concluded that the TSF-DE further 
outperformed ANFIS to solve the problem at different 
membership function shapes. It was finally noted that 
the proposed model is applicable and suitable to be used 
for the modeling of wheel-obstacle collision with sat-
isfactory performance when compared with numerical 
based simulation tools such as finite element method.

It is recommended to further investigate the pro-
posed model particularly for the other vehicle dynam-
ics situation such as vehicle stability, ride comfort and 
handling, maneuvering, etc.

Fig. 6. The decision surfaces of the induced vertical force with respect to the different inputs of: a – speed vs. wheel load; b – obstacle 
height vs. speed; c – obstacle height vs. wheel load; d – slippage vs. obstacle height; e – slippage vs. wheel load; f – slippage vs. speed

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Vertical 
force [kN]

1 Wheel load [kN]

a)

Speed [m/s]

3
2.5

2
1.5

1

0.4

0.6

0.8

1.0

1.2

11.21.41.822.22.42.62.83

1.6

0.225
0.23

0.235
0.24

0.245
0.25

0.255
0.26

0.265

Vertical 
force [kN]

b)

Speed [m/s] 1
1.5

2
2.5

3

Obstacle height [cm]

Obstacle height [cm]1 1.2 1.4 1.8 2 2.2 2.4 2.6 2.8
3

1.6Wheel load [kN]

1.8
2

1.2
1.4

1.6

1

0.4

0.6

0.8

1.0

1.2

Vertical 
force [kN]

c)

10 11 12 13 14 15 16 17 18 19 20

Slippage [%]

Vertical 
force [kN]

d)

Speed [m/s]

3
2.5

2
1.5

1

0.4

0.6

0.8

1.0

1.2

10 11 12 13 14 15 16 17 18 19 20

Slippage [%]Wheel load [kN]

1.8
2

1.2
1.4

1.6

1

1

2

3

4

5

Vertical 
force [kN]

e)

10 11 12 13 14 15 16 17 18 19 20

Slippage [%]Speed [m/s]

3
2.5

2
1.5

1

Vertical 
force [kN]

f)

0.4

0.6

0.8

1.0

1.2



218 H. Taghavifar et al. Appraisal of Takagi–Sugeno type neuro-fuzzy network system with a modified differential ...

Train data

0

0.5

1

1.5

2

2.5

3

3.5

4

–1.5

–1

–0.5

0

0.5

1

1.5
RMSE = 0.31007

Number of data
Error: mean = 1.1281 e-007, std = 0.31298

Ho
riz

on
ta

l f
or

ce
 [k

N]

0 10 20 40 50 6030
0

5

10

15

20

25

30

Er
ro

r

Error

0 10 20 40 50 6030

Number of data
–1.5 –1 –0.5 0 0.5 1 1.5

a)
Target
Output

Target
Output

Test data

0

0.5

1

1.5

2

2.5

Number of data

Ho
riz

on
ta

l f
or

ce
 [k

N]

0 10 20 40 50 6030

b)

–1.5

–1

–0.5

0

0.5

1
RMSE = 0.23359 Error: mean = 0.054698, std = 0.22923

0 10 20 40 50 6030
0

5

10

15

20

25

Er
ro

r

Error

Number of data
–1 –0.5 0 0.5 1

Fig. 7. The performance of the selected Takagi–Sugeno type system modified by DE model for the induced horizontal force with 
data mapping between the modeled and experimental values, RMSE during the number of data and error histogram for training (a) 

and testing (b) phases
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