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Abstract. The objective of this research was to develop a methodology for targeted pavement friction data collection 
based on the analysis of weather-related crashes. Furthermore, the aim was to identify threshold values of pavement 
friction characteristics indicating a significant impact on safety prompting the need for maintenance and improve-
ments. Spatial analysis using Local Moran’s I statistic identified hotspots where pavement friction data were collected. 
A master database was assembled including Wisconsin State Trunk Network (STN) road attributes, hotspots of weath-
er-related crashes, and pavement friction data collected based on hotspot analysis. The analysis results provide evidence 
in support of hotspot analysis as a viable procedure for targeted pavement friction data collection to enable efficiency 
and cost reductions. Classification tree analysis using GUIDE (Generalized, Unbiased, Interaction Detection and Es-
timation) algorithm was used to further explore the relationship between pavement friction characteristics and safety. 
Statistically significant hotspots were observed below a pavement friction number of approximately 57 and very high 
hotspots below a pavement friction number of approximately 42. The results indicate that pavement friction thresholds 
identified in the literature between 20 and 32 may be too low and that safety may be impacted at friction numbers as 
high as in the forties. The results also show differences in friction and safety for various types of pavement surfaces. The 
use of weather-related crashes provides a data-driven and cost-effective method of prioritizing locations for pavement 
friction data collection and maintenance. Results from this research can be readily used in initial steps of systemic road 
safety management procedures by practitioners.
Keywords: pavement friction; friction number; spatial analysis; spatial statistics; weather-related crashes; safety; clas-
sification tree; GUIDE.

Background and Introduction 

The US has experienced approximately 30000 fatalities 
in road crashes for most years in the past five years (DoT 
2012b). Reducing fatal road crashes is one of the biggest 
challenges faced by transportation engineers in the US. 
There is a continuing need for researchers to develop 
cost effective and efficient means to improve road safety. 
‘Toward Zero Deaths: A National Strategy on Highway 
Safety’ by the Federal Highway Administration (FHWA) 
as part of the current surface transportation bill, ‘MAP-
21 – Moving Ahead for Progress in the 21st Century’, 
calls for data-driven efforts towards traffic safety issues 
which serves as the foundation for this research (DoT 
2015b, 2012a). 

Approximately one-third of the crashes in the US 
occur during adverse weather conditions (rain, snow, 
fog, ice, etc.) (DoT 2015a). A potential contributory 

factor in such crashes is reduced pavement friction due 
to aging, wear, inadequate drainage during rainstorms, 
inadequate winter maintenance, and aberrations in the 
road surface such as potholes. Such conditions can 
impair vehicle stopping and maneuvering capabilities 
thereby increasing the risk of being involved in a crash. 
Transportation agencies across the nation collect road 
friction data periodically in order to determine which 
locations require maintenance and other improvements 
to restore adequate pavement friction. 

The Wisconsin Department of Transportation 
(WisDOT) has been formally testing pavement fric-
tion on the entire State Trunk Network (STN) system 
since 1975. Different statistical models were developed 
through several research projects to predict the pave-
ment friction characteristics over its service life (Noyce 
et al. 2007). After approximately 20 years of pavement 
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friction testing, WisDOT determined that as long as the 
aggregates used during road construction met specified 
design standards, sufficient pavement friction would be 
available for the life of the pavement. In order to reduce 
costs and promote efficiency, WisDOT has decided to 
scale back on the comprehensive program of collecting 
pavement friction data for the entire STN highway sys-
tem and focus on targeted data collection on needs basis 
and for research projects. 

1. Objectives and Study Design

One of the challenges of the targeted approach to pave-
ment friction data collection is the question of which 
road segments should be targeted? Therefore, the main 
objective of this research was to develop a methodology 
to identify specific highway segments where pavement 
friction data collection activities should be focused. 
Although there are many examples of hotspot analysis 
in the literature that employ various classical statistical 
methods, the idea was to identify road segments with 
high frequency of weather-related crashes associated 
with reduction in pavement friction using spatial statis-
tical methods because such methods are able to analyze 
specific locations with respect to nearby locations of 
similar weather to identify changing trends and hotspots 
(De Luca et al. 2012; De Luca, Dell’Acqua 2014).

Another objective of this research was to exam-
ine the hotspots of weather-related crashes to identify 
threshold values of pavement friction and other char-
acteristics that would indicate a significant impact on 
safety prompting the need for maintenance and im-
provements. The process of identifying and analyzing 
hotspots of weather-related crashes would help enhance 
the understanding of the relationship between pavement 
friction and safety while helping agencies reduce the fi-
nancial burden of a comprehensive approach towards 
pavement friction data collection by using the a targeted 
approach.

Subsequent sections present details of the hotspot 
identification, which was completed in 2011 followed 
by targeted friction data collection by WisDOT in 2012. 
Once the friction data had been processed, detailed 
analysis of hotspots for friction thresholds and addition-
al characteristics was conducted. This paper highlights 
the analysis from these efforts.

2. Literature Review

Most of the latest literature concerning pavement fric-
tion data collection has been adequately summarized 
in the reports by Federal Highway Administration 
(FHWA) and Texas Department of Transportation  
(McGovern et al. 2011; Long et al. 2014). Details on the 
use of weather-related crashes and threshold values for 
pavement friction vary greatly amongst various states. 
California analyses the locations of wet weather crashes 
periodically as part of overall safety studies to identify 
specific locations for treatment. Pavement friction data 

is collected periodically for all roads in the state with 
no specific threshold values. Florida also collects pave-
ment friction data on all roads on a three-year rotation. 
However, locations with friction number 28 (FN40R) or 
less for posted speed limit of 45 miles per hour or less, 
and 30 (FN40R) or less for posted speed greater than 45 
miles per hour are specially scrutinized. Michigan and 
New York use a friction number threshold of 30 and 
32 or less, respectively, for prioritizing locations. New 
York also prioritizes locations if there are at least six wet 
road crashes during a two-year period in rural areas and 
at least 10 in urban areas with at least 35% of the total 
crashes occurring on wet road conditions. Virginia uses 
the criteria of a minimum three wet weather crashes, 
each separated by less than 0.2 miles and proportion 
of wet weather crashes at least 20% higher than the ra-
tio for all roads in the area. Locations with a friction 
number less than 20 (SN40S) are flagged for review by 
the districts. However, a more recent study conducted 
by National Highway Traffic Safety Administration’s 
(NHTSA’s) Vehicle Research and Testing Center (VTRC) 
and Virginia Tech has recommended the use of a higher 
value (25–30) (McGovern et al. 2011; Long et al. 2014).

Researchers and agencies also use regression and 
other statistical models to predict the deterioration in 
pavement characteristics over time (Dell’Acqua et al. 
2011; De Luca, Dell’Acqua 2014). WisDOT employs em-
pirical models (Russell Model), which were developed 
to predict the friction number as a function of asphalt 
material properties, service age of pavement, traffic mix, 
and volume, as well as climate variations (Noyce et al. 
2007; Vadakpat 1994):

for Hot Mix Asphalt (HMA):
2414.4 0.00075FN D= − ⋅ −

( )1.45 ln 0.245LAVP LAWEAR⋅ + ⋅ ;  (1)

for Portland Cement Concrete (PCC):

( ) ( )ln 3.99 0.0419 lnFN LAVP= − ⋅ −

0.00129 0.00474D HV⋅ + ⋅ ,  (2)

where: FN – friction number calculated at 40 mph; D – 
percent dolomite in the asphalt mix; LAVP  – lane ac-
cumulated vehicle passes; LAWEAR – Los Angeles abra-
sion test result (ASTM C535-12); HV – percent heavy 
vehicles in the design lane.

Based on empirical knowledge and past experience, 
WisDOT uses a desirable minimum friction number of 
35 as a threshold for pavement monitoring and improve-
ments (Noyce et al. 2007). 

From the literature, it is evident that most states 
base their analyses on weather-related crashes and some 
level of threshold values in prioritizing maintenance 
and reconstruction operations, but there is no consis-
tent practice associating pavement friction and safety. 
Therefore, there is a need to further explore the subject 
matter in this research. 
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3. Identification of Weather Crash Hotspots

3.1. Data Collection and Processing 
The first step of this research study was to develop a 
methodology for the identification of hotspots of weath-
er-related crashes where pavement friction data collec-
tion could be focused. Three years of Wisconsin crash 
data on STN roads (2008 through 2010) were used in 
consultation with WisDOT officials. A shapefile of crash 
locations was generated by WisDOT using intersection 
or milepost location, distance of the crash from inter-
section/milepost (in increments of one hundredth of a 
mile), and STN specific reference point tables identifying 
specific locations on the system, thus allowing research-
ers with an accurate position of the crashes. Animal and 
intersection-related crashes were removed, resulting in a 
total of 72792 crashes for the three year period. Based on 
information in the crash report forms, weather-related 
crashes were identified considering the presence of rain 
or snow at the time of crash or a checkmark indicat-
ing adverse weather as a contributing factor resulting in 
31571 weather-related crashes for the three year period 
between 2008 and 2010. 

The total and weather-related crashes were aggre-
gated on individual segments of the Wisconsin Meta-
Manager (MM) road database (separately for each di-
rection of divided road sections) which contains more 
than 19000 homogenous segments of the Wisconsin 
STN roads along with detailed attributes related to safe-
ty, mobility, and infrastructure. A weather-related crash 
rate was calculated to normalize crashes by exposure to 
facilitate the comparisons between different MM seg-
ments. The weather-related crash rate was defined as 
follows:

i
i

i
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x

TC
= ∑
∑

,  (3)

where: xi – weather-related crash rate for MM segment i; 
WCi – sum of weather-related crashes on MM segment i; 
TCi – sum of all crashes on MM segment i.

The reason for using the sum of all crashes as expo-
sure instead of traffic volume was significant variability 
in Annual Daily Traffic (ADT) data over the three-year 
analysis period and the non-linear relationship between 
weather-related crashes and ADT in Wisconsin from 
past research (Qin et al. 2007). 

3.2. Methodology
Although patterns in spatial data can be visually ana-
lyzed through mapping frequency, mean, or propor-
tions, spatial statistical methods go one-step further in 
utilizing advanced statistical methods to quantify and 
discern patterns in spatial data. The ability to visually 
discern patterns can be limiting, therefore spatial sta-
tistical methods can provide a quantifiable measure of 
spatial patterns rather than a pre-defined ranking or 
number. 

There are several spatial statistical methods avail-
able for analyzing patterns to identify hotspots. Some 
methods can identify hotspots as clusters of high or low 
attribute values (Getis–Ord Gi* statistic) while others 

identify clusters of similar or dissimilar values (Anselin’s 
Local Moran I statistic) (Getis, Ord 1992; Anselin 1995; 
Ord, Getis 1995). In this research, the Local Moran’s I 
statistic was used because it has the added advantage 
of classifying spatial patterns by high or low attribute 
values besides similar and dissimilar values as defined 
below:

 – HH  – high weather-related crash rate location 
surrounded by other locations with high weath-
er-related crash rate;

 – HL  – high weather-related crash rate location 
surrounded by other locations with low weather-
related crash rate;

 – LH – low weather-related crash rate location sur-
rounded by other locations with high weather-
related crash rate;

 – LL – low weather-related crash rate location sur-
rounded by other locations with low weather-
related crash rate.

The Local Moran’s I statistic calculated an index 
value I and associated z-score for each feature (MM 
segment) analyzed. A positive index value I for a fea-
ture indicates that it is clustered with features of similar 
attribute values, and a negative value indicates that the 
feature is clustered by dissimilar values. Z-scores are 
measures of statistical significance indicating whether 
the similarity or dissimilarity in attribute values between 
the feature and its neighbors is greater than one would 
expect simply by chance (Getis, Ord 1992). The more 
positive or negative the z-score, the more significant the 
results are. The Local Moran’s I statistic can be presented 
as follows: 
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Ii – Local Moran’s I statistic; xi – weather-related crash 
rate of MM segment i; xj – weather-related crash rate of 
neighboring MM segment j; wij – spatial weight matrix 
around i for all sites j; N – number of weighted points, 
each representing weather-related crash rate for each 
MM segment.

In Eq. (4), wij represents the nature and extent of 
the neighborhood around xi, which defines the relation-
ship between locations. The relationship is based on the 
nature of attributes (weather-related crashes) being ana-
lyzed. The spatial weight matrix wij in this research was 
based on the inverse distance function, which indicates 
a decreasing influence of the spatial relationship with 
increasing distance because weather tends to be similar 
at closer locations than at locations further away. 

The inverse distance function represents the na-
ture of the relationship between neighboring locations, 
but does not define an actual extent of the neighbor-
hood, which is more challenging. The Local Moran’s I 
and Getis–Ord Gi* statistics are local spatial statistical 
methods which can identify local spatial patterns in a 
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predefined neighborhood. Conversely, global spatial sta-
tistical methods, such as Global Moran’s I statistic, can 
measure the overall intensity of clustering (hotspots) in 
the study area (Getis, Ord 1992). The idea in this re-
search was to calculate the Global Moran’s I statistic at 
various distance scales, identifying the distance where 
spatial patterns (clustering) peak. The intensity of the 
patterns (clustering) is represented by the z-score. The 
peak distance was used to define the neighborhood for 
the Local Moran’s I statistic. The analysis was conducted 
using ESRI ArcGISTM software. 

3.3. Results and Discussion
3.3.1. Global Moran’s I Statistic
The result of Global Moran’s I statistic is presented in 
Fig.  1 where the x-axis shows the distance scales or 
bandwidths at which the statistic was calculated. A total 
of 10 distance bandwidths were analyzed in increments 
of 1 km starting at 5 km. The starting bandwidth of 5 km 
was selected because the minimum distance required to 
ensure that all MM segments have at least 1 neighbor 
was 4.3 km. The y-axis represents the z-score indicating 
the intensity of clustering (hotspots) of weather-related 
crash rate in the study area. Fig.  1 shows that cluster-
ing peaks at a distance of 12 km, which was selected as 
the size of the neighborhood along with inverse distance 
function to define the spatial weight matrix for Local 
Moran’s I statistic. 

3.3.2. Local Moran’s I Statistic
The result of Local Moran’s I statistic identified different 
types of statistically significant (90% confidence level,  
z-score ±1.645) spatial patterns of weather-related 
crashes in Wisconsin, which were defined previously. 
In this research, the primary interest was in HH and 
HL locations (MM segments) because HH MM segment 
represents locations of high weather-related crash rate 
surrounded by other high weather-related crash rate 
MM segments, whereas HL MM segment represents lo-
cations of high weather-related crash rate surrounded 
by low weather-related crash rate MM segments. Both 
HH and HL MM segments thus represent hotspots of 
weather-related crashes signifying systematic weather-
prone locations with respect to road safety. The identi-
fication of HH and HL MM segments provides an ob-
jective data-driven method of prioritizing locations for 
targeted pavement friction data collection efforts. 

Based on the spatial weight matrix of inverse dis-
tance function, 12 km cut-off distance, and 90% con-
fidence level, the result of Local Moran’s I statistic 
identified more than 2000 hotspots (HH and HL MM 
segments) throughout the state of Wisconsin. In consul-
tations with WisDOT officials, MM segments with three 
or less crashes were removed, resulting in a total of 304 
HH and 188 HL hotspots. Fig. 2 illustrates the result of 
Local Moran’s I statistic showing statistically significant 
spatial patterns (hotspots) in weather-related crashes 
(using weather-related crash rate). MM segments which 
were not part of a statistically significant hotspot (HH 
and HL) are not shown in Fig. 2. 

The result presented in Fig. 2 was shared with Wis-
DOT officials for further consultations. In order to pre-
pare a realistic plan for targeted pavement friction data 
collection, contiguous MM segments on various STN 
roads were identified taking in to account the hotspots 
as shown in Fig. 2, local knowledge and experience, and 
potential future reconstruction projects. Although the 
main interest was in HH and HL hotspots, the contigu-
ous segments included LL and LH locations which were 
also of interest providing a basis for comparing and con-
trasting the discerning characteristics that may indicate 
factors affecting weather-related crashes. In the end, a 
total of 3388 MM segments based around the hotspots 
in Fig. 2 on various STN roads in Wisconsin were identi-

Fig. 1. Result of Global Moran’s I statistic showing distance 
bandwidth of peak clustering of weather-related crash rate  

in Wisconsin

Fig. 2. Local Moran’s I hotspots of weather-related crashes  
in Wisconsin (greater than three crashes per MM segment)
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fied for targeted pavement friction data collection. The 
segments included 304 HH, 188 HL, 93 LH, and 120 LL 
statistically significant spatial patterns and 2683 non-
significant MM segments, which are illustrated in Fig. 3. 

4. Analysis of Friction Data  
and Hotspot Characteristics

In June 2012, WisDOT contracted Dynatest Consult-
ing Inc. to conduct targeted friction testing on the 3388 
MM segments (representing 3243 miles) in 46 counties 
of Wisconsin based on the results of Local Moran’s I 
hotspot analysis. All testing was performed in accord-
ance with the procedures detailed in ASTM E274 and 
using the ASTM E501 standard rib tire (Gokhale, Bis-
choff 2012). Horizontal curves, intersections, and ramps 
were not tested as per WisDOT directives (Gokhale, Bis-
choff 2012). Details of the data collection process are 
presented in the final report submitted to WisDOT by 
the contractor (Gokhale, Bischoff 2012). 

4.1. Data Collection and Processing
A number of data were collected as part of the tar-
geted pavement friction data collection process includ-
ing pavement friction number at 40 miles per hour 
(SN40R), Mean Profile Depth (MPD), and Estimated 
Texture Depth (ETD). Friction data collected was in-
tegrated with relevant variables of the Wisconsin MM 
database to create a master database used in the analysis 
of hotspots of weather-related crashes in Wisconsin as 
presented in Table.

Fig. 3. Contiguous MM segments of Wisconsin STN roads 
for targeted pavement friction data collection (including 

Local Moran’s I hotspots of weather-related crashes)

Not significant (2683) 
HH (304)
HL (188)
LH (93)
LL (120)

0 15 30 60 miles

Table. Variables used in analysis of hotspots of weather-related crashes in Wisconsin

Variable name Variable description Variable categories Description MM segment count

COType1 Types of Local Moran’s I spatial patterns

HH High/High 304
HL High/Low 188
LH Low/High 93
LL Low/Low 120
NS Not significant 2683

Region WisDOT region

NC North Central 729
NE North East 529
NW North West 725
SE South East 263
SW South West 1142

FLCASSb Area type
Urban Urban 928
Rural Rural 2460

BroadSurf Pavement surface type
AC Hot mix asphalt 2413

PCC Concrete 891
SMA Stone matrix asphalt 84

Variable name Variable description Mean Median Std. dev.
WTHR_Rate Weather crash rate 0.40 0.36 0.37
Sum_TOT Total number of crashes per MM segment 3.93 2.00 6.53

Sum_WTHR Total number of weather-related crashes  
per MM segment 1.97 1.00 3.29

TRKYR_1 Percentage of trucks 11.43 10.00 5.59
Age Pavement age [years] 12.87 12.00 8.69
SN40R Pavement friction humber 50.63 51.80 7.45
Avg_MPD Average MPD for MM segment 0.02 0.02 0.02
Avg_ETD Average ETD for MM segment 0.02 0.03 0.01
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The master database was used in further analysis 
to explore the relationship between pavement friction 
characteristics and safety to identify threshold values 
that would indicate significant changes in safety. Explor-
atory analysis of the master database revealed interesting 
trends, which are presented in Fig. 4. Fig. 4a shows a plot 
between MPD and ETD variables as almost a straight 
line, which was expected given that both variables repre-
sent similar characteristics of the pavement surface tex-
ture. In this research, it was decided to use MPD as the 
variable representing pavement surface texture. Fig. 4b 
shows a nearly linear relationship between weather-re-
lated and total crashes on MM segments, which justi-
fies the use of total crashes as the measure of exposure. 
Fig. 4c illustrates an increasing trend in pavement fric-
tion number as the MPD of pavement increases, which 

is an important consideration in identifying threshold 
values impacting safety.

Fig. 5 displays the relationship between different 
types of hotspots of weather-related crashes, pavement 
friction number, and MPD using boxplots and mean 
values. Fig. 5a shows that the pavement friction number 
is the lowest for hotspots of weather-related crashes (HH 
and HL MM segments) except for locations which do 
not show statistically significant spatial patterns. Simi-
larly, Fig. 5b also illustrates a similar trend for MPD, 
which is lowest for hotspots of weather-related crashes. 
The results in Fig. 5 indicate that there is a direct rela-
tionship between declining safety and pavement friction, 
validating the use of hotspot identification as a viable 
methodology for targeted pavement friction data collec-
tion. Furthermore, the direct relationship means that a 

Fig. 4. Scatterplots of crashes and pavement friction characteristics

Fig. 5. Boxplots of pavement friction characteristics and types of hotspots of weather-related crashes
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threshold value can be determined beyond, which safety 
deteriorates significantly. Such locations should be pri-
oritized for maintenance and other improvements.

In view of information presented in Figs 4 and 5, 
further analysis between safety (hotspots of weather-re-
lated crashes) and pavement friction was conducted to 
identify threshold values and discerning characteristics 
of MM segments with pavement friction issues. Classi-
cal regression methods were not well suited for analysis 
due to non-compliance of assumptions in the data and 
categorical dependent variable (hotspots of weather-
related crashes). The best choice in this case was to use 
non-parametric methods, specifically classification trees, 
which do not require the stringent assumptions associ-
ated with classical regression methods.

4.2. Methodology
4.2.1. Classification Tree Using GUIDE
Classification trees are machine-learning methods for 
constructing prediction models through recursive parti-
tioning of data, which can be graphically represented as 
a decision tree. In each of the recursive iteration, the aim 
is to find a factor and its partitioning value that results 
in the most homogeneous subset. There are several algo-
rithms in literature, which implement classification trees 
with different strengths and weaknesses (Loh 2011). The 
classification tree algorithm used in this research was 
GUIDE (Generalized, Unbiased, Interaction Detection 
and Estimation). GUIDE offers advantages in terms 
of unbiased splits (removing bias in splits due to large 
differences in sample sizes) and robust method of tree 
pruning, as compared with other regression tree algo-
rithms e.g. Classification And Regression Tree (CART) 
(Loh 2011, 2002). GUIDE also offers several options to 
select the appropriate tree size based on cross validation 
techniques.

For GUIDE analysis, a unit misclassification cost 
matrix was used as a means of assigning equal weight 
to different categories of the dependent variable during 
classification. The interpretation of a classification tree 
model becomes increasingly difficult with large number 
of splits and terminal nodes. In addition, over-fitting 
can occur when the number of split levels approaches 
the sample size in the absence of constraints, e.g. one 
of the trees in this research without pruning resulted in 
more than 50 terminal nodes. GUIDE minimizes this 
issue by allowing the user to fit complex models at nodes 
reducing the need for additional splits and nodes. Ad-
ditionally, GUIDE uses user specified V-fold cross-vali-
dation for pruning to develop optimal tree structures. In 
this analysis, the optimal tree structure was selected by 
GUIDE using ten-fold cross-validation and the mean of 
cross-validation estimates. 

4.3. Results and Discussion
The goal of classification tree analysis was to develop 
simple models identifying breakpoints or threshold 
values in data indicating significant changes in safety 

with respect to changes in pavement friction and re-
lated characteristics. The GUIDE Classification Tree for 
hotspot analysis of weather-related crashes in Wisconsin 
using unit misclassification cost matrix is presented in 
Fig.  6, where ‘?’ represents missing or unknown data. 
The dependent variable was the different types of hot-
spots (HH, HL, LH, and LL); and independent variables 
are presented in Table. 

Fig. 6 shows both graphical and textual representa-
tion of the GUIDE Classification Tree structure. Split-
ting variables are shown besides each intermediate or 
root node where an observation (individual MM seg-
ment) goes to the left only if the condition for the vari-
able besides a specific node is met. For example, if the 
value of pavement friction number (SN40R) is less than 
57.85 at the root node, all cases are transferred to node 
2 and the rest are transferred to node 3. The predicted 
class is shown below each terminal node representing 
the dominant trait (type of hotspot) of the homogenous 
subset of data. The numbers beside each terminal node 
represent the class sample size and misclassified obser-
vations. 

The GUIDE Classification Tree result in Fig. 6 
shows that for pavement friction number greater than 
57.85, there are no hotspots in weather-related crashes 
except when pavement type is PCC. Conversely, for 
a pavement friction number of less than 57.85, HH 
hotspots are observed for the following conditions:

 – MM segments of PCC and SMA pavement types; 
 – AC pavement type in urban area; 
 – AC pavement type in rural area with MPD less 
than 0.012; 

 – AC pavement type in rural area with MPD great-
er than 0.012 and pavement friction number less 
than 53.75.

However, MM segments of AC pavement type in 
rural area where MPD is greater than 0.012 and pave-
ment friction number is between 53.75 and 57.85 shows 
HL hotspots. The results in Fig. 6 indicate a pavement 
friction threshold value of 57.85 beyond, which there are 
significant hotspots in weather-related crashes, except in 
the case of PCC pavement type, which requires further 
investigation.

The result presented in Fig. 6 shows a classifica-
tion tree with five levels and seven terminal nodes. As 
the tree grows bigger, the model becomes complex, dif-
ficult to interpret and use in the real world. Therefore, 
efforts were made to simplify the model by removing 
the functional classification (FCLASSb) variable through 
trial and error. The result of GUIDE Classification Tree 
using weather-related crash rate in Wisconsin and no 
functional classification variable is presented in Fig. 7. 
Fig. 7 shows that for SMA and PCC pavement types, 
friction values less than 56.06 are critical resulting in 
HH hotspots. However, for AC pavement, friction value 
of less than 41.75 results in HL hotspot. HL hotspots are 
potentially more critical since it represents a MM seg-
ment with weather-related crash rate significantly higher 
than adjacent locations as compared with HH hotspot 
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which represents a high weather-related crash rate but 
comparable with adjacent locations. The result in Fig. 7 
shows two threshold values of pavement friction for dif-
ferent types of pavement surfaces beyond, which safety 
is significantly deteriorated. The numbers can be used 
to analyze the need for targeted pavement maintenance 
and improvement activities in the future. It should be 
noted that for pavement friction numbers above 56.05, 
there are no hotspots except in the case of PCC pave-
ment type, which requires further investigation.

GUIDE classification tree with estimated priors and unit 
misclassification costs. At each intermediate node, an ob-
servation goes to the left branch if and only if the condi-
tion is satisfied. The symbol ‘£*’ denotes ‘£ or missing’. Set 
S1 = {PCC, SMA}. Predicted classes (based on estimated 
misclassification cost) below terminal nodes; #misclassi-
fied/sample size beside each node.

Node 1: SN40R <= 57.85 or ?
  Node 2: BroadSurf = “PCC”, “SMA”
    Node 4: HH
  Node 2: BroadSurf /= “PCC”, “SMA”
    Node 5: FCLASSb = “Urban”
      Node 10: HH
    Node 5: FCLASSb /= “Urban”
      Node 11: AvgMPD <= 1.20 E-02 or ?
        Node 22: HH
      Node 11: AvgMPD > 1.20 E-02 and not ?
        Node 23: SN40R <= 53.75 or ?
          Node 46: HH
        Node 23: SN40R > 53.75 and not ?
          Node 47: HL
Node 1: SN40R > 57.85 and not ?
  Node 3: BroadSurf = “PCC”
    Node 6: HH
  Node 3: BroadSurf /= “PCC”
    Node 7: LL
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Summary and Conclusions

The objective of this research was to develop a meth-
odology for targeted pavement friction data collection 
based on the analysis of weather-related crashes and to 
identify threshold values of pavement friction character-
istics that would indicate a significant impact on safety 
prompting the need for maintenance and improvements. 
Results of spatial analysis of weather-related crashes us-
ing Local Moran’s I method identified spatial patterns 
(HH and HL hotspots of MM segments) providing an 
objective and data-driven method of prioritizing loca-
tions for targeted pavement friction data collection. 

After completion of targeted pavement friction data 
collection, a master database was assembled including 
friction, hotspot, and other MM segment data attributes. 
Pavement friction numbers and MPD associated with 
hotspots showed a direct relationship in Fig. 5 which 
concludes that hotspot identification method using 
weather-related crashes is viable for targeted pavement 
friction data collection. 

Fig. 6. GUIDE Classification Tree result of hotspots  
of weather-related crash rate in Wisconsin

Fig. 7. GUIDE Classification Tree result of hotspots  
of weather-related crash rate in Wisconsin without  

functional class variable

GUIDE classification tree with estimated priors and unit 
misclassification costs. At each intermediate node, an ob-
servation goes to the left branch if and only if the condi-
tion is satisfied. The symbol ‘£*’ denotes ‘£ or missing’. Set 
S1 = {PCC, SMA}. Predicted classes (based on estimated 
misclassification cost) below terminal nodes; #misclassi-
fied/sample size beside each node.

Node 1: SN40R <= 56.05 or ?
  Node 2: BroadSurf = “PCC”, “SMA”
    Node 4: HH
  Node 2: BroadSurf /= “PCC”, “SMA”
    Node 5: SN40R <= 41.75
      Node 10: HL
    Node 5: SN40R > 41.75 or ?
      Node 11: HH
Node 1: SN40R > 56.05 and not ?
  Node 3: BroadSurf = “PCC”
    Node 6: HH
  Node 3: BroadSurf /= “PCC”
    Node 7: LL
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The master database was used in further analysis 
to explore the relationship between pavement friction 
characteristics and hotspots to identify threshold val-
ues that would indicate significant changes in safety. 
The results of GUIDE Classification Trees in Figs 6 and 
7 show statistically significant hotspots below a pave-
ment friction number of approximately 57 and very 
high hotspots below pavement friction number of ap-
proximately 42. These results conclude that the general 
pavement friction thresholds as identified in the litera-
ture, which ranged from 20 to 32 may be too low and 
that there is a possibility of safety being impacted even 
at friction numbers as high as in the forties. Further-
more, the results also show the differences in friction 
and safety for various types of pavement surfaces. The 
results of GUIDE Classification Trees illustrate a simple 
model, which is easy to interpret and provides thresh-
olds regarding safety of weather-related crashes related 
to pavement friction. Such results can be readily used in 
initial steps of systemic road safety management proce-
dures by practitioners. 

The Local Moran’s I and GUIDE Classification Tree 
methods and processes described in this research were 
based on off-the-shelf software and techniques which 
are easily implementable and repeatable in the future. 
Classification trees are easy to use and without restric-
tions in terms of underlying assumptions associated with 
classical regression methods. However, classification tree 
methods do require some trial and error to produce the 
best (simplest), most informative, and practical model. 

The methods used in this research pave the way 
for targeted pavement data collection and maintenance 
using data driven approach promoting efficiency and 
cost effectiveness. One limitation of this research is the 
unavailability of rainfall intensity data, which could have 
safety implications for various types of pavement sur-
faces (Dell’Acqua et al. 2012). Nevertheless, the process 
of identifying and analyzing hotspots helped enhance 
the understanding of the relationship between pave-
ment friction and weather-related crashes while helping 
agencies reduce the financial burden of a comprehensive 
approach by using a targeted approach. The methods 
and processes described in this research will also enable 
agencies to comply with MAP-21 (DoT 2012a) require-
ments in terms of data-driven approach towards safety 
improvements.
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